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1 Definitions

v Hero Velocity in x direction of body frame with respect to smooth frame (m/s)
a Hero Acceleration in x direction of body frame with respect to smooth frame (m/s2)
δ Hero steering angle (rad)
ν Hero Steering Angle Rate (rad/s)
κ Curvature (1/m)
ω Yaw Rate (rad/s)
d Arc Length (m)
l Vehicle wheel base
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2 Purpose

As a part of expanding the scope of checks on the Collision Avoidance System (CAS), a simple car
integrator was implemented to check the feasibility of all trajectories. The Nogo trajectories were
found to have errors in Yaw and Position significantly beyond that expected due to floating point
rounding. NoGo trajectories are generated from a Go Trajectory, and in general states are spatially
unchanged, with just the longitudinal/time profile modified, which should presumably lead to a
lateral profile identical to the Go Trajectory. The root cause of the lateral error found with the
integrator was that the curvature assumed by the integrator is dependent on the velocity gradient
of the arc, which in general changes between the Go and NoGo trajectories. However, since the
tracker only interpolates between positions, the vehicle does in fact follow the same curvature on
both trajectories.
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3 Trajectory Integration

The Car Trajectory consists of a series of states, controls, and times propagating forward into the
future. There are N states and times associated with N-1 controls; the last state has no associated
control. These are all measured with respect to Planner Origin which is placed at the point on
vehicle with zero lateral velocity.

At each point in the trajectory, the subsequent (n+1) state can be calculated from the current
(n) state, current control, and the time difference between the two using a simple car model.
Velocity and steering angle at the next state are found from a simple explicit euler integration in
(2) and (3). Curvature is computed for the two points via (4), which is then used to compute yaw
rate at both points (5). The mean velocity over the timestep is computed as the mean velocity
of the endpoints (6), yaw rate is given the same treatment in (7). Arc length and Yaw are then
integrated in (8) and (9) using the above mean velocity and yaw rate — the trapezoidal rule.

∆t = tn+1 − tn (1)

vn+1 = vn + an∆t (2)

δn+1 = δn + νn∆t (3)

κn =
tan δn
l

(4)

ωn = κnvn (5)

v̄ =
vn + vn+1

2
(6)

ω̄ =
ωn + ωn+1

2
(7)

dn+1 = dn + v̄∆t (8)

ψn+1 = ψn + ω̄∆t (9)

The vehicle pose is then integrated forward assuming a constant velocity over a constant cur-
vature arc, using the mean velocity and yaw rate calculated in (6) and (7). Of note, while velocity
evolves linearly over each timestep, yaw rate evolves quadratically over time with some additional
nonlinearity due to the tangent function. Trapezoidal integration is precise for velocity, but an
approximation for yaw rate.
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4 NoGo Generation

In CAS, NoGo trajectories are built using the Go Trajectory. Other than a point added at the
start of deceleration and the stop of the trajectory, the points are spatially unchanged from the Go
trajectory. The longitudinal profile is changed by setting the deceleration profile, then recomputing
velocity, time, yaw rate, and steering angle rate at each point until hero stops. Values changed by
the NoGo generator are marked with a tilde.

∆d = dn − dn−1 (10)

ãn−1
def
= acmd (11)

ṽn =
√
ṽ2
n−1 + 2ãn−1∆d (12)

ω̃n = κnṽn (13)

∆t̃ =
ṽn − ṽn−1

ãn−1
(14)

t̃n = t̃n−1 + ∆t̃ (15)

ν̃n−1 =
δn − δn−1

∆t̃
(16)
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5 Feasibility Integration Check

The CAS Feasibility check runs a bicycle model integrator over the states and controls as a part
of ensuring a feasible trajectory. Plugging the values output from the NoGo trajectory into the
integrator above, the values at each control and state are integrated to ensure they match the next
state. Specifically, integrated velocity (17), steering angle (18), yaw rate (19), arc length (20), and
yaw (21) are checked.

ṽn+1
?
= ṽn + ãn∆t̃ (17)

δn+1
?
= δn + ν̃n∆t̃ (18)

ω̃n
?
= κnṽn (19)

dn+1
?
= dn + ˜̄v∆t̃ (20)

ψn+1
?
= ψn + ˜̄ω∆t̃ (21)

For velocity, it is straightforward to replace the next state velocity with the equation used in
the NoGo trajectory and prove that the new derivatives match the Taylor expansion for arc length
in (22) - (26).

