Kinematic trajectories for vehicle agents

Rasmus Fonseca & Tim Caldwell

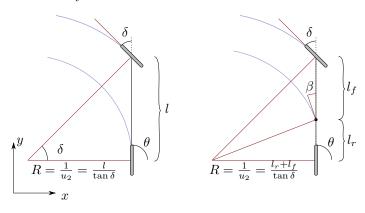
November 5, 2018

Abstract

Kinematic trajectories are used to move agents forward along a predicted route frame. Here we describe two underlying kinematic models based on bicycle models and how they're translated from cartesian into route coordinates.

1 Kinematic bicycle models

The commonly used simplification of a car is the rear-axle centered bicycle model:



Our vehicle model uses lateral accelleration (u_1) and curvature of the front-wheel turning (u_2) as controls. The geometry of the rear-axle centered model (left) can be described as

$$\dot{V} = u_1 \tag{1}$$

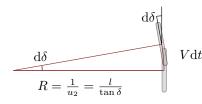
$$\dot{x} = V\cos\theta \tag{2}$$

$$\dot{y} = V\sin\theta \tag{3}$$

$$\dot{\theta} = V \frac{\tan \delta}{l} \tag{4}$$

$$= V u_2 \tag{5}$$

Where (x, y) are the coordinates of the rear-axle and V the velocity. Derivatives of x, y, and V are straightforward, and $\dot{\theta}$ can be found by observing that the rear-axle will travel by the distance V dt along the circle which corresponds to an angular change of $\frac{Vdt}{R} = Vu_2 dt$.



Polack et al. [1] outline a similar model which is instead centered somewhere on the middle of the vehicles axis (right

side of first figure). Here, the cartesian geometry can be described using the slip-angle of the center-of-mass:

$$\beta(\delta) = \operatorname{atan}\left(\operatorname{tan}(\delta)\frac{l_r}{l_r + l_f}\right) \tag{6}$$

$$\dot{V} = u_1 \tag{7}$$

$$\dot{x} = V\cos(\theta + \beta(u_2)) \tag{8}$$

$$\dot{y} = V\sin(\theta + \beta(u_2)) \tag{9}$$

$$\dot{\theta} = V \frac{\sin \beta(u_2)}{l_r} \tag{10}$$

By substituting $u_2 = \frac{\tan \delta}{l_r + l_f}$ into β and simplifying using trigonometric equations [2, 3] all calls to atan can be eliminated:

$$\beta(u_2) = \operatorname{atan}\left(u_2 l_r\right) \tag{11}$$

$$\dot{\theta} = V \frac{\sin \beta(u_2)}{l_r} \tag{12}$$

$$=V\frac{\sin \operatorname{atan}(u_2 l_r)}{l_r} \tag{13}$$

$$=V\frac{u_2}{\sqrt{1+u_2^2 l_r^2}}$$
(14)

$$=V\psi u_2\tag{15}$$

$$\dot{x} = V\cos(\theta + \beta(u_2)) \tag{16}$$

 $= V \left(\cos(\theta) \cos(\operatorname{atan}(u_2 l_r)) - \sin(\theta) \sin(\operatorname{atan}(u_2 l_r)) \right)$ (17)

$$= V\left(\frac{\cos(\theta)}{\sqrt{1+u_2^2 l_r^2}} - \frac{\sin(\theta)u_2 l_r}{\sqrt{1+u_2^2 l_r^2}}\right)$$
(18)

$$=V\frac{(\cos(\theta) - \sin(\theta)u_2l_r)}{\sqrt{1 + u_2^2l_r^2}}$$
(19)

$$= V\psi\left(\cos(\theta) - \sin(\theta)u_2l_r\right) \tag{20}$$

$$\dot{y} = V\sin(\theta + \beta(u_2)) \tag{21}$$

$$= V\left(\sin(\theta)\cos(\operatorname{atan}(u_2l_r)) + \cos(\theta)\sin(\operatorname{atan}(u_2l_r))\right)$$
(22)

$$= V\left(\frac{\sin(\theta)}{\sqrt{1+u_2^2 l_r^2}} + \frac{\cos(\theta)u_2 l_r}{\sqrt{1+u_2^2 l_r^2}}\right)$$
(23)

$$=V\frac{(\sin(\theta) + \cos(\theta)u_2l_r)}{\sqrt{1 + u_2^2l_r^2}}$$
(24)

