
User Documentation for CasADi v3.4.4

Joel Andersson Joris Gillis Moritz Diehl

May 19, 2018

2

Contents

1 Introduction 5
1.1 What CasADi is and what it is not . 5
1.2 Help and support . 6
1.3 Citing CasADi . 6
1.4 Reading this document . 6

2 Obtaining and installing CasADi 9

3 Symbolic framework 11
3.1 The SX symbolics . 11
3.2 DM . 13
3.3 The MX symbolics . 14
3.4 Mixing SX and MX . 15
3.5 The Sparsity class . 16

3.5.1 Getting and setting elements in matrices 17
3.6 Arithmetic operations . 18
3.7 Querying properties . 20
3.8 Linear algebra . 21
3.9 Calculus – algorithmic differentiation . 21

4 Function objects 23
4.1 Calling function objects . 24
4.2 Converting MX to SX . 25
4.3 Nonlinear root-finding problems . 25
4.4 Initial-value problems and sensitivity analysis 26

4.4.1 Creating integrators . 26
4.4.2 Sensitivity analysis . 27

4.5 Nonlinear programming . 28
4.5.1 Creating NLP solvers . 28

4.6 Quadratic programming . 29
4.6.1 High-level interface . 29
4.6.2 Low-level interface . 30

4.7 For-loop equivalents . 31

3

4 CONTENTS

4.7.1 Map . 31
4.7.2 Fold . 32

5 Generating C-code 33
5.1 Syntax for generating code . 33
5.2 Using the generated code . 35
5.3 API of the generated code . 37

6 User-defined function objects 41
6.1 Subclassing FunctionInternal . 41
6.2 Subclassing Callback . 42
6.3 Importing a function with external . 45
6.4 Just-in-time compile a C language string 46
6.5 Using lookup-tables . 47

6.5.1 1D lookup tables . 47
6.5.2 2D lookup tables . 48

6.6 Derivative calculation using finite differences 49

7 The DaeBuilder class 51
7.1 Mathematical formulation . 51
7.2 Constructing a DaeBuilder instance . 52
7.3 Import of OCPs from Modelica . 53
7.4 Symbolic reformulation . 54
7.5 Function factory . 55

8 Optimal control with CasADi 57
8.1 A simple test problem . 57
8.2 Direct single-shooting . 58
8.3 Direct multiple-shooting . 58
8.4 Direct collocation . 59

9 Opti stack 61
9.1 Problem specification . 62
9.2 Problem solving and retrieving . 64
9.3 Extras . 65

10 Difference in usage from different languages 67
10.1 General usage . 67
10.2 List of operations . 67

Chapter 1

Introduction

CasADi is an open-source software tool for numerical optimization in general and optimal
control (i.e. optimization involving differential equations) in particular. The project was
started by Joel Andersson and Joris Gillis while PhD students at the Optimization in
Engineering Center (OPTEC) of the KU Leuven under supervision of Moritz Diehl.

This document aims at giving a condensed introduction to CasADi. After reading it, you
should be able to formulate and manipulate expressions in CasADi’s symbolic framework,
generate derivative information efficiently using algorithmic differentiation, to set up, solve
and perform forward and adjoint sensitivity analysis for systems of ordinary differential
equations (ODE) or differential-algebraic equations (DAE) as well as to formulate and
solve nonlinear programs (NLP) problems and optimal control problems (OCP).

CasADi is available for C++, Python and MATLAB/Octave with little or no difference
in performance. In general, the Python API is the best documented and is slightly more
stable than the MATLAB API. The C++ API is stable, but is not ideal for getting started
with CasADi since there is limited documentation and since it lacks the interactivity of
interpreted languages like MATLAB and Python. The MATLAB module has been tested
successfully for Octave (version 4.0.2 or later).

1.1 What CasADi is and what it is not

CasADi started out as a tool for algorithmic differentiation (AD) using a syntax borrowed
from computer algebra systems (CAS), which explains its name. While AD still forms one
of the core functionalities of the tool, the scope of the tool has since been considerably
broadened, with the addition of support for ODE/DAE integration and sensitivity analysis,
nonlinear programming and interfaces to other numerical tools. In its current form, it is
a general-purpose tool for gradient-based numerical optimization – with a strong focus on
optimal control – and “CasADi” is just a name without any particular meaning.

It is important to point out that CasADi is not a conventional AD tool, that can be used
to calculate derivative information from existing user code with little to no modification.
If you have an existing model written in C++, Python or MATLAB/Octave, you need to

5

6 CHAPTER 1. INTRODUCTION

be prepared to reimplement the model using CasADi syntax.
Secondly, CasADi is not a computer algebra system. While the symbolic core does

include an increasing set of tools for manipulate symbolic expressions, these capabilities
are very limited compared to a proper CAS tool.

Finally, CasADi is not an “optimal control problem solver”, that allows the user to enter
an OCP and then gives the solution back. Instead, it tries to provide the user with a set of
“building blocks” that can be used to implement general-purpose or specific-purpose OCP
solvers efficiently with a modest programming effort.

1.2 Help and support

If you find simple bugs or lack some feature that you think would be relatively easy for us to
add, the simplest thing is simply to write to the forum, located at http://forum.casadi.org.
We check the forum regularly and try to respond as quickly as possible. The only thing
we expect for this kind of support is that you cite us, cf. Section 1.3, whenever you use
CasADi in scientific work.

If you want more help, we are always open for academic or industrial cooperation. An
academic cooperation usually take the form of a co-authorship of a peer reviewed paper,
and an industrial cooperation involves a negotiated consulting contract. Please contact us
directly if you are interested in this.

1.3 Citing CasADi

If you use CasADi in published scientific work, please cite the following:

@PHDTHESIS{Andersson2013b,

author = {Joel Andersson},

title = {{A} {G}eneral-{P}urpose {S}oftware {F}ramework for

{D}ynamic {O}ptimization},

school = {Arenberg Doctoral School, KU Leuven},

year = {2013},

type = {{P}h{D} thesis},

address = {Department of Electrical Engineering (ESAT/SCD) and

Optimization in Engineering Center,

Kasteelpark Arenberg 10, 3001-Heverlee, Belgium},

month = {October}

}

1.4 Reading this document

The goal of this document is to make the reader familiar with the syntax of CasADi

and provide easily available building blocks to build numerical optimization and dynamic

http://forum.casadi.org/

1.4. READING THIS DOCUMENT 7

optimization software. Our explanation is mostly program code driven and provides lit-
tle mathematical background knowledge. We assume that the reader already has a fair
knowledge of theory of optimization theory, solution of initial-value problems in differential
equations and the programming language in question (C++, Python or MATLAB/Octave).

We will use Python and MATLAB/Octave syntax side-by-side in this guide, noting
that the Python interface is more stable and better documented. Unless otherwise noted,
the MATLAB/Octave syntax also applies to Octave. We try to point out the instances
where has a diverging syntax. To facilitate switching between the programming languages,
we also list the major differences in Chapter 10.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Obtaining and installing CasADi

CasADi is an open-source tool, available under LGPL license, which is a permissive license
that allows the tool to be used royalty-free also in commercial closed-source applications.
The main restriction of LGPL is that if you decide to modify CasADi’s source code as
opposed to just using the tool for your application, these changes (a “derivative-work” of
CasADi) must be released under LGPL as well.

The source code is hosted on GitHub and has a core written in self-contained C++
code, relying on nothing but the C++ Standard Library. Its front-ends to Python and
MATLAB/Octave are full-featured and auto-generated using the tool SWIG. These front-
ends are unlikely to result in noticeable loss of efficiency. CasADi can be used on Linux,
OS X and Windows.

For up-to-date installation instructions, visit CasADi’s website: http://casadi.org.

9

http://www.swig.org/
http://casadi.org/

10 CHAPTER 2. OBTAINING AND INSTALLING CASADI

Chapter 3

Symbolic framework

At the core of CasADi is a self-contained symbolic framework that allows the user to
construct symbolic expressions using a MATLAB inspired everything-is-a-matrix syntax,
i.e. vectors are treated as n-by-1 matrices and scalars as 1-by-1 matrices. All matrices
are sparse and use a general sparse format – compressed column storage (CCS) – to store
matrices. In the following, we introduce the most fundamental classes of this framework.

3.1 The SX symbolics

The SX data type is used to represent matrices whose elements consist of symbolic ex-
pressions made up by a sequence of unary and binary operations. To see how it works in
practice, start an interactive Python shell (e.g. by typing ipython from a Linux terminal
or inside a integrated development environment such as Spyder) or launch MATLAB’s or
Octave’s graphical user interface. Assuming CasADi has been installed correctly, you can
import the symbols into the workspace as follows:

Python
from ca sad i import ∗

% MATLAB/ Octave
import ca sad i .∗

Now create a variable x using the syntax:

Python
x = MX. sym(’ x ’)

% MATLAB/ Octave
x = MX. sym(’ x ’) ;

This creates a 1-by-1 matrix, i.e. a scalar containing a symbolic primitive called “x”.
This is just the display name, not the identifier. Multiple variables can have the same
name, but still be different. The identifier is the return value. You can also create vector-
or matrix-valued symbolic variables by supplying additional arguments to SX.sym:

11

12 CHAPTER 3. SYMBOLIC FRAMEWORK

Python
y = SX. sym(’ y ’ , 5)
Z = SX. sym(’Z ’ , 4 , 2)

% MATLAB/ Octave
y = SX. sym(’ y ’ , 5) ;
Z = SX. sym(’Z ’ , 4 , 2) ;

which creates a 5-by-1 matrix, i.e. a vector, and a 4-by-2 matrix with symbolic primi-
tives, respectively.

SX.sym is a (static) function which returns an SX instance. When variables have been
declared, expressions can now be formed in an intuitive way:

Python
f = x∗∗2 + 10
f = s q r t (f)
print (’ f : ’ , f)

% MATLAB/ Octave
f = xˆ2 + 10 ;
f = sqrt (f) ;
d i sp l ay (f)

(’f:’, MX(sqrt((10+sq(x)))))

You can also create constant SX instances without any symbolic primitives:

B1 = SX.zeros(4,5): A dense 4-by-5 empty matrix with all zeros

B2 = SX(4,5): A sparse 4-by-5 empty matrix with all zeros

B4 = SX.eye(4): A sparse 4-by-4 matrix with ones on the diagonal

Note the difference between a sparse matrix with structural zeros and a dense ma-
trix with actual zeros. When printing an expression with structural zeros, these will be
represented as 00 to distinguish them from actual zeros 0:

Python
print (’B4 : ’ , B4)

% MATLAB/ Octave
d i sp l ay (B4)

(’B4:’, SX(@1=1,

[[@1, 00, 00, 00],

[00, @1, 00, 00],

[00, 00, @1, 00],

[00, 00, 00, @1]]))

The following list summarizes the most commonly used ways of constructing new SX

expressions:

• SX.sym(name,n,m): Create an n-by-m symbolic primitive

• SX.zeros(n,m): Create an n-by-m dense matrix with all zeros

• SX(n,m): Create an n-by-m sparse matrix with all structural zeros

• SX.ones(n,m): Create an n-by-m dense matrix with all ones

3.1. THE SX SYMBOLICS 13

• SX.eye(n): Create an n-by-n diagonal matrix with ones on the diagonal and structural
zeros elsewhere.

• SX(scalar type): Create a scalar (1-by-1 matrix) with value given by the argument.
This method can be used explicitly, e.g. SX(9), or implicitly, e.g. 9 ∗ SX.ones(2,2).

• SX(matrix type): Create a matrix given a numerical matrix given as a NumPy or
SciPy matrix (in Python) or as a dense or sparse matrix (in MATLAB/Octave). In
MATLAB/Octave e.g. SX ([1,2,3,4]) for a row vector, SX ([1;2;3;4]) for a column
vector and SX ([1,2;3,4]) for a 2-by-2 matrix. This method can be used explicitly or
implicitly.

• repmat(v,n,m): Repeat expression v n times vertically and m times horizontally.
repmat(SX(3),2,1) will create a 2-by-1 matrix with all elements 3.

• (Python only) SX(list): Create a column vector (n-by-1 matrix) with the elements
in the list, e.g. SX ([1,2,3,4]) (note the difference between Python lists and MAT-
LAB/Octave horizontal concatenation, which both uses square bracket syntax)

• (Python only) SX(list of list): Create a dense matrix with the elements in the lists,
e.g. SX ([[1,2],[3,4]]) or a row vector (1-by-n matrix) using SX ([[1,2,3,4]]) .

Note for MATLAB/Octave users

In MATLAB, if the import command is omitted, you can still use CasADi by prefixing all
the symbols with the package name, e.g. casadi.SX instead of SX, provided the casadi

package is in the path. We will not do this in the following for typographical reasons, but
note that it is often preferable in user code. In Python, this usage corresponds to issuing
”import casadi” instead of ”from casadi import ∗”.

Unfortunately, Octave (version 4.0.3) does not implement MATLAB’s import com-
mand. To work around this issue, we provide a simple function import.m that can be
placed in Octave’s path enabling the compact syntax used in this guide.

Note for C++ users

In C++, all public symbols are defined in the casadi namespace and require the inclusion
of the casadi/casadi.hpp header file. The commands above would be equivalent to:

// C++
#include <ca sad i / ca sad i . hpp>
using namespace ca sad i ;
int main () {

SX x = SX : : sym(”x”) ;
SX y = SX : : sym(”y” , 5) ;
SX Z = SX : : sym(”Z” ,4 , 2)

14 CHAPTER 3. SYMBOLIC FRAMEWORK

SX f = pow(x , 2) + 10 ;
f = s q r t (f) ;
s td : : cout << ” f : ” << f << std : : endl ;
return 0 ;

}

3.2 DM

DM is very similar to SX, but with the difference that the nonzero elements are numerical
values and not symbolic expressions. The syntax is also the same, except for functions
such as SX.sym, which have no equivalents.

DM is mainly used for storing matrices in CasADi and as inputs and outputs of functions.
It is not intended to be used for computationally intensive calculations. For this purpose,
use the builtin dense or sparse data types in MATLAB, NumPy or SciPy matrices in
Python or an expression template based library such as eigen, ublas or MTL in C++.
Conversion between the types is usually straightforward:

Python

C = DM(2,3)

C_dense = C.full()

from numpy import array

C_dense = array(C) # equivalent

C_sparse = C.sparse()

from scipy.sparse import csc_matrix

C_sparse = csc_matrix(C) # equivalent

% MATLAB/ Octave
C = DM(2 , 3) ;

C dense = f u l l (C) ;

C sparse = sparse (C) ;

More usage examples for SX can be found in the tutorials at http://docs.casadi.org.
For documentation of particular functions of this class (and others), find the “C++ API
docs” on the website and search for information about casadi :: Matrix.