ṽn+1
?
= ṽn + ãn∆t̃ (22)√

ṽ2
n + 2ãn∆d

?
= ṽn + ãn∆t̃ (23)

ṽ2
n + 2ãn∆d

?
= (ṽn + ãn∆t̃)2 (24)

ṽ2
n + 2ãn∆d

?
= ã2

n∆t̃2 + 2ãn∆t̃ṽn + ṽ2
n (25)

∆d =
1

2
ãn∆t̃2 + ∆t̃ṽn (26)

Steering angle trivially matches in (27) - (29).

δn+1
?
= δn + ν̃n∆t̃ (27)

δn+1
?
= δn + (

δn+1 − δn
∆t̃

)∆t̃ (28)

δn+1 = δn+1 (29)
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Yaw rate matches on inspection, and arc length reduces precisely in (30) - (33).

dn+1
?
= dn + ˜̄v∆t̃ (30)

dn+1
?
= dn +

ṽn +
√
ṽ2
n + 2ãn∆d

2

√
ṽ2
n + 2ãn∆d− ṽn

ãn
(31)

dn+1
?
= dn +

ṽ2
n + 2ãn∆d− ṽ2

n

2ãn
(32)

dn+1 = dn + ∆d (33)

On the other hand, the approximation used for Yaw does not hold. Manipulating the terms
in (34) - (37) makes it clear that mean yaw rate needs to scale inversely with time. However,
substituting in those terms in (38) and (39) makes it clear that mean yaw rate is weighted towards
the curvature term with the higher velocity - it does not simply scale with average velocity the way
time does.

ψn+1
?
= ψn + ˜̄ω∆t̃ (34)

ψn+1 − ψn
?
= ˜̄ω∆t̃ (35)

ω̄∆t
?
= ˜̄ω∆t̃ (36)

ω̄
˜̄ω

?
=

∆t̃

∆t
(37)

ω̄
˜̄ω

?
=

∆d
˜̄v

∆d
v̄

(38)

κnvn + κn+1vn+1

κnṽn + κn+1ṽn+1
6= vn + vn+1

ṽn + ṽn+1
(39)
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6 Yaw Approximation

The mean yaw with respect to time over the integration step is precisely given by (40). The linear
mean is given in (41); this is the current method in use. The quadratic mean is given in (42); this
is the most accurate — its only assumption is that the tan function is linear over the timestep.
The mean curvature is given in (43). Derivations for all three are given in the Appendix.

Figure 1 highlights the difference between the assumed constant-acceleration / constant-steering-
angle-rate over the timestep, versus the constant-velocity/constant-curvature integration used in
the integration. The first uses 2.5ms timesteps, taking into account variable velocity and curva-
ture. All of the others assume a constant yaw rate through the timestep, with each calculating
that constant value from one of the three ways mentioned. Figure 2 demonstrates the evolution of
yaw over a timestep using each of these methods. Figure 3 demonstrates the evolution of position
over a timestep using each of these methods (starting at bottom-right, moving towards top-left in
time). The difference in yaw calculations between the three approximations is imperceptible, but
the position does diverge over time due to the constant-curvature approximation of the integration.

ω̄ =
1

∆t

∫ ∆t

0
κ(t)v(t)dt (40)

ω̄1 ≈
1

2
(κnvn + κn+1vn+1) (41)

ω̄2 ≈
1

3
(κnvn + κn+1vn+1) +

1

6
(κnvn+1 + κn+1vn) (42)

ω̄3 ≈
1

4
(κn + κn+1)(vn + vn+1) (43)
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Figure 1: Yaw Rate over 250 ms
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Figure 2: Yaw over 250 ms
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7 Yaw Rate and the NoGo

Fundamentally assuming constant-acceleration/constant-steering-angle-rate arcs between points is
mathematically incompatible with later changing the velocity, while keeping the same constraint
and the same arc. Figure 4 shows the steering angle over time of a go trajectory and a nogo
trajectory using this approach - linearly changing steering angle between the same two points over
the timestep. Figure 5 shows steering angle of the same trajectories as a function of arc-length —
the steering angle changes spatially between the two due to the different velocity profiles of the two
trajectories.