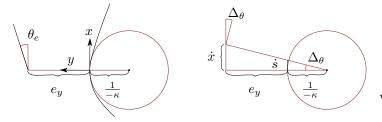
$$= V\psi\left(\sin(\theta) + \cos(\theta)u_2l_r\right) \tag{25}$$

where

$$\psi = \frac{1}{\sqrt{1 + u_2^2 l_r^2}} \tag{26}$$

2 Transformation to road-reference coordinates

Route reference lines are composed of geometric primitives that can be slices of either piecewise clothoid curves, circles, or lines. Positions in the route frame are represented using (s, e_y) -coordinates corresponding to distance along the curve and lateral offset. Vehicle orientation is specified using the yaw θ_e with respect to the tangent of the reference line at the s coordinate. A model of the rear-centered bicycle in



this coordinate system can be defined by extending on the cartesian set of equations where the x-axis is aligned with the tangent of the curve (left side of figure). This ensures that \dot{s} is proportional to \dot{x} , \dot{c}_y to \dot{y} , and that $\theta = \theta_e$. An assumption is made that for small steps the curve is well-approximated by a circle with the same curvature, κ , as the curve.

$$\dot{V} = u_1 \tag{27}$$

$$\dot{s} = \frac{\dot{x}}{1 - e_y \kappa} \tag{28}$$

$$= V\omega\cos\theta_e \tag{29}$$

$$\dot{e_y} = \dot{y} \tag{30}$$

$$= V \sin \theta_e \tag{31}$$

$$\dot{a} = \dot{a} \quad \Lambda \tag{32}$$

$$=\dot{\theta} - \frac{\dot{x}}{e_{-} - 1/\epsilon}$$
(32)

$$=\dot{\theta} - \kappa \omega \dot{x} \tag{34}$$

$$= V \left(u_2 - \kappa \omega \cos e_y \right) \tag{35}$$

where

$$\omega = \frac{1}{1 - e_y \kappa} \tag{36}$$

Equation 28 comes from interpreting the triangle spanned by \dot{x} from the rear-axle to the center of the reference lines curvature center (right side of above figure). The relationship between \dot{x} and the full baseline roughly¹ equals the relationship between \dot{s} and the radius of the curvature-circle, $-1/\kappa$. Rewriting we get:

$$\frac{\dot{s}}{-1/\kappa} = \frac{\dot{x}}{e_y - 1/\kappa} \Leftrightarrow \tag{37}$$

$$\dot{s}\kappa = \frac{\dot{x}}{1/\kappa - e_y} \Leftrightarrow$$
 (38)

$$\dot{s} = \frac{\dot{x}}{1 - e_y \kappa} \tag{39}$$

¹More accurately, \dot{s} would be the extent along the circle arc, but this introduces an expensive at an computation which we'd like to avoid. The Δ_{θ} term in Equation 33 is the compensation to θ_e required to keep the same heading when stepping the distance \dot{s} along the route frame. Like in the derivation of \dot{s} , this term is determined by observing the curvature circle, but we now assume that at small values, \dot{s} divided by the full base-line roughly² equals the angular change around the curvature center.

The transformation from rear-axle centered vehicle to CoM can be performed by substituting Equations 15, 20, and 25 into 28, 30, and 34.

$$r = u_1 \tag{40}$$

$$\dot{s} = V\psi\omega\left(\cos(\theta_e) - \sin(\theta_e)u_2l_r\right) \tag{41}$$

$$\dot{e_y} = V\psi\left(\sin(\theta_e) + \cos(\theta_e)u_2l_r\right) \tag{42}$$

$$\dot{\theta_e} = V\psi \left(u_2 - \kappa\omega \left(\cos(\theta_e) - \sin(\theta_e) u_2 l_r \right) \right)$$
(43)

where, to summarize

İ

$$\psi = \frac{1}{\sqrt{1 + u_2^2 l_r^2}} \tag{44}$$

$$\omega = \frac{1}{1 - e_y \kappa} \tag{45}$$

References

- P. Polack, F. Altche, B. D'Andrea-Novel, and A. De La Fortelle The Kinematic Bicycle Model: a Consistent Model for Planning Feasible Trajectories for Autonomous Vehicles. HAL archives-ouvertes, 2017. https://hal-polytechnique.archives-ouvertes.fr/ hal-01520869
- [2] Wikipedia Inverse trigonometric functions. https: //en.wikipedia.org/wiki/Inverse_trigonometric_ functions
- [3] Wikipedia Angle sum and difference identities. https: //en.wikipedia.org/wiki/List_of_trigonometric_ identities#Angle_sum_and_difference_identities

 $^{^{2}}$ Again, this is only true in the limit of small steps, but avoids an expensive atan computation.