3.3 The MX symbolics

Let us perform a simple operation using the SX above:

Python
x = SX. sym(’ x ’ , 2 , 2)
y = SX. sym(’ y ’)
f = 3∗x + y
print (f)
print (f . shape)

% MATLAB/ Octave
x = SX. sym(’ x ’ , 2 , 2) ;
y = SX. sym(’ y ’) ;
f = 3∗x + y ;
disp (f)
disp (s ize (f))

http://docs.casadi.org/

3.3. THE MX SYMBOLICS 15

@1=3,

[[((@1*x_0)+y), ((@1*x_2)+y)],

[((@1*x_1)+y), ((@1*x_3)+y)]]

(2, 2)

As you can see, the output of this operation is a 2-by-2 matrix. Note how the multi-
plication and the addition were performed element-wise and new expressions (of type SX)
were created for each entry of the result matrix.

We shall now introduce a second, more general matrix expression type MX. The MX type
allows, like SX, to build up expressions consisting of a sequence of elementary operations.
But unlike SX, these elementary operations are not restricted to be scalar unary or binary
operations (R → R or R × R → R. Instead, the elementary operations that are used to
form MX expressions are allowed to be general multiple sparse-matrix valued input, multiple
sparse-matrix valued output functions: Rn1×m1 × . . .×RnN×mN → Rp1×q1 × . . .×RpM×qM .

The syntax of MX mirrors that of SX:

Python
x = MX. sym(’ x ’ , 2 , 2)
y = MX. sym(’ y ’)
f = 3∗x + y
print (f)
print (f . shape)

% MATLAB/ Octave
x = MX. sym(’ x ’ , 2 , 2) ;
y = MX. sym(’ y ’) ;
f = 3∗x + y ;
disp (f)
disp (s ize (f))

((3*x)+y)

(2, 2)

Note how the result consists of only two operations (one multiplication and one ad-
dition) using MX symbolics, whereas the SX equivalent has eight (two for each element of
the resulting matrix). As a consequence, MX can be more economical when working with
operations that are naturally vector or matrix valued with many elements. As we shall see
in Chapter 4, it is also much more general since we allow calls to arbitrary functions that
cannot be expanded in terms of elementary operations.

MX supports getting and setting elements, using the same syntax as SX, but the way it
is implemented is very different. Test, for example, to print the element in the upper-left
corner of a 2-by-2 symbolic variable:

Python
x = MX. sym(’ x ’ , 2 , 2)
print (x [0 , 0])

% MATLAB/ Octave
x = MX. sym(’ x ’ , 2 , 2) ;
x (1 , 1)

x[0]

The output should be understood as an expression that is equal to the first (i.e. index
0 in C++) structurally non-zero element of x, unlike x 0 in the SX case above, which is
the name of a symbolic primitive in the first (index 0) location of the matrix.

Similar results can be expected when trying to set elements:

16 CHAPTER 3. SYMBOLIC FRAMEWORK

Python
x = MX. sym(’ x ’ , 2)
A = MX(2 ,2)
A[0 , 0] = x [0]
A[1 , 1] = x [0]+ x [1]
print (’A: ’ , A)

% MATLAB/ Octave
x = MX. sym(’ x ’ , 2) ;
A = MX(2 , 2) ;
A(1 , 1) = x (1) ;
A(2 , 2) = x(1)+x (2) ;
d i sp l ay (A)

(’A:’, MX((project((zeros(2x2,1nz)[0] = x[0]))[1] = (x[0]+x[1]))))

The interpretation of the (admittedly cryptic) output is that starting with an all zero
sparse matrix, an element is assigned to x 0. It is then projected to a matrix of different
sparsity and an another element is assigned to x 0+x 1.

Element access and assignment, of the type you have just seen, are examples of opera-
tions that can be used to construct expressions. Other examples of operations are matrix
multiplications, transposes, concatenations, resizings, reshapings and function calls.

3.4 Mixing SX and MX

You can not multiply an SX object with an MX object, or perform any other operation to
mix the two in the same expression graph. You can, however, in an MX graph include calls
to a function defined by SX expressions. This will be demonstrated in Chapter 4. Mixing
SX and MX is often a good idea since functions defined by SX expressions have a much lower
overhead per operation making it much faster for operations that are naturally written
as a sequence of scalar operations. The SX expressions are thus intended to be used for
low level operations (for example the DAE right hand side in Section 4.4), whereas the MX

expressions act as a glue and enables the formulation of e.g. the constraint function of an
NLP (which might contain calls to ODE/DAE integrators, or might simply be too large
to expand as one big expression).

3.5 The Sparsity class

As mentioned above, matrices in CasADi are stored using the compressed column storage
(CCS) format. This is a standard format for sparse matrices that allows linear algebra
operations such as element-wise operations, matrix multiplication and transposes to be
performed efficiently. In the CCS format, the sparsity pattern is decoded using the dimen-
sions – the number of rows and number of columns – and two vectors. The first vector
contains the index of the first structurally nonzero element of each column and the second
vector contains the row index for every nonzero element. For more details on the CCS
format, see e.g. Templates for the Solution of Linear Systems on Netlib. Note that CasADi
uses the CCS format for sparse as well as dense matrices.

Sparsity patterns in CasADi are stored as instances of the Sparsity class, which is
reference-counted, meaning that multiple matrices can share the same sparsity pattern,

http://netlib.org/linalg/html_templates/node92.html

3.5. THE SPARSITY CLASS 17

including MX expression graphs and instances of SX and DM. The Sparsity class is also
cached, meaning that the creation of multiple instances of the same sparsity patterns is
always avoided.

The following list summarizes the most commonly used ways of constructing new spar-
sity patterns:

• Sparsity.dense(n,m): Create a dense n-by-m sparsity pattern

• Sparsity(n,m): Create a sparse n-by-m sparsity pattern

• Sparsity.diag(n): Create a diagonal n-by-n sparsity pattern

• Sparsity.upper(n): Create an upper triangular n-by-n sparsity pattern

• Sparsity.lower(n): Create a lower triangular n-by-n sparsity pattern

The Sparsity class can be used to create non-standard matrices, e.g.

Python
print (SX. sym(’ x ’ , Spa r s i t y . lower (3)))

% MATLAB/ Octave
disp (SX. sym(’ x ’ , Spa r s i ty . lower (3)))

[[x_0, 00, 00],

[x_1, x_3, 00],

[x_2, x_4, x_5]]

3.5.1 Getting and setting elements in matrices

To get or set an element or a set of elements in CasADi’s matrix types (SX, MX and DM), we use
square brackets in Python and round brackets in C++ and MATLAB. As is conventional in
these languages, indexing starts from zero in C++ and Python but from one in MATLAB.
In Python and C++, we allow negative indices to specify an index counted from the end.
In MATLAB, use the end keyword for indexing from the end.

Indexing can be done with one index or two indices. With two indices, you reference
a particular row (or set or rows) and a particular column (or set of columns). With one
index, you reference an element (or set of elements) starting from the upper left corner
and column-wise to the lower right corner. All elements are counted regardless of whether
they are structurally zero or not.

Python
M = SX ([[3 , 7] , [4 , 5]])
print (M[0 , :])
M[0 , :] = 1
print (M)

% MATLAB/ Octave
M = SX ([3 , 7 ; 4 , 5]) ;
disp (M(1 , :))
M(1 , :) = 1 ;
disp (M)

18 CHAPTER 3. SYMBOLIC FRAMEWORK

[[3, 7]]

@1=1,

[[@1, @1],

[4, 5]]

Unlike Python’s NumPy, CasADi slices are not views into the data of the left hand side;
rather, a slice access copies the data. As a result, the matrix M is not changed at all in
the following example:

Python

M = SX([[3,7],[4,5]])

M[0,:][0,0] = 1

print(M)

[[3, 7],

[4, 5]]

The getting and setting matrix elements is elaborated in the following. The discussion
applies to all of CasADi’s matrix types.

Single element access is getting or setting by providing a row-column pair or its flat-
tened index (column-wise starting in the upper left corner of the matrix):

Python
M = diag (SX([3 , 4 , 5 , 6]))
print (M)

% MATLAB/ Octave
M = diag (SX([3 , 4 , 5 , 6])) ;
disp (M)

[[3, 00, 00, 00],

[00, 4, 00, 00],

[00, 00, 5, 00],

[00, 00, 00, 6]]

print (M[0 , 0] , M[1 , 0] , M[−1 ,−1]) M(1 , 1) , M(2 , 1) , M(end , end)
(SX(3), SX(00), SX(6))

print (M[5] , M[−6]) M(6) , M(end−5)
(SX(4), SX(5))

Slice access means setting multiple elements at once. This is significantly more ef-
ficient than setting the elements one at a time. You get or set a slice by providing a
(start,stop,step) triple. In Python and MATLAB, CasADi uses standard syntax:

3.6. ARITHMETIC OPERATIONS 19

print (M[: , 1]) disp (M(: , 2))
[00, 4, 00, 00]

print (M[1 : , 1 : 4 : 2]) disp (M(2 : end , 2 : 2 : 4))

[[4, 00],

[00, 00],

[00, 6]]

In C++, CasADi’s Slice helper class can be used. For the example above, this means
M(Slice(),1) and M(Slice(1,−1),Slice (1,4,2)) , respectively.

List access is similar to (but potentially less efficient than) slice access:

M = SX ([[3 , 7 , 8 , 9] , [4 , 5 , 6 , 1]])
print (M)

M = SX([3 7 8 9 ; 4 5 6 1]) ;
disp (M)

[[3, 7, 8, 9],

[4, 5, 6, 1]]

print (M[0 , [0 , 3]] , M[[5 , − 6]]) M(1 , [1 , 4]) , M([6 , numel (M)−5])

(SX([[3, 9]]), SX([6, 7]))

3.6 Arithmetic operations

CasADi supports most standard arithmetic operations such as addition, multiplications,
powers, trigonometric functions etc:

x = SX. sym(’ x ’)
y = SX. sym(’ y ’ , 2 , 2)
print (s i n (y)−x)

x = SX. sym(’ x ’) ;
y = SX. sym(’ y ’ , 2 , 2) ;
sin (y)−x

[[(sin(y_0)-x), (sin(y_2)-x)],

[(sin(y_1)-x), (sin(y_3)-x)]]

In C++ and Python (but not in MATLAB), the standard multiplication operation
(using *) is reserved for element-wise multiplication (in MATLAB .*). For matrix mul-
tiplication, use mtimes(A,B):

20 CHAPTER 3. SYMBOLIC FRAMEWORK

print (y∗y , mtimes (y , y)) y .∗ y , y∗y

(SX(

[[sq(y_0), sq(y_2)],

[sq(y_1), sq(y_3)]]), SX(

[[(sq(y_0)+(y_2*y_1)), ((y_0*y_2)+(y_2*y_3))],

[((y_1*y_0)+(y_3*y_1)), ((y_1*y_2)+sq(y_3))]]))

As is customary in MATLAB, multiplication using * and .* are equivalent when either
of the arguments is a scalar.

Transposes are formed using the syntax A.T in Python, A.T() in C++ and with A’
or A.’ in MATLAB:

print (y .T) y ’

[[y_0, y_1],

[y_2, y_3]]

Reshaping means changing the number of rows and columns but retaining the number
of elements and the relative location of the nonzeros. This is a computationally very cheap
operation which is performed using the syntax:

x = SX. eye (4)
print (reshape (x , 2 , 8))

x = SX. eye (4) ;
reshape (x , 2 , 8)

@1=1,

[[@1, 00, 00, 00, 00, @1, 00, 00],

[00, 00, @1, 00, 00, 00, 00, @1]]

Concatenation means stacking matrices horizontally or vertically. Due to the column-
major way of storing elements in CasADi, it is most efficient to stack matrices horizontally.
Matrices that are in fact column vectors (i.e. consisting of a single column), can also be
stacked efficiently vertically. Vertical and horizontal concatenation is performed using the
functions vertcat and horzcat (that take a list of input arguments) in Python and C++
and with square brackets in MATLAB:

x = SX. sym(’ x ’ , 5)
y = SX. sym(’ y ’ , 5)
print (v e r t c a t (x , y))

x = SX. sym(’ x ’ , 5) ;
y = SX. sym(’ y ’ , 5) ;
[x ; y]

[x_0, x_1, x_2, x_3, x_4, y_0, y_1, y_2, y_3, y_4]

3.6. ARITHMETIC OPERATIONS 21

print (horzcat (x , y)) [x , y]

[[x_0, y_0],

[x_1, y_1],

[x_2, y_2],

[x_3, y_3],

[x_4, y_4]]

Horizontal and vertical split are the inverse operations of the above introduced
horizontal and vertical concatenation. To split up an expression horizontally into n smaller
expressions, you need to provide, in addition to the expression being split, a vector offset of
length n+ 1. The first element of the offset vector must be 0 and the last element must be
the number of columns. Remaining elements must follow in a non-decreasing order. The
output i of the split operation then contains the columns c with offset[i] ≤ c < offset[i+1].
The following demonstrates the syntax:

x = SX. sym(’ x ’ , 5 , 2)
w = h o r z s p l i t (x , [0 , 1 , 2])
print (w[0] , w [1])

x = SX. sym(’ x ’ , 5 , 2) ;
w = h o r z s p l i t (x , [0 , 1 , 2]) ;
w{1} , w{2}

(SX([x_0, x_1, x_2, x_3, x_4]), SX([x_5, x_6, x_7, x_8, x_9]))

The vertsplit operation works analogously, but with the offset vector referring to rows:

w = v e r t s p l i t (x , [0 , 3 , 5])
print (w[0] , w [1])

w = v e r t s p l i t (x , [0 , 3 , 5]) ;
w{1} , w{2}

(SX(

[[x_0, x_5],

[x_1, x_6],

[x_2, x_7]]), SX(

[[x_3, x_8],

[x_4, x_9]]))

Note that it is always possible to use slice element access instead of horizontal and
vertical split, for the above vertical split:

w = [x [0 : 3 , :] , x [3 : 5 , :]]
print (w[0] , w [1])

w = {x (1 : 3 , :) , x (4 : 5 , :) } ;
w{1} , w{2}

(SX(

[[x_0, x_5],

22 CHAPTER 3. SYMBOLIC FRAMEWORK

[x_1, x_6],

[x_2, x_7]]), SX(

[[x_3, x_8],

[x_4, x_9]]))

For SX graphs, this alternative way is completely equivalent, but for MX graphs us-
ing horzsplit/vertsplit is significantly more efficient when all the split expressions are
needed.

Inner product, defined as < A,B >:= tr(AB) =
∑

i,j Ai,j Bi,j are created as follows:

x = SX. sym(’ x ’ , 2 , 2)
print (dot (x , x))

x = SX. sym(’ x ’ , 2 , 2)
dot (x , x)

(((sq(x_0)+sq(x_1))+sq(x_2))+sq(x_3))

Many of the above operations are also defined for the Sparsity class (Section 3.5),
e.g. vertcat, horzsplit, transposing, addition (which returns the union of two sparsity
patterns) and multiplication (which returns the intersection of two sparsity patterns).

