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Abstract

Kinematic trajectories are used to move agents forward along
a predicted route frame. Here we describe two underlying
kinematic models based on bicycle models and how they’re
translated from cartesian into route coordinates.

1 Kinematic bicycle models

The commonly used simplification of a car is the rear-axle
centered bicycle model:
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Our vehicle model uses lateral accelleration (u1) and curva-
ture of the front-wheel turning (u2) as controls. The geometry
of the rear-axle centered model (left) can be described as

V̇ = u1 (1)

ẋ = V cos θ (2)

ẏ = V sin θ (3)

θ̇ = V
tan δ

l
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= V u2 (5)

Where (x, y) are the coordinates of the rear-axle and V the
velocity. Derivatives of x, y, and V are straightforward, and θ̇
can be found by observing that the rear-axle will travel by the
distance V dt along the circle which correponds to an angular
change of V dt

R = V u2dt.

dδ

R = 1
u2

= l
tan δ

dδ

V dt

Polack et al. [1] outline a similar model which is instead
centered somewhere on the middle of the vehicles axis (right

side of first figure). Here, the cartesian geometry can be de-
scribed using the slip-angle of the center-of-mass:
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V̇ = u1 (7)

ẋ = V cos(θ + β(u2)) (8)

ẏ = V sin(θ + β(u2)) (9)

θ̇ = V
sinβ(u2)
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By substituting u2 = tan δ
lr+lf

into β and simplifying using

trigonometric equations [2, 3] all calls to atan can be elim-
inated:
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2 Transformation to road-reference
coordinates

Route reference lines are composed of geometric primitives
that can be slices of either piecewise clothoid curves, circles,
or lines. Positions in the route frame are represented using
(s, ey)-coordinates corresponding to distance along the curve
and lateral offset. Vehicle orientation is specified using the
yaw θe with respect to the tangent of the reference line at
the s coordinate. A model of the rear-centered bicycle in
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this coordinate system can be defined by extending on the
cartesian set of equations where the x-axis is aligned with the
tangent of the curve (left side of figure). This ensures that ṡ
is proportional to ẋ, ėy to ẏ, and that θ = θe. An assumption
is made that for small steps the curve is well-approximated
by a circle with the same curvature, κ, as the curve.

V̇ = u1 (27)
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ėy = ẏ (30)
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θ̇e = θ̇ −∆θ (32)
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Equation 28 comes from interpreting the triangle spanned
by ẋ from the rear-axle to the center of the reference lines
curvature center (right side of above figure). The relationship
between ẋ and the full baseline roughly1 equals the relation-
ship between ṡ and the radius of the curvature-circle, −1/κ.
Rewriting we get:
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1More accurately, ṡ would be the extent along the circle arc, but this
introduces an expensive atan computation which we’d like to avoid.

The ∆θ term in Equation 33 is the compensation to θe
required to keep the same heading when stepping the distance
ṡ along the route frame. Like in the derivation of ṡ, this
term is determined by observing the curvature circle, but we
now assume that at small values, ṡ divided by the full base-
line roughly2 equals the angular change around the curvature
center.

The transformation from rear-axle centered vehicle to CoM
can be performed by substituting Equations 15, 20, and 25
into 28, 30, and 34.

V̇ = u1 (40)

ṡ = V ψω (cos(θe)− sin(θe)u2lr) (41)

ėy = V ψ (sin(θe) + cos(θe)u2lr) (42)

θ̇e = V ψ (u2 − κω (cos(θe)− sin(θe)u2lr)) (43)

where, to summarize
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