The issue shown in (39) with the current method of integrating yaw falls apart with the nogo
for the same reason — it is an approximation of a changing steering angle and velocity over the
integration step, and also has a different result for different velocity profiles.

The only way to avoid this issue would be to define the curvature between the points either
explicitly as part of the trajectory, or in a way that is velocity independent. As an example, equation
43 does just this; the mean yaw rate is defined as the mean curvature times the mean velocity —
curvature is independent of velocity. This would remedy the mathematical inconsistency with the
NoGo Trajectory as shown in (44) and (45), which continue from (38) using (43).

ω̄
˜̄ω

?
=

∆d
˜̄v

∆d
v̄

(44)

(κn + κn+1)(vn + vn+1)

(κn + κn+1)(ṽn + ṽn+1)
=
vn + vn+1

ṽn + ṽn+1
(45)
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8 Conclusions

The trajectory is tracked by interpolating between states, which assumes a constant curvature arc
between the states. Despite the fact that the NoGo Trajectory doesn’t match the integration check
perfectly, it is still trackable, and follows the same arc as the go trajectory. Therefore, no immediate
issues need to be addressed, but it would be beneficial to address the structure of the trajectory,
making the intended curvature between two points more explicit, and removing information that
is unused outside of planner.
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Appendix

The current approximation for mean yaw rate is simply the trapezoidal rule.

ω̄ =
1

∆t

∫ ∆t

0
κ(t)v(t)dt (46)

ω̄1 ≈
1

2
(κnvn + κn+1vn+1) (47)

The second option is to assume curvature and velocity both vary linearly with time. The integral
can then be rewritten in terms of curvature and velocity at the beginning of the timestep and their
derivatives in (49). The integral is solved in the steps through (53). Substituting in estimates for
the derivatives (54) and (55) in (56) and working through, we arrive at the second estimate.
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ω̄ =
1

∆t

∫ ∆t

0
κ(t)v(t)dt (48)

≈ 1

∆t

∫ ∆t

0
(κ0 + κ̇0t)(v0 + a0t)dt (49)

≈ 1

∆t

∫ ∆t

0
κ0v0 + κ̇0v0t+ κ0a0t+ κ̇0a0t

2dt (50)

≈ 1

∆t

(
κ0v0t+

1

2
κ̇0v0t

2 +
1

2
κ0a0t

2 +
1

3
κ̇0a0t

3

) ∣∣∆t

0
(51)

≈ 1

∆t

(
κ0v0∆t+

1

2
κ̇0v0∆t2 +

1

2
κ0a0∆t2 +

1

3
κ̇0a0∆t3

)
(52)

≈ κ0v0 +
1

2
κ̇0v0∆t+

1

2
κ0a0∆t+

1

3
κ̇0a0∆t2 (53)

κ̇0 =
κn+1 − κn

∆t
(54)

a0 =
vn+1 − vn

∆t
(55)

≈ κnvn +
1

2
(κn+1 − κn)vn +

1

2
κn(vn+1 − vn) +

1

3
(κn+1 − κn)(vn+1 − vn) (56)

≈ κnvn +
1

2
κn+1vn −

1

2
κnvn +

1

2
κnvn+1 −

1

2
κnvn (57)

+
1

3
κn+1vn+1 −

1

3
κnvn+1 −

1

3
vnκn+1 +

1

3
κnvn (58)

ω̄2 ≈
1

3
(κnvn + κn+1vn+1) +

1

6
(κnvn+1 + κn+1vn) (59)

The third option is to define the arc as having the mean curvature of the endpoints, then assume
that we will follow that arc at the mean velocity. Applying the trapezoidal rule to each gives the
third estimate.

ω̄ =

(
1

∆t

∫ ∆t

0
κ(t)dt

)(
1

∆t

∫ ∆t

0
v(t)dt

)
(60)

≈
(

1

2
(κn + κn+1)

)(
1

2
(vn + vn+1)

)
(61)

ω̄3 ≈
1

4
(κn + κn+1)(vn + vn+1) (62)
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