3.7 Querying properties

You can check if a matrix or sparsity pattern has a certain property by calling an appro-
priate member function. e.g.

y = SX. sym(’ y ’ , 10 ,1)
print (y . shape)

y = SX. sym(’ y ’ , 1 0 , 1) ;
s ize (y)

(10, 1)

Note that in MATLAB, obj.myfcn(arg) and myfcn(obj, arg) are both valid ways of
calling a member function myfcn. The latter variant is probably preferable from a style
viewpoint.

Some commonly used properties for a matrix A are:

A.size1() The number of rows

A.size2() The number of columns

A.shape (in MATLAB ”size”) The shape, i.e. the pair (nrow,ncol)

A.numel() The number of elements, i.e nrow ∗ ncol

A.nnz() The number of structurally nonzero elements, equal to A.numel() if dense.

A.sparsity() Retrieve a reference to the sparsity pattern

3.8. LINEAR ALGEBRA 23

A.is dense() Is a matrix dense, i.e. having no structural zeros

A.is scalar() Is the matrix a scalar, i.e. having dimensions 1-by-1?

A.is column() Is the matrix a vector, i.e. having dimensions n-by-1?

A.is square() Is the matrix square?

A.is triu() Is the matrix upper triangular?

A.is constant() Are the matrix entries all constant?

A.is integer() Are the matrix entries all integer-valued?

The last queries are examples of queries for which false negative returns are allowed.
A matrix for which A.is constant() is true is guaranteed to be constant, but is not guar-
anteed to be non-constant if A.is constant() is false. We recommend you to check the API
documentation for a particular function before using it for the first time.

3.8 Linear algebra

CasADi supports a limited number of linear algebra operations, e.g. for solution of linear
systems of equations:

A = MX. sym(’A ’ , 3 , 3)
b = MX. sym(’b ’ , 3)
print (s o l v e (A, b))

A = MX. sym(’A ’ , 3 , 3) ;
b = MX. sym(’b ’ , 3) ;
s o l v e (A, b)

(A\b)

3.9 Calculus – algorithmic differentiation

The single most central functionality of CasADi is algorithmic (or automatic) differentiation
(AD). For a function f : RN → RM :

y = f(x), (3.1)

Forward mode directional derivatives can be used to calculate Jacobian-times-vector prod-
ucts:

ŷ =
∂f

∂x
x̂. (3.2)

Similarly, reverse mode directional derivatives can be used to calculate Jacobian-transposed-
times-vector products:

x̄ =

(
∂f

∂x

)T

ȳ. (3.3)

24 CHAPTER 3. SYMBOLIC FRAMEWORK

Both forward and reverse mode directional derivatives are calculated at a cost propor-
tional to evaluating f(x), regardless of the dimension of x.

CasADi is also able to generate complete, sparse Jacobians efficiently. The algorithm
for this is very complex, but essentially consists of the following steps:

• Automatically detect the sparsity pattern of the Jacobian

• Use graph coloring techniques to find a few forward and/or directional derivatives
needed to construct the complete Jacobian

• Calculate the directional derivatives numerically or symbolically

• Assemble the complete Jacobian

Hessians are calculated by first calculating the gradient and then performing the same
steps as above to calculate the Jacobian of the gradient in the same way as above, while
exploiting symmetry.

Syntax

An expression for a Jacobian is obtained using the syntax:

A = SX. sym(’A ’ , 3 , 2)
x = SX. sym(’ x ’ , 2)
print (j acob ian (mtimes (A, x) , x))

A = SX. sym(’A ’ , 3 , 2) ;
x = SX. sym(’ x ’ , 2) ;
j a cob ian (A∗x , x)

[[A_0, A_3],

[A_1, A_4],

[A_2, A_5]]

When the differentiated expression is a scalar, you can also calculate the gradient in
the matrix sense:

print (g rad i en t (dot (A,A) ,A)) gradient (dot (A,A) ,A)

[[(A_0+A_0), (A_3+A_3)],

[(A_1+A_1), (A_4+A_4)],

[(A_2+A_2), (A_5+A_5)]]

Note that, unlike jacobian, gradient always returns a dense vector.
Hessians, and as a by-product gradients, are obtained as follows:

[H, g] = he s s i an (dot (x , x) , x)
print (’H: ’ , H)

[H, g] = hes s i an (dot (x , x) , x) ;
d i sp l ay (H)

3.9. CALCULUS – ALGORITHMIC DIFFERENTIATION 25

(’H:’, SX(@1=2,

[[@1, 00],

[00, @1]]))

For calculating a Jacobian-times-vector product, the jtimes function – performing
forward mode AD – is often more efficient than creating the full Jacobian and performing
a matrix-vector multiplication:

v = SX. sym(’ v ’ , 2)
f = mtimes (A, x)
print (j t imes (f , x , v))

v = SX. sym(’ v ’ , 2) ;
f = A∗x ;
j t imes (f , x , v)

[((A_0*v_0)+(A_3*v_1)), ((A_1*v_0)+(A_4*v_1)), ((A_2*v_0)+(A_5*v_1))]

The jtimes function optionally calculates the transposed-Jacobian-times-vector prod-
uct, i.e. reverse mode AD:

w = SX. sym(’w ’ ,3)
f = mtimes (A, x)
print (j t imes (f , x ,w, True))

w = SX. sym(’w ’ , 3) ;
f = A∗x
j t imes (f , x ,w, t rue)

[(((A_2*w_2)+(A_1*w_1))+(A_0*w_0)), (((A_5*w_2)+(A_4*w_1))+(A_3*w_0))]

26 CHAPTER 3. SYMBOLIC FRAMEWORK

Chapter 4

Function objects

CasADi allows the user to create function objects, in C++ terminology often referred to
as functors. This includes functions that are defined by a symbolic expression, ODE/DAE
integrators, QP solvers, NLP solvers etc.

Function objects are typically created with the syntax:

f = functionname (name , arguments , . . . , [opt ions])

The name is mainly a display name that will show up in e.g. error messages or as
comments in generated C code. This is followed by a set of arguments, which is class
dependent. Finally, the user can pass an options structure for customizing the behavior of
the class. The options structure is a dictionary type in Python, a struct in MATLAB or
CasADi’s Dict type in C++.

A Function can be constructed by passing a list of input expressions and a list of
output expressions:

Python
x = SX. sym(’ x ’ , 2)
y = SX. sym(’ y ’)
f = Function (’ f ’ , [x , y] ,\

[x , s i n (y)∗x])

% MATLAB/ Octave
x = SX. sym(’ x ’ , 2) ;
y = SX. sym(’ y ’) ;
f = Function (’ f ’ ,{x , y } , . . .

{x , sin (y)∗x }) ;

which defines a function f : R2 × R → R2 × R2, (x, y) 7→ (x, sin(y)x). Note that all
function objects in CasADi, including the above, are multiple matrix-valued input, multiple,
matrix-valued output.

MX expression graphs work the same way:

27

28 CHAPTER 4. FUNCTION OBJECTS

Python
x = MX. sym(’ x ’ , 2)
y = MX. sym(’ y ’)
f = Function (’ f ’ , [x , y] ,\

[x , s i n (y)∗x])

% MATLAB/ Octave
x = MX. sym(’ x ’ , 2) ;
y = MX. sym(’ y ’) ;
f = Function (’ f ’ ,{x , y } , . . .

{x , sin (y)∗x }) ;

When creating a Function from expressions like that, it is always advisory to name
the inputs and outputs as follows:

Python
x = MX. sym(’ x ’ , 2)
y = MX. sym(’ y ’)
f = Function (’ f ’ , [x , y] ,\

[x , s i n (y)∗x] ,\
[’ x ’ , ’ y ’] , [’ r ’ , ’ q ’])

% MATLAB/ Octave
x = MX. sym(’ x ’ , 2) ;
y = MX. sym(’ y ’) ;
f = Function (’ f ’ ,{x , y } , . . .

{x , sin (y)∗x } , . . .
{ ’ x ’ , ’ y ’ } ,{ ’ r ’ , ’ q ’ }) ;

Naming inputs and outputs is preferred for a number of reasons:

• No need to remember the number or order of arguments

• Inputs or outputs that are absent can be left unset

• More readable and less error prone syntax. E.g. f.jacobian(’x’,’q’) instead of
f.jacobian(0,1).

For Function instances – to be encountered later – that are not created directly from
expressions, the inputs and outputs are named automatically.

4.1 Calling function objects

MX expressions may contain calls to Function-derived functions. Calling a function object is
both done for the numerical evaluation and, by passing symbolic arguments, for embedding
a call to the function object into an expression graph (cf. also Section 4.4).

To call a function object, you either pass the argument in the correct order:

Python
r0 , q0 = f (1 . 1 , 3 . 3)
print (’ r0 : ’ , r0)
print (’ q0 : ’ , q0)

% MATLAB/ Octave
[r0 , q0] = f (1 . 1 , 3 . 3) ;
d i sp l ay (r0)
d i sp l ay (q0)

(’r0:’, DM([1.1, 1.1]))

(’q0:’, DM([-0.17352, -0.17352]))

4.2. CONVERTING MX TO SX 29

or the arguments and their names as follows, which will result in a dictionary (dict in
Python, struct in MATLAB and std :: map<std::string, MatrixType> in C++):

Python
r e s = f (x=1.1 , y=3.3)
print (’ r e s : ’ , r e s)

% MATLAB/ Octave
r e s = f (’ x ’ , 1 . 1 , ’ y ’ , 3 . 3) ;
d i sp l ay (r e s)

(’res:’, {’q’: DM([-0.17352, -0.17352]), ’r’: DM([1.1, 1.1])})

When calling a function object, the dimensions (but not necessarily the sparsity pat-
terns) of the evaluation arguments have to match those of the function inputs, with two
exceptions:

• A row vector can be passed instead of a column vector and vice versa.

• A scalar argument can always be passed, regardless of the input dimension. This has
the meaning of setting all elements of the input matrix to that value.

When the number of inputs to a function object is large or changing, an alternative
syntax to the above is to use the call function which takes a Python list / MATLAB cell
array or, alternatively, a Python dict / MATLAB struct. The return value will have the
same type:

Python
arg = [1 . 1 , 3 . 3]
r e s = f . c a l l (arg)
print (’ r e s : ’ , r e s)
arg = { ’ x ’ : 1 . 1 , ’ y ’ : 3 . 3 }
r e s = f . c a l l (arg)
print (’ r e s : ’ , r e s)

% MATLAB/ Octave
arg = { 1 . 1 , 3 . 3 } ;
r e s = f . c a l l (arg) ;
d i sp l ay (r e s)
arg = s t r u c t (’ x ’ , 1 . 1 , ’ y ’ , 3 . 3) ;
r e s = f . c a l l (arg) ;
d i sp l ay (r e s)

(’res:’, [DM([1.1, 1.1]), DM([-0.17352, -0.17352])])

(’res:’, {’q’: DM([-0.17352, -0.17352]), ’r’: DM([1.1, 1.1])})

4.2 Converting MX to SX

A function object defined by an MX graph that only contains built-in operations (e.g.
element-wise operations such as addition, square root, matrix multiplications and calls to
SX functions, can be converted into a function defined purely by an SX graph using the
syntax:

s x f u n c t i o n = mx function . expand ()

This might speed up the calculations significantly, but might also cause extra memory
overhead.

30 CHAPTER 4. FUNCTION OBJECTS

4.3 Nonlinear root-finding problems

Consider the following system of equations:

g0(z, x1, x2, . . . , xn) = 0

g1(z, x1, x2, . . . , xn) = y1

g2(z, x1, x2, . . . , xn) = y2

...

gm(z, x1, x2, . . . , xn) = ym,

(4.1)

where the first equation uniquely defines z as a function of x1, . . . , xn by the implicit
function theorem and the remaining equations define the auxiliary outputs y1, . . . , ym.

Given a function g for evaluating g0, . . . , gm, we can use CasADi to automatically for-
mulate a function G : {zguess, x1, x2, . . . , xn} → {z, y1, y2, . . . , ym}. This function includes
a guess for z to handle the case when the solution is non-unique. The syntax for this,
assuming n = m = 1 for simplicity, is:

Python
z = SX. sym(’ x ’ , nz)
x = SX. sym(’ x ’ , nx)
g0 = (an expr e s s i on o f x , z)
g1 = (an expr e s s i on o f x , z)
g = Function (’ g ’ , [z , x] , [g0 , g1])
G = r o o t f i n d e r (’G’ , ’ newton ’ , g)

% MATLAB/ Octave
z = SX. sym(’ x ’ , nz) ;
x = SX. sym(’ x ’ , nx) ;
g0 = (an expr e s s i on o f x , z)
g1 = (an expr e s s i on o f x , z)
g = Function (’ g ’ ,{ z , x} ,{ g0 , g1 }) ;
G = r o o t f i n d e r (’G’ , ’ newton ’ , g) ;

where the rootfinder function expects a display name, the name of a solver plugin
(here a simple full-step Newton method) and the residual function.

Rootfinding objects in CasADi are differential objects and derivatives can be calculated
exactly to arbitrary order.

4.4 Initial-value problems and sensitivity analysis

CasADi can be used to solve initial-value problems in ODE or DAE. The problem formu-
lation used is a DAE of semi-explicit form with quadratures:

ẋ = fode(t, x, z, p), x(0) = x0 (4.2a)

0 = falg(t, x, z, p) (4.2b)

q̇ = fquad(t, x, z, p), q(0) = 0 (4.2c)

For solvers of ordinary differential equations, the second equation and the algebraic
variables z must be absent.

4.4. INITIAL-VALUE PROBLEMS AND SENSITIVITY ANALYSIS 31

An integrator in CasADi is a function that takes the state at the initial time x0, a set of
parameters p, and a guess for the algebraic variables (only for DAEs) z0 and returns the
state vector xf, algebraic variables zf and the quadrature state qf, all at the final time.

The freely available SUNDIALS suite (distributed along with CasADi) contains the two
popular integrators CVodes and IDAS for ODEs and DAEs respectively. These integrators
have support for forward and adjoint sensitivity analysis and when used via CasADi’s
Sundials interface, CasADi will automatically formulate the Jacobian information, which is
needed by the backward differentiation formula (BDF) that CVodes and IDAS use. Also
automatically formulated will be the forward and adjoint sensitivity equations.

4.4.1 Creating integrators

Integrators are created using CasADi’s integrator function. Different integrators schemes
and interfaces are implemented as plugins, essentially shared libraries that are loaded at
runtime.

Consider for example the DAE:

ẋ = z + p, (4.3a)

0 = z cos(z)− x (4.3b)

An integrator, using the ”idas” plugin, can be created using the syntax:

Python
x = SX. sym(’ x ’) ; z = SX. sym(’ z ’) ; p = SX. sym(’p ’)
dae = { ’ x ’ : x , ’ z ’ : z , ’ p ’ : p , ’ ode ’ : z+p , ’ a l g ’ : z∗ cos (z)−x}
F = i n t e g r a t o r (’F ’ , ’ i da s ’ , dae)

% MATLAB/ Octave
x = SX. sym(’ x ’) ; z = SX. sym(’ z ’) ; p = SX. sym(’p ’) ;
dae = s t r u c t (’ x ’ , x , ’ z ’ , z , ’ p ’ ,p , ’ ode ’ , z+p , ’ a l g ’ , z∗cos (z)−x) ;
F = i n t e g r a t o r (’F ’ , ’ i da s ’ , dae) ;

Integrating this DAE from 0 to 1 with x(0) = 0, p = 0.1 and using the guess z(0) = 0,
can be done by evaluating the created function object:

Python
r = F(x0=0, z0=0, p=0.1)
print (r [’ x f ’])

% MATLAB/ Octave
r = F(’ x0 ’ ,0 , ’ z0 ’ , 0 , ’p ’ , 0 . 1) ;
disp (r . x f)

0.1724

The time horizon is assumed to be fixed1 and can be changed from its default [0, 1] by
setting the options ”t0” and ”tf”.

1for problems with free end time, you can always scale time by introducing an extra parameter and
substitute t for a dimensionless time variable that goes from 0 to 1

https://computation.llnl.gov/casc/sundials/description/description.html

32 CHAPTER 4. FUNCTION OBJECTS

4.4.2 Sensitivity analysis

From a usage point of view, an integrator behaves just like the function objects created
from expressions earlier in the chapter. You can use member functions in the Function
class to generate new function objects corresponding to directional derivatives (forward or
reverse mode) or complete Jacobians. Then evaluate these function objects numerically
to obtain sensitivity information. The documented example ”sensitivity analysis” (avail-
able in CasADi’s example collection for Python, MATLAB and C++) demonstrate how
CasADi can be used to calculate first and second order derivative information (forward-
over-forward, forward-over-adjoint, adjoint-over-adjoint) for a simple DAE.

4.5 Nonlinear programming

The NLP solvers distributed with or interfaced to CasADi solves parametric NLPs of the
following form:

minimize:
x

f(x, p)

subject to:
xlb ≤ x ≤ xub

glb ≤ g(x, p) ≤ gub

(4.4)

where x ∈ Rnx is the decision variable and p ∈ Rnp is a known parameter vector.
An NLP solver in CasADi is a function that takes the parameter value (p), the bounds

(lbx, ubx, lbg, ubg) and a guess for the primal-dual solution (x0, lam x0, lam g0) and
returns the optimal solution. Unlike integrator objects, NLP solver functions are currently
not differentiable functions in CasADi.

There are several NLP solvers interfaced with CasADi. The most popular one is IPOPT,
an open-source primal-dual interior point method which is included in CasADi installations.
Others, that require the installation of third-party software, include SNOPT, WORHP and
KNITRO. Whatever the NLP solver used, the interface will automatically generate the
information that it needs to solve the NLP, which may be solver and option dependent.
Typically an NLP solver will need a function that gives the Jacobian of the constraint
function and a Hessian of the Lagrangian function (L(x, λ) = f(x) +λT g(x)) with respect
to x.

4.5.1 Creating NLP solvers

NLP solvers are created using CasADi’s nlpsol function. Different solvers and interfaces
are implemented as plugins. Consider the following form of the so-called Rosenbrock prob-
lem:

minimize:
x, y, z

x2 + 100 z2

subject to: z + (1− x)2 − y = 0
(4.5)

4.5. NONLINEAR PROGRAMMING 33

A solver for this problem, using the ”ipopt” plugin, can be created using the syntax:

Python
x = SX. sym(’ x ’) ; y = SX. sym(’ y ’) ; z = SX. sym(’ z ’)
nlp = { ’ x ’ : v e r t c a t (x , y , z) , ’ f ’ : x∗∗2+100∗z ∗∗2 , ’ g ’ : z+(1−x)∗∗2−y}
S = n l p s o l (’S ’ , ’ ipopt ’ , nlp)

% MATLAB/ Octave
x = SX. sym(’ x ’) ; y = SX. sym(’ y ’) ; z = SX. sym(’ z ’) ;
nlp = s t r u c t (’ x ’ , [x ; y ; z] , ’ f ’ , xˆ2+100∗z ˆ2 , ’ g ’ , z+(1−x)ˆ2−y)
S = n l p s o l (’S ’ , ’ ipopt ’ , nlp)

Once the solver has been created, we can solve the NLP, using [2.5, 3.0, 0.75] as an
initial guess, by evaluating the function S:

Python
r = S(x0 = [2 . 5 , 3 . 0 , 0 . 7 5] ,\

lbg =0, ubg=0)
x opt = r [’ x ’]
print (’ x opt : ’ , x opt)

% MATLAB/ Octave
r = S(’ x0 ’ , [2 . 5 , 3 . 0 , 0 . 7 5] , . . .

’ lbg ’ , 0 , ’ ubg ’ , 0) ;
x opt = r . x ;
d i sp l ay (x opt)

**

This program contains Ipopt, a library for large-scale nonlinear optimization.

Ipopt is released as open source code under the Eclipse Public License (EPL).

For more information visit http://projects.coin-or.org/Ipopt

**

This is Ipopt version 3.12.3, running with linear solver ma57.

Number of nonzeros in equality constraint Jacobian...: 3

Number of nonzeros in inequality constraint Jacobian.: 0

Number of nonzeros in Lagrangian Hessian.............: 2

Total number of variables............................: 3

variables with only lower bounds: 0

variables with lower and upper bounds: 0

variables with only upper bounds: 0

Total number of equality constraints.................: 1

Total number of inequality constraints...............: 0

inequality constraints with only lower bounds: 0

inequality constraints with lower and upper bounds: 0

inequality constraints with only upper bounds: 0

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls

0 6.2500000e+01 0.00e+00 9.00e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0

1 1.8457621e+01 1.48e-02 4.10e+01 -1.0 4.10e-01 2.0 1.00e+00 1.00e+00f 1

2 7.8031530e+00 3.84e-03 8.76e+00 -1.0 2.63e-01 1.5 1.00e+00 1.00e+00f 1

3 7.1678278e+00 9.42e-05 1.04e+00 -1.0 9.32e-02 1.0 1.00e+00 1.00e+00f 1

4 6.7419924e+00 6.18e-03 9.95e-01 -1.0 2.69e-01 0.6 1.00e+00 1.00e+00f 1

5 5.4363330e+00 7.03e-02 1.04e+00 -1.7 8.40e-01 0.1 1.00e+00 1.00e+00f 1

6 1.2144815e+00 1.52e+00 1.32e+00 -1.7 3.21e+00 -0.4 1.00e+00 1.00e+00f 1

7 1.0214718e+00 2.51e-01 1.17e+01 -1.7 1.33e+00 0.9 1.00e+00 1.00e+00h 1

8 3.1864085e-01 1.04e-03 7.53e-01 -1.7 3.58e-01 - 1.00e+00 1.00e+00f 1

9 0.0000000e+00 3.19e-01 0.00e+00 -1.7 5.64e-01 - 1.00e+00 1.00e+00f 1

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls

10 0.0000000e+00 0.00e+00 0.00e+00 -1.7 3.19e-01 - 1.00e+00 1.00e+00h 1

Number of Iterations....: 10

(scaled) (unscaled)

Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00

Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00

Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00

Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00

Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00

Number of objective function evaluations = 11

Number of objective gradient evaluations = 11

34 CHAPTER 4. FUNCTION OBJECTS

Number of equality constraint evaluations = 11

Number of inequality constraint evaluations = 0

Number of equality constraint Jacobian evaluations = 11

Number of inequality constraint Jacobian evaluations = 0

Number of Lagrangian Hessian evaluations = 10

Total CPU secs in IPOPT (w/o function evaluations) = 0.000

Total CPU secs in NLP function evaluations = 0.000

EXIT: Optimal Solution Found.

t_proc [s] t_wall [s] n_eval

S 0.00379 0.00379 1

nlp_f 8e-06 8.49e-06 11

nlp_g 1.6e-05 1.56e-05 11

nlp_grad_f 1.5e-05 1.47e-05 12

nlp_hess_l 1.2e-05 9.56e-06 10

nlp_jac_g 1e-05 1.01e-05 12

(’x_opt: ’, DM([0, 1, 0]))

4.6 Quadratic programming

CasADi provides interfaces to solve quadratic programs (QPs). Supported solvers are
the open-source solvers qpOASES (distributed with CasADi) and OOQP as well as the
commercial solvers CPLEX and GUROBI.

There are two different ways to solve QPs in CasADi, using a high-level interface and a
low-level interface. They are described in the following.

4.6.1 High-level interface

The high-level interface for quadratic programming mirrors that of nonlinear programming,
i.e. expects a problem of the form (4.4), with the restriction that objective function f(x, p)
must be a convex quadratic function in x and the constraint function g(x, p) must be linear
in x. If the functions are not quadratic and linear, respectively, the solution is done at the
current linearization point, given by the “initial guess” for x.

If the objective function is not convex, the solver may or may not fail to find a solution
or the solution may not be unique.

To illustrate the syntax, we consider the following convex QP:

minimize:
x, y

x2 + y2

subject to: x+ y − 10 ≥ 0
(4.6)

To solve this problem with the high-level interface, we simply replace nlpsol with
qpsol and use a QP solver plugin such as the with CasADi distributed qpOASES:

Python
x = SX. sym(’ x ’) ; y = SX. sym(’ y ’)
qp = { ’ x ’ : v e r t c a t (x , y) , ’ f ’ : x∗∗2+y∗∗2 , ’ g ’ : x+y−10}
S = qpso l (’S ’ , ’ qpoases ’ , qp)

4.6. QUADRATIC PROGRAMMING 35

% MATLAB/ Octave
x = SX. sym(’ x ’) ; y = SX. sym(’ y ’)
qp = s t r u c t (’ x ’ , [x ; y] , ’ f ’ , xˆ2+y ˆ2 , ’ g ’ , x+y−10)
S = qpso l (’S ’ , ’ qpoases ’ , qp)

The created solver object S will have the same input and output signature as the solver
objects created with nlpsol. Since the solution is unique, it is less important to provide
an initial guess:

Python
r = S(lbg =0)
x opt = r [’ x ’]
print (’ x opt : ’ , x opt)

% MATLAB/ Octave
r = S(’ lbg ’ , 0) ;
x opt = r . x ;
d i sp l ay (x opt)

#################### qpOASES -- QP NO. 1 #####################

Iter | StepLength | Info | nFX | nAC

----------+------------------+------------------+---------+---------

0 | 1.866661e-07 | ADD CON 0 | 1 | 1

1 | 8.333622e-10 | REM BND 1 | 0 | 1

2 | 1.000000e+00 | QP SOLVED | 0 | 1

(’x_opt: ’, DM([5, 5]))

4.6.2 Low-level interface

The low-level interface, on the other hand, solves QPs of the following form:

minimize:
x

1
2
xTH x+ gT x

subject to:
xlb ≤ x ≤ xub

alb ≤ Ax ≤ aub

(4.7)

Encoding problem (4.6) in this form, omitting bounds that are infinite, is straightfor-
ward:

Python
H = 2∗DM. eye (2)
A = DM. ones (1 , 2)
g = DM. ze ro s (2)
lba = 10 .

% MATLAB/ Octave
H = 2∗DM. eye (2) ;
A = DM. ones (1 , 2) ;
g = DM. zeros (2) ;
lba = 10 ;

To create a solver instance, instead of passing symbolic expressions for the QP, we now
pass the sparsity patterns of the matrices H and A. Since we used CasADi’s DM-type above,
we can simply query the sparsity patterns:

36 CHAPTER 4. FUNCTION OBJECTS

Python
qp = {}
qp [’h ’] = H. s p a r s i t y ()
qp [’ a ’] = A. s p a r s i t y ()
S = con i c (’S ’ , ’ qpoases ’ , qp)

% MATLAB/ Octave
qp = s t r u c t ;
qp . h = H. s p a r s i t y () ;
qp . a = A. s p a r s i t y () ;
S = con i c (’S ’ , ’ qpoases ’ , qp) ;

The returned Function instance will have a different input/output signature compared
to the high-level interface, one that includes the matrices H and A:

Python
r = S(h=H, g=g , \

a=A, lba=lba)
x opt = r [’ x ’]
print (’ x opt : ’ , x opt)

% MATLAB/ Octave
r = S(’h ’ , H, ’ g ’ , g , . . .

’ a ’ , A, ’ lba ’ , lba) ;
x opt = r . x ;
d i sp l ay (x opt)

#################### qpOASES -- QP NO. 1 #####################

Iter | StepLength | Info | nFX | nAC

----------+------------------+------------------+---------+---------

0 | 1.866661e-07 | ADD CON 0 | 1 | 1

1 | 8.333622e-10 | REM BND 1 | 0 | 1

2 | 1.000000e+00 | QP SOLVED | 0 | 1

(’x_opt: ’, DM([5, 5]))

4.7 For-loop equivalents

When modeling using expression graphs in CasADi, it is a common pattern to use of for-loop
constructs of the host language (C++/Python/Matlab).

The graph size will grow linearly with the loop size N , and so will the construction
time of the expression graph and the initialization time of functions using that expression.

We offer some special constructs that improve on this complexity.

4.7.1 Map

Suppose you are interested in computing a function f : Rn → Rm repeatedly on all columns
of a matrix X ∈ Rn×N , and aggregating all results in a result matrix Y ∈ Rm×N :

Python
ys = []
for i in range (N) :

ys . append (f (X[: , i]))

Y = hcat (ys)
F = Function (’ f ’ , [X] , [Y])

% MATLAB/ Octave
ys = {} ;
for i =1:N

ys = {ys { :} f (X(: , i)) } ;
end
Y = hcat (ys) ;
F = Function (’ f ’ ,{X} ,{Y}) ;

4.7. FOR-LOOP EQUIVALENTS 37

The aggregate function F : Rn×N → Rm×N can be obtained with the map construct:

Python
F = f .map(N)

% MATLAB/ Octave
F = f .map(N) ;

CasADi can be instructed to parallelize when F gets evaluated. In the following example,
we dedicate 4 threads for the map task.

Python
F = f .map(N, ” thread ” ,4)

% MATLAB/ Octave
F = f .map(N, ’ thread ’ , 4) ;

The map operation supports primitive functions f with multiple inputs/outputs which
can also be matrices. Aggregation will always happen horizontally.

The map operation exhibits constant graph size and initialization time.

4.7.2 Fold

In case each for-loop iteration depends on the result from the previous iteration, the fold

construct applies. In the following, the x variable acts as an accumulater that is initialized
by x0 ∈ Rn:

Python
x = x0
for i in range (N) :

x = f (x)

F = Function (’ f ’ , [x0] , [x])

% MATLAB/ Octave
x = x0 ;
for i =1:N

x = f (x) ;
end
F = Function (’ f ’ ,{ x0 } ,{x }) ;

For a given function f : Rn → Rn, the result function F : Rn → Rn can be obtained
with the fold construct:

Python
F = f . f o l d (N)

% MATLAB/ Octave
F = f . f o l d (N) ;

In case intermediate accumulator values are desired as output (Rn → Rn×N), use
mapaccum instead of fold.

The fold/mapaccum operation supports primitive functions f with multiple inputs/out-
puts which can also be matrices. The first input and output are used for accumulating,
while the remainder inputs are read column-wise over the iterations.

The map/mapaccum operation exhibits a graph size and initialization time that scales
logarithmically with N .

38 CHAPTER 4. FUNCTION OBJECTS

Chapter 5

Generating C-code

The numerical evaluation of function objects in CasADi normally takes place in virtual
machines, implemented as part of CasADi’s symbolic framework. But CasADi also supports
the generation of self-contained C-code for a large subset of function objects.

C-code generation is interesting for a number of reasons:

• Speeding up the evaluation time. As a rule of thumb, the numerical evaluation of
autogenerated code, compiled with code optimization flags, can be between 4 and 10
times faster than the same code executed in CasADi’s virtual machines.

• Allowing code to be compiled on a system where CasADi is not installed, such as an
embedded system. All that is needed to compile the generated code is a C compiler.

• Debugging and profiling functions. The generated code is essentially a mirror of the
evaluation that takes place in the virtual machines and if a particular operation is
slow, this is likely to show up when analyzing the generated code with a profiling tool
such as gprof. By looking at the code, it is also possible to detect what is potentially
done in a suboptimal way. If the code is very long and takes a long time to compile,
it is an indication that some functions need to be broken up in smaller, but nested
functions.

5.1 Syntax for generating code

Generated C code can be as simple as calling the generate member function for a Function

instance.

39

40 CHAPTER 5. GENERATING C-CODE

Python
x = MX. sym(’ x ’ , 2)
y = MX. sym(’ y ’)
f = Function (’ f ’ , [x , y] ,\

[x , s i n (y)∗x] ,\
[’ x ’ , ’ y ’] , [’ r ’ , ’ q ’])

f . generate (’ gen . c ’)

% MATLAB/ Octave
x = MX. sym(’ x ’ , 2) ;
y = MX. sym(’ y ’) ;
f = Function (’ f ’ ,{x , y } , . . .

{x , sin (y)∗x } , . . .
{ ’ x ’ , ’ y ’ } ,{ ’ r ’ , ’ q ’ }) ;

f . generate (’ gen . c ’) ;

This will create a C file gen.c containing the function f and all its dependencies and
required helper functions. We will return to how this file can be used in Section 5.2 and
the structure of the generated code is described in Section 5.3 below.

You can generate a C file containing multiple CasADi functions by working with CasADi’s
CodeGenerator class:

Python
f = Function (’ f ’ , [x] , [s i n (x)])
g = Function (’ g ’ , [x] , [cos (x)])
C = CodeGenerator (’ gen . c ’)
C. add (f)
C. add (g)
C. generate ()

% MATLAB/ Octave
f = Function (’ f ’ ,{x} ,{ sin (x) }) ;
g = Function (’ g ’ ,{x} ,{ cos (x) }) ;
C = CodeGenerator (’ gen . c ’) ;
C. add (f) ;
C. add (g) ;
C. generate () ;

Both the generate function and the CodeGenerator constructor take an optional op-
tions dictionary as an argument, allowing customization of the code generation. Two
useful options are main, which generates a main entry point, and mex, which generates a
mexFunction entry point:

Python
f = Function (’ f ’ , [x] , [s i n (x)])
opts = dict (main=True , \

mex=True)
f . generate (’ gen . c ’ , opts)

% MATLAB/ Octave
f = Function (’ f ’ ,{x} ,{ sin (x) }) ;
opts = s t r u c t (’ main ’ , true , . . .

’mex ’ , t rue) ;
f . generate (’ gen . c ’ , opts) ;

This enables executing the function from the command line and MATLAB, respectively,
as described in Section 5.2 below.

If you plan to link directly against the generated code in some C/C++ application,
a useful option is with_header, which controls the creation of a header file containing
declarations of the functions with external linkage, i.e. the API of the generated code,
described in Section 5.3 below.

Here is a list of available options for the CodeGenerator class:

5.2. USING THE GENERATED CODE 41

Option Default value Description
verbose true Include comments in generated code
mex false Generate an MATLAB/Octave MEX entry point
cpp false Generated code is C++ instead of C
main false Generate a command line interface
casadi real double Floating point type
casadi int long long int Integer type
with header false Generate a header file
with mem false Generate a simplified C API
indent 2 Number of spaces per indentation level

5.2 Using the generated code

The generated C code can be used in a number of different ways:

• The code can be compiled into a dynamically linked library (DLL), from which a
Function instance can be created using CasADi’s external function. Optionally,
the user can rely on CasADi to carry out the compilation just-in-time.

• The generated code can be compiled into MEX function and executed from MAT-
LAB.

• The generated code can be executed from the command line.

• The user can link, statically or dynamically, the generated code to his or her C/C++
application, accessing the C API of the generated code.

• The code can be compiled into a dynamically linked library and the user can then
manually access the C API using dlopen on Linux/OS X or LoadLibrary on Win-
dows.

This is elaborated in the following.

CasADi’s external function

The external command allows the user to create a Function instance from a dynamically
linked library with the entry points described by the C API described in Section 5.3. Since
the autogenerated files are self-contained1, the compilation – on Linux/OSX – can be as
easy as issuing:

gcc −fPIC −shared gen . c −o gen . so

from the command line. Or, equivalently using MATLAB’s system command or Python’s
os.system command. Assuming gen.c was created as described in the previous section,
we can then create a Function f as follows:

1An exception is when code is generated for a function that in turn contains calls to external functions.

42 CHAPTER 5. GENERATING C-CODE

Python
f = e x t e r n a l (’ f ’ , ’ . / gen . so ’)
print (f (3 . 1 4))

% MATLAB/ Octave
f = e x t e r n a l (’ f ’ , ’ . / gen . so ’) ;
disp (f (3 . 1 4))

[0.00159265, 0.00159265]

We can also rely on CasADi performing the compilation just-in-time using CasADi’s
Importer class. This is a plugin class, which at the time of writing had two supported
plugins, namely ’clang’, which invokes the LLVM/Clang compiler framework (distributed
with CasADi), and ’shell’, which invokes the system compiler via the command line:

Python
C = Importer (’ gen . c ’ , ’ c lang ’)
f = e x t e r n a l (’ f ’ ,C) ;
print (f (3 . 1 4))

% MATLAB/ Octave
C = Importer (’ gen . c ’ , ’ c lang ’) ;
f = e x t e r n a l (’ f ’ ,C) ;
disp (f (3 . 1 4))

[0.00159265, 0.00159265]

We will return to the external function in Section 6.3.

Calling generated code from MATLAB

An alternative way of executing generated code is to compile the code into a MATLAB
MEX function and call from MATLAB. This assumes that the mex option was set to
”true” during the code generation, cf. Section 5.1. The generated MEX function takes the
function name as its first argument, followed by the function inputs:

% MATLAB/ Octave
mex gen . c −largeArrayDims
disp (gen (’ f ’ , 3 . 1 4))

Building with ’Xcode with Clang’.

MEX completed successfully.

(1,1) 0.0016

(2,1) 0.0016

Note that the result of the execution is always a MATLAB sparse matrix by default.
Compiler flags -DCASASI MEX ALWAYS DENSE and -DCASASI MEX ALLOW DENSE may be set
to influence this behaviour.

5.3. API OF THE GENERATED CODE 43

Calling generated code from the command line

Another option is to execute the generated code from the Linux/OSX command line. This
is possible if the main option was set to ”true” during the code generation, cf. Section 5.1.
This is useful if you e.g. want to profile the generated with a tool such as gprof.

When executing the generated code, the function name is passed as a command line
argument. The nonzero entries of all the inputs need to be passed via standard input and
the function will return the output nonzeros for all the outputs via standard output:

Command l i n e
echo 3 .14 3 .14 > gen in . txt
gcc gen . c −o gen
. / gen f < gen in . txt > gen out . txt
cat gen out . txt

0.00159265 0.00159265

Linking against generated code from a C/C++ application

The generated code is written so that it can be linked with directly from a C/C++ applica-
tion. If the with_header option was set to ”true” during the code generation, a header file
with declarations of all the exposed entry points of the file. Using this header file requires
an understanding of CasADi’s codegen API, as described in Section 5.3 below. Symbols
that are not exposed are prefixed with a file-specific prefix, allowing an application to link
against multiple generated functions without risking symbol conflicts.

Dynamically loading generated code from a C/C++ application

A variant of above is to compile the generated code into a shared library, but directly
accessing the exposed symbols rather than relying on CasADi’s external function. This
also requires an understanding of the structure of the generated code.

In CasADi’s example collection, codegen_usage.cpp demonstrates how this can be
done.

5.3 API of the generated code

The API of the generated code consists of a number of functions with external linkage.
In addition to the actual execution, there are functions for memory management as well
as meta information about the inputs and outputs. These functions are described in the
following. Below, assume that the name of function we want to access is fname. To see
what these functions actually look like in code and when they are called, we refer to the
codegen_usage.cpp example.

44 CHAPTER 5. GENERATING C-CODE

Reference counting

void f name inc r e f (void) ;
void fname decre f (void) ;

A generated function may need to e.g. read in some data or initialize some data
structures before first call. This is typically not needed for functions generated from CasADi

expressions, but may be required e.g. when the generated code contains calls to external
functions. Similarly, memory might need to be deallocated after usage.

To keep track of the ownership, the generated code contains two functions for increasing
and decreasing a reference counter. They are named fname_incref and fname_decref,
respectively. These functions have no input argument and return void.

Typically, some initialization may take place upon the first call to fname_incref and
subsequent calls will only increase some internal counter. The fname_decref, on the other
hand, decreases the internal counter and when the counter hits zero, a deallocation – if
any – takes place.

Number of inputs and outputs

c a s a d i i n t fname n in (void) ;
c a s a d i i n t fname n out (void) ;

The number of function inputs and outputs can be obtained by calling the fname_n_in

and fname_n_out functions, respectively. These functions take no inputs and return the
number of input or outputs (casadi_int is an alias for long long int).

Names of inputs and outputs

const char∗ fname name in (c a s a d i i n t ind) ;
const char∗ fname name out (c a s a d i i n t ind) ;

The functions fname_name_in and fname_name_out return the name of a particular
input or output. They take the index of the input or output, starting with index 0, and
return a const char* with the name as a null-terminated C string. Upon failure, these
functions will return a null pointer.

Sparsity patterns of inputs and outputs

const c a s a d i i n t ∗ f n a m e s p a r s i t y i n (c a s a d i i n t ind) ;
const c a s a d i i n t ∗ f name spa r s i t y ou t (c a s a d i i n t ind) ;

The sparsity pattern for a given input or output is obtained by calling fname_sparsity_in
and fname_sparsity_out, respectively. These functions take the input or output index
and return a pointer to a field of constant integers (const casadi_int*). This is a com-
pact representation of the compressed column storage (CCS) format that CasADi uses, cf.
Section 3.5. The integer field pointed to is structured as follows:
• The first two entries are the number of rows and columns, respectively. In the

following referred to as nrow and ncol.

5.3. API OF THE GENERATED CODE 45

• If the third entry is 1, the pattern is dense and any remaining entries are discarded.

• If the third entry is 0, that entry plus subsequent ncol entries form the nonzero offsets
for each column, colind in the following. E.g. column i will consist of the nonzero
indices ranging from colind[i] to colind[i + 1]. The last entry, colind[ncol], will
be equal to the number of nonzeros, nnz.

• Finally, if the sparsity pattern is not dense, i.e. if nnz 6= nrow ∗ ncol, then the last
nnz entries will contain the row indices.

Upon failure, these functions will return a null pointer.

Memory objects

A function may contain some mutable memory, e.g. for caching the latest factorization
or keeping track of evaluation statistics. When multiple functions need to call the same
function without conflicting, they each need to work with a different memory object. This
is especially important for evaluation in parallel on a shared memory architecture, in which
case each thread should access a different memory object.

void∗ fname alloc mem (void) ;

Allocates a memory object which will be passed to the numerical evaluation.

int fname init mem (void∗ mem) ;

(Re)initializes a memory object. Returns 0 upon successful return;

int fname free mem (void∗ mem) ;

Frees a memory object. Returns 0 upon successful return;

Work vectors

int fname work (c a s a d i i n t ∗ s z arg , c a s a d i i n t ∗ s z r e s , c a s a d i i n t ∗ sz iw , c a s a d i i n t ∗ sz w) ;

To allow the evaluation to be performed efficiently with a small memory footprint, the
user is expected to pass four work arrays. The function fname_work returns the length
of these arrays, which have entries of type const double*, double*, casadi_int and
double, respectively.

The return value of the function is nonzero upon failure.

Numerical evaluation

int fname (const double∗∗ arg , double∗∗ res ,
c a s a d i i n t ∗ iw , double∗ w, void∗ mem) ;

46 CHAPTER 5. GENERATING C-CODE

Finally, the function fname, performs the actual evaluation. It takes as input arguments
the four work vectors and a memory object created using fname_alloc_mem (or NULL if
absent). The length of the work vectors must be at least the lengths provided by the
fname work command and the index of the memory object must be strictly smaller than
the value returned by fname n mem.

The nonzeros of the function inputs are pointed to by the first entries of the arg work
vector and are unchanged by the evaluation. Similarly, the output nonzeros are pointed
to by the first entries of the res work vector and are also unchanged (i.e. the pointers are
unchanged, not the actual values).

The return value of the function is nonzero upon failure.

Chapter 6

User-defined function objects

There are situations when rewriting user-functions using CasADi symbolics is not possible
or practical. To tackle this, CasADi provides a number of ways to embed a call to a ”black
box” function defined in the language CasADi is being used from (C++, MATLAB or
Python) or in C. That being said, the recommendation is always to try to avoid this when
possible, even if it means investing a lot of time reimplementing existing code. Functions
defined using CasADi symbolics are almost always more efficient, especially when derivative
calculation is involved, since a lot more structure can typically be exploited.

Depending on the circumstances, the user can implement custom Function objects in
a number of different ways, which will be elaborated on in the following sections:

• Subclassing FunctionInternal: 6.1

• Subclassing Callback: 6.2

• Importing a function with external: 6.3

• Just-in-time compile a C language string: 6.4

• Replace the function call with a lookup table: 6.5

6.1 Subclassing FunctionInternal

All function objects presented in Chapter 4 are implemented in CasADi as C++ classes
inheriting from the FunctionInternal abstract base class. In principle, a user with famil-
iarity with C++ programming, can implement a class inheriting from FunctionInternal,
overloading the virtual methods of this class. The best reference for doing so is the C++
API documentation, choosing ”switch to internal” to expose the internal API.

Since FunctionInternal is not considered part of the stable, public API, we advice
against this in general, unless the plan is to contribution to CasADi’s source.

47

48 CHAPTER 6. USER-DEFINED FUNCTION OBJECTS

6.2 Subclassing Callback

The Callback class provides a public API to FunctionInternal and inheriting from this
class has the same effect as inheriting directly from FunctionInternal. Thanks to cross-
language polymorphism, it is possible to implement the exposed methods of Callback from
either Python, MATLAB/Octave or C++.

The derived class consists of the following parts:

• A constructor or a static function replacing the constructor

• A number of virtual functions, all optional, that can be overloaded in order to get the
desired behavior. This includes the number of of inputs and outputs using get_n_in

and get_n_out, their names using get_name_in and get_name_out and their sparsity
patterns get_sparsity_in and get_sparsity_out.

• An optional init function called duing the object construction.

• A function for numerical evaluation.

• Optional functions for derivatives. You can choose to supply a full Jacobian (has_jacobian,
get_jacobian), or choose to supply forward/reverse sensitivities (has_forward, get_forward,
has_reverse, get_reverse).

For a complete list of functions, see the C++ API documentation for Callback.
The usage from the different languages are described in the following.

Python

In Python, a custom function class can be defined is as follows:

class MyCallback (Cal lback) :
def i n i t (s e l f , name , d , opts ={}):

Cal lback . i n i t (s e l f)
s e l f . d = d
s e l f . c on s t ruc t (name , opts)

Number o f i n p u t s and o u t p u t s
def g e t n i n (s e l f) : return 1
def ge t n out (s e l f) : return 1

I n i t i a l i z e the o b j e c t
def i n i t (s e l f) :

print (’ i n i t i a l i z i n g ob j e c t ’)

Evaluate numer ica l l y
def eval (s e l f , arg) :

6.2. SUBCLASSING CALLBACK 49

x = arg [0]
f = s i n (s e l f . d∗x)
return [f]

The implementation should include a constructor, which should begin with a call to
the base class constructor using Callback. init (self) and end with a call to initialize
object construction using self .construct(name, opts).

This function can be used as any built-in CasADi function with the important caveat
that when embedded in graphs, the ownership of the class will not be shared between all
references. So it is important that the user does not allow the Python class to go out of
scope while it is still needed in calculations.

Use the f u n c t i o n
f = MyCallback (’ f ’ , 0 . 5)
r e s = f (2)
print (r e s)

MATLAB

In MATLAB, a custom function class can be defined as follows, in a file MyCallback.m:

c l a s s d e f MyCallback < ca sad i . Cal lback
p r o p e r t i e s

d
end
methods

function s e l f = MyCallback (name , d)
s e l f @ c a s a d i . Cal lback () ;
s e l f . d = d ;
cons t ruc t (s e l f , name) ;

end

% Number o f i n p u t s and o u t p u t s
function v=g e t n i n (s e l f)

v=1;
end
function v=get n out (s e l f)

v=1;
end

% I n i t i a l i z e the o b j e c t
function i n i t (s e l f)

disp (’ i n i t i a l i z i n g ob j e c t ’)
end

50 CHAPTER 6. USER-DEFINED FUNCTION OBJECTS

% Evaluate numer ica l l y
function arg = eval (s e l f , arg)

x = arg {1} ;
f = sin (s e l f . d ∗ x) ;
arg = { f } ;

end
end

end

This function can be used as any built-in CasADi function, but as for Python, the
ownership of the class will not be shared between all references. So the user must not
allow a class instance to get deleted while it is still in use, e.g. by making it persistent.

% Use the f u n c t i o n
f = MyCallback (’ f ’ , 0 . 5) ;
r e s = f (2) ;
disp (r e s)

C++

In C++, the syntax is as follows:

#include ” ca sad i / ca sad i . hpp”
using namespace ca sad i ;
class MyCallback : public Cal lback {

// Data members
double d ;

public :
// Constructor
MyCallback (const std : : s t r i n g& name , double d ,

const Dict& opts=Dict ()) : d (d) {
cons t ruc t (name , opts) ;

}

// Des t ruc tor
˜MyCallback () o v e r r i d e {}

// Number o f i n p u t s and o u t p u t s
c a s a d i i n t g e t n i n () o v e r r i d e { return 1 ;}
c a s a d i i n t ge t n out () o v e r r i d e { return 1 ;}

// I n i t i a l i z e the o b j e c t
void i n i t o v e r r i d e () {

6.3. IMPORTING A FUNCTION WITH EXTERNAL 51

std : : cout << ” i n i t i a l i z i n g ob j e c t ” << std : : endl ;
}

// Eva luate numer ica l l y
std : : vector<DM> eva l (const std : : vector<DM>& arg) const o v e r r i d e {

DM x = arg . at (0) ;
DM f = s i n (d∗x) ;
return { f } ;

}
} ;

A class created this way can be used as any other Function instance, but with the
important difference that the user is responsible to managing the memory of this class.

int main () {
MyCallback f (” f ” , 0 . 5) ;
s td : : vector<DM> arg = {2} ;
s td : : vector<DM> r e s = f (arg) ;
s td : : cout << r e s << std : : endl ;
return 0 ;

}

6.3 Importing a function with external

The basic usage of CasADi’s external function was demonstrated in Section 5.2 in the
context of using autogenerated code. The same function can also be used for importing a
user-defined function, as long as it also uses the C API described in Section 5.3.

The following sections expands on this.

Default functions

It is usually not necessary to define all the functions defined in Section 5.3. If fname_incref
and fname_decref are absent, it is assumed that no memory management is needed. If
no names of inputs and outputs are provided, they will be given default names. Sparsity
patterns are in general assumed to be scalar by default, unless the function corresponds to
a derivative of another function (see below), in which case they are assumed to be dense
and of the correct dimension.

Furthermore, work vectors are assumed not to be needed if fname_work has not been
implemented.

52 CHAPTER 6. USER-DEFINED FUNCTION OBJECTS

Meta information as comments

If you rely on CasADi’s just-in-time compiler, you can provide meta information as a
comment in the C code instead of implementing the actual callback function.

The structure of such meta information should be as follows:

/∗CASADIMETA
: fname N IN 1
: fname N OUT 2
: fname NAME IN [0] x
: fname NAME OUT [0] r
: fname NAME OUT [1] s
: fname SPARSITY IN [0] 2 1 0 2
∗/

Derivatives

The external function can be made differentiable by providing functions for calculating
derivatives. During derivative calculations, CasADi will look for symbols in the same
file/shared library that follows a certain naming convention. For example, you can specify
a Jacobian for all the outputs with respect to all inputs for a function named fname

by implementing a function named jac_fname. Similary, you can specify a function for
calculating one forward directional derivative by providing a function named fwd1_fname,
where 1 can be replaced by 2, 4, 8, 16, 32 or 64 for calculating multiple forward directional
derivatives at once. For reverse mode directional derivatives, replace fwd with adj.

This is an experimental feature.

6.4 Just-in-time compile a C language string

In the previous section we showed how to specify a C file with functions for numerical
evaluation and meta information. As was shown, this file can be just-in-time compiled by
CasADi’s interface to Clang. There exists a shorthand for this approach, where the user
simply specifies the source code as a C language string.

Python
body =\
’ r [0] = x [0] ; \ n ’+\
’ whi l e (r [0]< s [0]) {\n ’+\
’ r [0] ∗= r [0] ; \ n ’+\
’ }\n ’

f = Function . j i t (’ f ’ , body ,\
[’ x ’ , ’ s ’] , [’ r ’])

% MATLAB/ Octave
body = [. . .
’ r [0] = x [0] ; \ n ’ , . . .
’ whi l e (r [0]< s [0]) {\n ’ , . . .
’ r [0] ∗= r [0] ; \ n ’ , . . .
’ }\n ’] ;

f = Function . j i t (’ f ’ , body , . . .
{ ’ x ’ , ’ s ’ } ,{ ’ r ’ }) ;

6.5. USING LOOKUP-TABLES 53

These four arguments of Function. jit are manditory: The function name, the C source
as a string and the names of inputs and outputs. In the C source, the input/output
names correspond to arrays of type casadi real t containing the nonzero elements of the
function inputs and outputs. By default, all inputs and outputs are scalars (i.e. 1-by-1 and
dense). To specify a different sparsity pattern, provide two additional function arguments
containing vectors/lists of the sparsity patterns:

Equiva lent to the above
sp = Spar s i ty . s c a l a r ()
f = Function . j i t (’ f ’ , body ,\

[’ x ’ , ’ s ’] , [’ r ’] ,\
[sp , sp] , [sp])

% E q u i v a l e n t to the above
sp = Spar s i ty . s c a l a r () ;
f = Function . j i t (’ f ’ , body , . . .

{ ’ x ’ , ’ s ’ } , { ’ r ’ }) ;
{sp , sp } , { sp }) ;

Both variants accept an optional 5th (or 7th) argument in the form of an options
dictionary.

6.5 Using lookup-tables

Lookup-tables can be created using CasADi’s interpolant function. Different interpo-
lating schemes are implemented as plugins, similar to nlpsol or integrator objects. In
addition to the identifier name and plugin, the interpolant function expects a set of grid
points with the corresponding numerical values.

The result of an interpolant call is a CasADi Function object that is differentiable,
and can be embedded into CasADi computational graphs by calling with MX arguments.
Furthermore, C code generation is fully supported for such graphs.

Currently, two plugins exist for interpolant: ’linear’ and ’bspline’. They are in-
tended to behave simiarly to MATLAB/Octave’s interpn with the method set to ’linear’

or ’spline’ – corresponding to a multilinear interpolation and a (by default cubic) spline
interpolation with not-a-knot boundary conditions.

In the case of bspline, coefficients will be sought at construction time that fit the
provided data. Alternatively, you may also use the more low-level Function.bspline to
supply the coefficients yourself. The default degree of the bspline is 3 in each dimension.
You may deviate from this default by passing a degree option.

We will walk through the syntax of interpolant for the 1D and 2D versions, but the
syntax in fact generalizes to an arbitrary number of dimensions.

6.5.1 1D lookup tables

A 1D spline fit can be done in CasADi/Python as follows, compared with the corresponding
method in SciPy:

Python
import ca sad i as ca

54 CHAPTER 6. USER-DEFINED FUNCTION OBJECTS

import numpy as np
xgr id = np . l i n s p a c e (1 , 6 , 6)
V = [−1 ,−1 ,−2 ,−3 ,0 ,2]
l u t = ca . i n t e r p o l a n t (’LUT ’ , ’ b s p l i n e ’ , [xgr id] ,V)
print (l u t (2 . 5))
Using SciPy
import s c ipy . i n t e r p o l a t e as ip
i n t e r p = ip . I n t e r p o l a t e d U n i v a r i a t e S p l i n e (xgrid , V)
print (i n t e r p (2 . 5))

In MATLAB/Octave, the corresponding code reads:

% MATLAB/ Octave
xgr id = 1 : 6 ;
V = [−1 −1 −2 −3 0 2] ;
l u t = casad i . i n t e r p o l a n t (’LUT ’ , ’ b s p l i n e ’ ,{ xgr id } ,V) ;
l u t (2 . 5)
% Using MATLAB/ Octave b u i l t i n
i n t e rpn (xgrid ,V, 2 . 5 , ’ s p l i n e ’)

Note in particular that the grid and values arguments to interpolant must be numer-
ical in nature.

6.5.2 2D lookup tables

In two dimensions, we get the following in Python, also compared to SciPy for reference:

Python
xgr id = np . l i n s p a c e (−5 ,5 ,11)
ygr id = np . l i n s p a c e (−4 ,4 ,9)
X,Y = np . meshgrid (xgrid , ygr id , index ing=’ i j ’)
R = np . s q r t (5∗X∗∗2 + Y∗∗2)+ 1
data = np . s i n (R)/R
d a t a f l a t = data . r a v e l (order=’F ’)
l u t = ca . i n t e r p o l a n t (’name ’ , ’ b s p l i n e ’ , [xgr id , ygr id] , d a t a f l a t)
print (l u t ([0 . 5 , 1]))
Using Scipy
i n t e r p = ip . Rec tB iva r i a t eSp l i n e (xgrid , ygr id , data)
print (i n t e r p . ev (0 . 5 , 1))

or, in MATLAB/Octave compared to the built-in functions:

% MATLAB/ Octave
xgr id = −5 :1 :5 ;
ygr id = −4 :1 :4 ;
[X,Y] = ndgrid (xgrid , ygr id) ;

6.6. DERIVATIVE CALCULATION USING FINITE DIFFERENCES 55

R = sqrt (5∗X.ˆ2 + Y.ˆ2)+ 1 ;
V = sin (R) . /R;
l u t = i n t e r p o l a n t (’LUT ’ , ’ b s p l i n e ’ ,{ xgrid , ygr id } ,V (:)) ;
l u t ([0 . 5 1])
% Using Matlab b u i l t i n
i n t e rpn (X,Y,V, 0 . 5 , 1 , ’ s p l i n e ’)

In particular note how the values argument had to be flatten to a one-dimensional
array.

6.6 Derivative calculation using finite differences

CasADi 3.3 introduced support for finite difference calculation for all function objects, in
particular including external functions defined as outlined in Section 6.2, Section 6.3 or
Section 6.4 (for lookup tables, Section 6.5, analytical derivatives are available).

Finite difference derivative are disabled by default, with the exception of Function. jit ,
and to enable it, you must set the option ’enable fd ’ to True/true:

Python
f = e x t e r n a l (’ f ’ , ’ . / gen . so ’ ,\

dict (e n a b l e f d=True))

% MATLAB/ Octave
f = e x t e r n a l (’ f ’ , ’ . / gen . so ’ , . . .

s t r u c t (’ e n a b l e f d ’ , t rue)) ;

cf. Section 5.1.
The ’enable fd ’ options enables CasADi to use finite differences, if analytical derivatives

are not available. To force CasADi to use finite differences, you can set ’enable forward’,
’ enable reverse ’ and ’enable jacobian’ to False/ false , corresponding to the three types of
analytical derivative information that CasADi works with.

The default method is central differences with a step size determined by estimates of
roundoff errors and truncation errors of the function. You can change the method by
setting the option ’fd method’ to ’forward’ (corresponding to first order forward differ-
ences), ’backward’ (corresponding to first order backward differences) and ’smoothing’
for a second-order accurate discontinuity avoiding scheme, suitable when derivatives need
to be calculated at the edges of a domain. Additional algorithmic options for the finite
differences are available by setting ’ fd options ’ option.

56 CHAPTER 6. USER-DEFINED FUNCTION OBJECTS

Chapter 7

The DaeBuilder class

The DaeBuilder class in CasADi is an auxiliary class intended to facilitate the modeling
complex dynamical systems for later use with optimal control algorithms. This class can
be seen as a low-level alternative to a physical modeling language such as Modelica (cf.
Section 7.3), while still being higher level than working directly with CasADi symbolic
expressions. Another important usage it to provide an interface to physical modeling
languages and software and be a building blocks for developing domain specific modeling
environments.

Using the DaeBuilder class consists of the following steps:

• Step-by-step constructing a structured system of differential-algebraic equations (DAE)
or, alternatively, importing an existing model from Modelica

• Symbolically reformulate the DAE

• Generate a chosen set of CasADi functions to be used for e.g. optimal control or C
code generation

In the following sections, we describe the mathematical formulation of the class and its
intended usage.

7.1 Mathematical formulation

The DaeBuilder class uses a relatively rich problem formulation that consists of a set of
input expressions and a set of output expressions, each defined by a string identifier. The
choice of expressions was inspired by the functional mock-up interface (FMI) version 2.0 1

Input expressions

’t’ Time t

1FMI development group. Functional Mock-up Interface for Model Exchange and Co-Simulation.
https://www.fmi-standard.org/, July 2014. Specification, FMI 2.0. Section 3.1, pp. 7172

57

https://www.fmi-standard.org/

58 CHAPTER 7. THE DAEBUILDER CLASS

’c’ Named constants c

’p’ Independent parameters p

’d’ Dependent parameters d, depends only on p and c and, acyclically, on other d

’x’ Differential state x, defined by an explicit ODE

’s’ Differential state s, defined by an implicit ODE

’sdot’ Time derivatives implicitly defined differential state ṡ

’z’ Algebraic variable, defined by an algebraic equation

’q’ Quadrature state q. A differential state that may not appear in the right-hand-side
and hence can be calculated by quadrature formulas.

’w’ Local variables w. Calculated from time and time dependent variables. They may
also depend, acyclically, on other w.

’y’ Output variables y

Output expressions

The above input expressions are used to define the following output expressions:

’ddef’ Explicit expression for calculating d

’wdef’ Explicit expression for calculating w

’ode’ The explicit ODE right-hand-side: ẋ = ode(t, w, x, s, z, u, p, d)

’dae’ The implicit ODE right-hand-side: dae(t, w, x, s, z, u, p, d, ṡ) = 0

’alg’ The algebraic equations: alg(t, w, x, s, z, u, p, d) = 0

’quad’ The quadrature equations: q̇ = quad(t, w, x, s, z, u, p, d)

’ydef’ Explicit expressions for calculating y

7.2 Constructing a DaeBuilder instance

Consider the following simple DAE corresponding to a controlled rocket subject to quadratic
air friction term and gravity, which loses mass as it uses up fuel:

ḣ = v, h(0) = 0 (7.1a)

v̇ = (u− a v2)/m− g, v(0) = 0 (7.1b)

ṁ = −b u2, m(0) = 1 (7.1c)

7.3. IMPORT OF OCPS FROM MODELICA 59

where the three states correspond to height, velocity and mass, respectively. u is the thrust
of the rocket and (a, b) are parameters.

To construct a DAE formulation for this problem, start with an empty DaeBuilder

instance and add the input and output expressions step-by-step as follows.

Python
dae = DaeBuilder ()
Add input e x p r e s s i o n s
a = dae . add p (’ a ’)
b = dae . add p (’b ’)
u = dae . add u (’u ’)
h = dae . add x (’h ’)
v = dae . add x (’ v ’)
m = dae . add x (’m’)
Add output e x p r e s s i o n s
hdot = v
vdot = (u−a∗v∗∗2)/m−g
mdot = −b∗u∗∗2
dae . add ode (’ hdot ’ , hdot)
dae . add ode (’ vdot ’ , vdot)
dae . add ode (’mdot ’ , mdot)
S p e c i f y i n i t i a l c o n d i t i o n s
dae . s e t s t a r t (’h ’ , 0)
dae . s e t s t a r t (’ v ’ , 0)
dae . s e t s t a r t (’m’ , 1)
Add meta in format ion
dae . s e t u n i t (’h ’ , ’m’)
dae . s e t u n i t (’ v ’ , ’m/ s ’)
dae . s e t u n i t (’m’ , ’ kg ’)

% MATLAB/ Octave
dae = DaeBuilder ;
% Add input e x p r e s s i o n s
a = dae . add p (’ a ’) ;
b = dae . add p (’b ’) ;
u = dae . add u (’u ’) ;
h = dae . add x (’h ’) ;
v = dae . add x (’ v ’) ;
m = dae . add x (’m’) ;
% Add output e x p r e s s i o n s
hdot = v ;
vdot = (u−a∗vˆ2)/m−g ;
mdot = −b∗u ˆ2 ;
dae . add ode (’ hdot ’ , hdot) ;
dae . add ode (’ vdot ’ , vdot) ;
dae . add ode (’mdot ’ , mdot) ;
% S p e c i f y i n i t i a l c o n d i t i o n s
dae . s e t s t a r t (’h ’ , 0) ;
dae . s e t s t a r t (’ v ’ , 0) ;
dae . s e t s t a r t (’m’ , 1) ;
% Add meta in format ion
dae . s e t u n i t (’h ’ , ’m’) ;
dae . s e t u n i t (’ v ’ , ’m/ s ’) ;
dae . s e t u n i t (’m’ , ’ kg ’) ;

Other input and output expressions can be added in an analogous way. For a full list
of functions, see the C++ API documentation for DaeBuilder.

7.3 Import of OCPs from Modelica

An alternative to model directly in CasADi, as above, is to use an advanced physical model-
ing language such as Modelica to specify the model. For this, CasADi offers interoperability
with the open-source JModelica.org compiler, which is written specifically with optimal
control in mind. Model import from JModelica.org is possible in two different ways; using
the JModelica.org’s CasadiInterface or via DaeBuilder’s parse fmi command.

We recommend the former approach, since it is being actively maintained and refer to
JModelica.org’s user guide for details on how to extract CasADi expressions.

In the following, we will outline the legacy approach, using parse fmi.

http://www.jmodelica.org/

60 CHAPTER 7. THE DAEBUILDER CLASS

Legacy import of a modelDescription.xml file

To see how to use the Modelica import, look at thermodynamics example.py in CasADi’s
example collection.

Assuming that the Modelica/Optimica model ModelicaClass.ModelicaModel is de-
fined in the files file1.mo and file2.mop, the Python compile command is:

from pymodelica import compile jmu
jmu name=compile jmu (’ Model icaClass . ModelicaModel ’ , \

[’ f i l e 1 .mo ’ , ’ f i l e 2 .mop ’] , ’ auto ’ , ’ ipopt ’ ,\
{ ’ g ene ra t e xml equat i ons ’ : True , ’ generate fmi me xml ’ : Fa l se })

This will generate a jmu-file, which is essentially a zip file containing, among other
things, the file modelDescription.xml. This XML-file contains a symbolic representation
of the optimal control problem and can be inspected in a standard XML editor.

from z i p f i l e import Z ipF i l e
s f i l e = Z ipF i l e (jmu name ’ , ’ r ’)
m f i l e = s f i l e . e x t r a c t (’ mode lDescr ipt ion . xml ’ , ’ . ’)

Once a modelDescription.xml file is available, it can be imported using the parse fmi
command:

dae = DaeBuilder ()
ocp . pa r s e fm i (’ mode lDescr ipt ion . xml ’)

7.4 Symbolic reformulation

One of the original purposes of the DaeBuilder class was to reformulate a fully-implicit
DAE, typically coming from Modelica, to a semi-explicit DAE that can be used more
readily in optimal control algorithms.

This can be done by the make implicit command:

Python
ocp . make exp l i c i t ()

% MATLAB/ Octave
ocp . make exp l i c i t () ;

Other useful commands available for an instance ocp of DaeBuilder include:

print ocp Print the optimal optimal control problem to screen

ocp.scale variables() Scale all variables using the nominal attribute for each variable

ocp.eliminate d() Eliminate all independent parameters from the symbolic expressions

For a more detailed description of this class and its functionalities, we again refer to
the API documentation.

https://github.com/casadi/casadi/blob/master/docs/examples/python/modelica/fritzson_application_examples/thermodynamics_example.py

7.5. FUNCTION FACTORY 61

7.5 Function factory

Once a DaeBuilder has been formulated and possibly reformulated to a satisfactory form,
we can generate CasADi functions corresponding to the input and output expressions out-
lined in Section 7.1. For example, to create a function for the ODE right-hand-side for the
rocket model in Section 7.2, simply provide a display name of the function being created,
a list of input expressions and a list of output expressions:

Python
f = dae . c r e a t e (’ f ’ ,\

[’ x ’ , ’ u ’ , ’ p ’] , [’ ode ’])

% MATLAB/ Octave
f = dae . c r e a t e (’ f ’ , . . .

{ ’ x ’ , ’ u ’ , ’ p ’ } ,{ ’ ode ’ }) ;

Using a naming convention, we can also create Jacobians, e.g. for the ’ode’ output with
respect to ’x’:

Python
f = dae . c r e a t e (’ f ’ ,\

[’ x ’ , ’ u ’ , ’ p ’] ,\
[’ j a c o d e x ’])

% MATLAB/ Octave
f = dae . c r e a t e (’ f ’ , . . .

{ ’ x ’ , ’ u ’ , ’ p ’ } ,
{ ’ j a c o d e x ’ }) ;

Functions with second order information can be extracted by first creating a named
linear combination of the output expressions using add lc and then requesting its Hessian:

Python
dae . add l c (’gamma ’ , [’ ode ’])
hes = dae . c r e a t e (’ hes ’ ,\

[’ x ’ , ’ u ’ , ’ p ’ , ’ lam ode ’] ,\
[’ hes gamma x x ’])

% MATLAB/ Octave
dae . add l c (’gamma ’ ,{ ’ ode ’ }) ;
hes = dae . c r e a t e (’ hes ’ , . . .
{ ’ x ’ , ’ u ’ , ’ p ’ , ’ lam ode ’ } , . . .
{ ’ hes gamma x x ’ }) ;

It is also possible to simply extract the symbolic expressions from the DaeBuilder

instance and manually create CasADi functions. For example, dae.x contains all the ex-
pressions corresponding to ’x’, dae.ode contains the expressions corresponding to ’ode’,
etc.

62 CHAPTER 7. THE DAEBUILDER CLASS

Chapter 8

Optimal control with CasADi

CasADi can be used to solve optimal control problems (OCP) using a variety of meth-
ods, including direct (a.k.a. discretize-then-optimize) and indirect (a.k.a. optimize-then-
discretize) methods, all-at-once (e.g. collocation) methods and shooting-methods requiring
embedded solvers of initial value problems in ODE or DAE. As a user, you are in general
expected to write your own OCP solver and CasADi aims as making this as easy as possible
by providing powerful high-level building blocks. Since you are writing the solver yourself
(rather than calling an existing “black-box” solver), a basic understanding of how to solve
OCPs is indispensable. Good, self-contained introductions to numerical optimal control
can be found in the recent textbooks by Biegler1 or Betts2 or Moritz Diehl’s lecture notes
on numerical optimal control.

8.1 A simple test problem

To illustrate some of the methods, we will consider the following test problem, namely
driving a Van der Pol oscillator to the origin, while trying to minimize a quadratic cost:

minimize:
x(·) ∈ R2, u(·) ∈ R

∫ T

t=0

(x2
0 + x2

1 + u2) dt

subject to:
ẋ0 = (1− x2

1)x0 − x1 + u
ẋ1 = x0

−1.0 ≤ u ≤ 1.0, x1 ≥ −0.25
for 0 ≤ t ≤ T

x0(0) = 0, x1(0) = 1,

(8.1)

with T = 10.

1Lorenz T. Biegler, Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Pro-
cesses, SIAM 2010

2John T. Betts, Practical Methods for Optimal Control Using Nonlinear Programming, SIAM 2001

63

http://homes.esat.kuleuven.be/~mdiehl/NUMOPT/numopt.pdf
http://books.google.es/books/about/Nonlinear_Programming.html?id=VdB1wJQu0sgC&redir_esc=y
http://books.google.es/books/about/Nonlinear_Programming.html?id=VdB1wJQu0sgC&redir_esc=y
http://books.google.es/books/about/Practical_Methods_for_Optimal_Control_Us.html?id=Yn53JcYAeaoC&redir_esc=y

64 CHAPTER 8. OPTIMAL CONTROL WITH CASADI

In CasADi’s examples collection3, you find codes for solving optimal control problems
using a variety of different methods.

In the following, we will discuss three of the most important methods, namely direct
single shooting, direct multiple shooting and direct collocation.

8.2 Direct single-shooting

In the direct single shooting method, the control trajectory is parameterized using some
piecewise smooth approximation, typically piecewise constant.

Using an explicit expression for the controls, we can then eliminate the whole state
trajectory from the optimization problem, ending up with an NLP in only the discretized
controls.

In CasADi’s examples collection, you will find the codes direct_single_shooting.py
and direct_single_shooting.m for Python and MATLAB/Octave, respectively. These
codes implement the direct single shooting method and solves it with IPOPT, relying on
CasADi to calculate derivatives. To obtain the discrete time dynamics from the continuous
time dynamics, a simple fixed-step Runge-Kutta 4 (RK4) integrator is implemented using
CasADi symbolics. Simple integrator codes like these are often useful in the context of
optimal control, but care must be taken so that they accurately solve the initial-value
problem.

The code also shows how the RK4 scheme can be replaced by a more advanced in-
tegrator, namely the CVODES integrator from the SUNDIALS suite, which implements
a variable stepsize, variable order backward differentiation formula (BDF) scheme. An
advanced integrator like this is useful for larger systems, systems with stiff dynamics, for
DAEs and for checking a simpler scheme for consistency.

8.3 Direct multiple-shooting

The direct_multiple_shooting.py and direct_multiple_shooting.m codes, also in
CasADi’s examples collection, implement the direct multiple shooting method. This is very
similar to the direct single shooting method, but includes the state at certain shooting nodes
as decision variables in the NLP and includes equality constraints to ensure continuity of
the trajectory.

The direct multiple shooting method is often superior to the direct single shooting
method, since ”lifting” the problem to a higher dimension is known to often improve
convergence. The user is also able to initialize with a known guess for the state trajectory.

The drawback is that the NLP solved gets much larger, although this is often compen-
sated by the fact that it is also much sparser.

3You can obtain this collection as an archive named examples pack.zip in CasADi’s download area

http://files.casadi.org

8.4. DIRECT COLLOCATION 65

8.4 Direct collocation

Finally, the direct_collocation.py and direct_collocation.m codes implement the
direct collocation method. In this case, a parameterization of the entire state trajectory,
as piecewise low-order polynomials, are included as decision variables in the NLP. This
removes the need for the formulation of the discrete time dynamics completely.

The NLP in direct collocation is even larger than that in direct multiple shooting, but
is also even sparser.

66 CHAPTER 8. OPTIMAL CONTROL WITH CASADI

Chapter 9

Opti stack

The Opti stack is a collection of CasADi helper classes that provides a close correspondence
between mathematical NLP notation, e.g.

minimize
x, y

(y − x2)2

subject to x2 + y2 = 1
x+ y ≥ 1

, (9.1)

and computer code:

Python
opt i = casad i . Opti ()

x = opt i . v a r i a b l e ()
y = opt i . v a r i a b l e ()

op t i . minimize ((y−x∗∗2)∗∗2)
opt i . s u b j e c t t o (x∗∗2+y∗∗2==1)
opt i . s u b j e c t t o (x+y>=1)

opt i . s o l v e r (’ ipopt ’)
s o l = opt i . s o l v e ()

s o l . va lue (x)
s o l . va lue (y)

% MATLAB/ Octave
opt i = casad i . Opti () ;

x = opt i . v a r i a b l e () ;
y = opt i . v a r i a b l e () ;

op t i . minimize ((y−xˆ2)ˆ2) ;
op t i . s u b j e c t t o (xˆ2+yˆ2==1) ;
op t i . s u b j e c t t o (x+y>=1) ;

op t i . s o l v e r (’ ipopt ’) ;
s o l = opt i . s o l v e () ;

s o l . va lue (x)
s o l . va lue (y)

The main characteristics of the Opti stack are:

• Allows natural syntax for constraints.

• Indexing/bookkeeping of decision variables is hidden.

• Closer mapping of numerical data-type to the host language: no encounter with DM.

67

68 CHAPTER 9. OPTI STACK

9.1 Problem specification

Variables Declare any amount of decision variables:

x = opti.variable (): scalar

x = opti.variable (5): column vector

x = opti.variable (5,3): matrix

x = opti.variable (5,5, ’symmetric’): symmetric matrix

The order in which you declare the variables is respected by the solver. Note that the
variables are in fact plain MX symbols. You may perform any CasADi MX operations on
them, e.g. embedding integrator calls.

Parameters Declare any amount of parameters. You must fix them to a specific numer-
ical value before solving, and you may overwrite this value at any time.

p = opt i . parameter ()
op t i . s e t v a l u e (p , 3)

Objective Declare an objective using an expression that may involve all variables or
parameters. Calling the command again discards the old objective.

op t i . minimize (s i n (x∗(y−p)))

Constraints Declare any amount of equality/inequality constraints:

opti . subject to(sqrt(x+y) >= 1): inequality

opti . subject to(sqrt(x+y) > 1): same as above

opti . subject to(1<= sqrt(x+y)): same as above

opti . subject to(5∗x+y==1): equality

You may also throw in several constraints at once:

Python
opt i . s u b j e c t t o ([x∗y>=1,x==3])

% MATLAB/ Octave
opt i . s u b j e c t t o ({x∗y>=1,x==3});

You may declare double inequalities:

9.1. PROBLEM SPECIFICATION 69

Python
opt i . s u b j e c t t o (op t i . bounded (0 , x , 1))

% MATLAB/ Octave
opt i . s u b j e c t t o (0<=x<=1) ;

When the bounds of the double inequalities are free of variables, the constraint will be
passed on efficiently to solvers that support them (notably IPOPT).

You may make element-wise (in)equalities with vectors:

x = opt i . v a r i a b l e (5 , 1)
op t i . s u b j e c t t o (x∗p<=3)

Elementwise (in)equalities for matrices are not supported with a natural syntax, since
there is an ambiguity with semi-definiteness constraints. The workaround is to vectorize
first:

Python
A = opt i . v a r i a b l e (5 , 5)
op t i . s u b j e c t t o (vec (A)<=3)

% MATLAB/ Octave
A = opt i . v a r i a b l e (5 , 5) ;
op t i . s u b j e c t t o (A(:)<=3) ;

Each subject to command adds to the set of constraints in the problem specification.
Use subject to() to empty this set and start over.

Solver You must always declare the solver (numerical back-end). An optional dictio-
nary of CasADi plugin options can be given as second argument. An optional dictionary
of solver options can be given as third argument.

Python
opt i . s o l v e r (” ipopt ”)
p opts = {”expand” : True}
s o p t s = {” max iter ” : 100}
opt i . s o l v e r (” ipopt ” , p opts ,

s o p t s)

% MATLAB/ Octave
opt i . s o l v e r (’ ipopt ’) ;
p opts = s t r u c t (’ expand ’ , t rue) ;
s o p t s = s t r u c t (’ max i ter ’ , 1 0 0) ;
op t i . s o l v e r (’ ipopt ’ , p opts ,

s o p t s) ;

Initial guess You may provide initial guesses for decision variables (or simple map-
pings of decision variables). When no initial guess is provided, numerical zero is assumed.

Python
opt i . s e t i n i t i a l (x , 2)
op t i . s e t i n i t i a l (10∗x [0] , 2)

% MATLAB/ Octave
opt i . s e t i n i t i a l (x , 2) ;
op t i . s e t i n i t i a l (10∗x (1) , 2)

70 CHAPTER 9. OPTI STACK

9.2 Problem solving and retrieving

Solving After setting up the problem, you may call the solve method, which constructs
a CasADi nlpsol and calls it.

s o l = opt i . s o l v e ()

The call will fail with an error if the solver fails to convergence. You may still inspect the
non-converged solution (see Section ’extra’).

You may call solve any number of times. You will always get an immutable copy of
the problem specification and its solution. Consecutively calling solve will not help the
convergence of the problem.

To warm start a solver, you need to explicitly transfer the solution of one problem to
the initial value of the next.

s o l 1 = opt i . s o l v e ()
op t i . s e t i n i t i a l (s o l 1 . v a l u e v a r i a b l e s ())
s o l 2 = opt i . s o l v e ()

In order to initialize the dual variables, e.g. when solving a set of similar optimization
problems, you can use the following syntax:

s o l = opt i . s o l v e ()
lam g0 = s o l . va lue (op t i . lam g)
opt i . s e t i n i t i a l (op t i . lam g , lam g0)

Numerical value at the solution Afterwards, you may retrieve the numerical values
of variables (or expressions of those variables) at the solution:

sol .value(x): value of a decision variable

sol .value(p): value of a parameter

sol .value(sin(x+p)): value of an expression

sol .value(jacobian(opti .g,opti .x)): value of constraint jacobian

Note that the return type of value is sparse when applicable.

Numerical value at other points You may pass a list of overruling assignment ex-
pressions to value. In the following code, we are asking for the value of the objective, using
all optimal values at the solution, except for y, which we set equal to 2. Note that such
statement does not modify the actual optimal value of y in a permanent way.

Python
s o l . va lue (obj , [y==2])

% MATLAB/ Octave
s o l . va lue (obj ,{ y==2})

A related usage pattern is to evaluate an expression at the initial guess:

9.3. EXTRAS 71

s o l . va lue (x∗∗2+y , s o l . i n i t i a l ())

Dual variables In order to obtain dual variables (Lagrange multipliers) of constraints,
make sure you save the constraint expression first:

con = s i n (x+y)>=1
opt i . s u b j e c t t o (con)
s o l = opt i . s o l v e ()
s o l . va lue (op t i . dual (con))

9.3 Extras

It may well happen that the solver does not find an optimal solution. In such cases, you
may still access the non-converged solution through debug mode:

op t i . debug . va lue (x)

Related, you may inspect the value of an expression, at the initial guess that you sup-
plied to the solver:

op t i . debug . va lue (x , op t i . i n i t i a l ())

In case the solver stops due to problem infeasibility, you may identify the problematic
constraints with:

op t i . debug . s h o w i n f e a s i b i l i t i e s ()

In case the solver reports NaN/Inf at a certain location, you may find out which con-
straint or variable is to blame by looking at its description:

op t i . debug . x d e s c r i b e (index)
opt i . debug . g d e s c r i b e (index)

You may specify a callback function; it will be called at each iteration of the solver,
with the current iteration number as argument. To plot the progress of the solver, you
may access the non-converged solution through debug mode:

Python
opt i . c a l l b a c k (lambda i : p l o t (op t i . debug . va lue (x)))

% MATLAB/ Octave
opt i . c a l l b a c k (@(i) plot (op t i . debug . va lue (x)))

The callback may be cleared from the Opti stack by calling the callback function without
arguments.

72 CHAPTER 9. OPTI STACK

Chapter 10

Difference in usage from different
languages

10.1 General usage

Python C++ MATLAB/Octave
Starting CasADi from casadi import * #include \

"casadi/casadi.hpp"

using namespace casadi;

import casadi.*

Printing object print(A) std::cout << A; disp(A)

Printing with type infor-
mation

A <ENTER> (interactive),
print(repr(A))

std::cout << repr(A); A <ENTER> (interactive),
disp(repr(A))

Get (extended) represen-
tation, more=false by de-
fault

A.str(more) str(A, more); str(A, more)

Calling a class function SX.zeros(3,4) SX::zeros(3,4) SX.zeros(3,4)

Creating a dictionary (e.g.
for options)

d = {’opt1’:opt1} or
d = {}; a[’opt1’] = opt1

a = Dict();

a[’opt1’] = opt1;

a = struct;

a.opt1 = opt1;

Creating a symbol MX.sym("x",2,2) MX::sym("x",2,2) MX.sym(’x’,2,2)

Creating a function Function("f",[x,y],[x+y]) Function("f",{x,y},{x+y}) Function(’f’,{x,y},{x+y})

Calling a function z=f(x,y) z = f({x,y}) z=f(x,y)

Create an NLP solver nlp = {"x":x,"f":f}

nlpsol("S","ipopt",nlp)

MXDict nlp = \

{{"x",x},{"f",f}};

nlpsol("S","ipopt",nlp);

nlp=struct(’x’,x,’f’,f);

nlpsol(’S’,’ipopt’,nlp);

10.2 List of operations

The following is a list of the most important operations. Operations that differ between
the different languages are marked with a star (*). This list is neither complete, nor does
it show all the variants of each operation. Further information is available in the API
documentation.

73

74 CHAPTER 10. DIFFERENCE IN USAGE FROM DIFFERENT LANGUAGES

Python C++ MATLAB/Octave
Addition, subtraction x+y, x-y, -x x+y, x-y, -x x+y, x-y, -x

*Elementwise multiplica-
tion, division

x*y, x/y x*y, x/y x.*y, x./y

Natural exponential func-
tion and logarithm

exp(x)

log(x)

exp(x)

log(x)

exp(x)

log(x)

*Exponentiation x**y pow(x,y) x^y or x.^y

Square root sqrt(x) sqrt(x) sqrt(x)

Trigonometric functions sin(x), cos(x), tan(x) sin(x), cos(x), tan(x) sin(x), cos(x), tan(x)

Inverse trigonometric asin(x), acos(x), ... asin(x), acos(x), ... asin(x), acos(x), ...

Two argument arctangent atan2(x, y) atan2(x, y) atan2(x, y)

Hyperbolic functions sinh(x), cosh(x), tanh(x) sinh(x), cosh(x), tanh(x) sinh(x), cosh(x), tanh(x)

Inverse hyperbolic asinh(x), acosh(x), ... asinh(x), acosh(x), ... asinh(x), acosh(x), ...

Inequalities a<b, a<=b, a>b, a>=b a<b, a<=b, a>b, a>=b a<b, a<=b, a>b, a>=b

*(Not) equal to a==b, a!=b a==b, a!=b a==b, a~=b

*Logical and logic_and(a, b) a && b a & b

*Logical or logic_or(a, b) a || b a | b

*Logical not logic_not(a) !a ~a

Round to integer floor(x), ceil(x) floor(x), ceil(x) floor(x), ceil(x)

*Modulus after division fmod(x, y) fmod(x, y) mod(x, y)

*Absolute value fabs(x) fabs(x) abs(x)

Sign function sign(x) sign(x) sign(x)

(Inverse) error function erf(x), erfinv(x) erf(x), erfinv(x) erf(x), erfinv(x)

*Elementwise min and max fmin(x, y), fmax(x, y) fmin(x, y), fmax(x, y) min(x, y), max(x, y)

Index of first nonzero find(x) find(x) find(x)

If-then-else if_else(c, x, y) if_else(c, x, y) if_else(c, x, y)

*Matrix multiplication mtimes(x,y) mtimes(x,y) mtimes(x,y) or x*y

*Transpose transpose(A) or A.T transpose(A) or A.T() transpose(A) or A’ or A.’

Inner product dot(x, y) dot(x, y) dot(x, y)

*Horizontal/vertical con-
catenation

horzcat(x, y)

vertcat(x, y)

horzcat(v) vertcat(v),
(v vector of matrices)

[x, y]

[x; y]

Horizontal/vertical split
(inverse of concatenation)

vertsplit(x),
horzsplit(x)

vertsplit(x),
horzsplit(x)

vertsplit(x),
horzsplit(x)

*Element access A[i,j] and A[i],
0-based

A(i,j) and A(i),
0-based

A(i,j) and A(i),
1-based

*Element assignment A[i,j] = b and A[i] = b,
0-based

A(i,j) = b and A(i) = b,
0-based

A(i,j) = b and A(i) = b,
1-based

*Nonzero access A.nz[k], 0-based A.nz(k), 0-based (currently unsupported)
*Nonzero assignment A.nz[k] = b, 0-based A.nz(k) = b, 0-based (currently unsupported)
Project to a different spar-
sity

project(x, s) project(x, s) project(x, s)

	Introduction
	What CasADi is and what it is not
	Help and support
	Citing CasADi
	Reading this document

	Obtaining and installing CasADi
	Symbolic framework
	The SX symbolics
	DM
	The MX symbolics
	Mixing SX and MX
	The Sparsity class
	Getting and setting elements in matrices

	Arithmetic operations
	Querying properties
	Linear algebra
	Calculus – algorithmic differentiation

	Function objects
	Calling function objects
	Converting MX to SX
	Nonlinear root-finding problems
	Initial-value problems and sensitivity analysis
	Creating integrators
	Sensitivity analysis

	Nonlinear programming
	Creating NLP solvers

	Quadratic programming
	High-level interface
	Low-level interface

	For-loop equivalents
	Map
	Fold

	Generating C-code
	Syntax for generating code
	Using the generated code
	API of the generated code

	User-defined function objects
	Subclassing FunctionInternal
	Subclassing Callback
	Importing a function with external
	Just-in-time compile a C language string
	Using lookup-tables
	1D lookup tables
	2D lookup tables

	Derivative calculation using finite differences

	The DaeBuilder class
	Mathematical formulation
	Constructing a DaeBuilder instance
	Import of OCPs from Modelica
	Symbolic reformulation
	Function factory

	Optimal control with CasADi
	A simple test problem
	Direct single-shooting
	Direct multiple-shooting
	Direct collocation

	Opti stack
	Problem specification
	Problem solving and retrieving
	Extras

	Difference in usage from different languages
	General usage
	List of operations

