
1

On Testing GPU Memory for Hard and Soft Errors

Guochun Shi, Jeremy Enos, Michael Showerman, Volodymyr Kindratenko

National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign

Urbana, IL, USA

e-mail: {gshi|jenos|mshow|kindr}@ncsa.illinois.edu

Abstract—NVIDIA GPUs are becoming increasingly popular

in scientific computation as a way to accelerate the execution of

computationally demanding codes. The graphics memory used

in GPUs is not protected against soft errors that may be caused

by cosmic radiation and thus is a source of concern for the

scientific computing community. In this short paper we report

on an attempt to test GPU memory for both permanent

memory errors due to manufacturing defects and prolonged

use and soft errors due to single radiation events. We present

a new GPU memory test methodology and show results of

error measurements on two large GPU clusters.

Keywords-GPU, memory test

I. INTRODUCTION

Modern high-performance computers (HPCs) are built
from highly reliable components that are generally
guaranteed not to corrupt data during normal operation.
Prior to production deployment, HPC systems are rigorously
tested by the manufacturers to eliminate defective
components. In addition, various error detection and
correction schemas are implemented directly in hardware to
ensure data integrity during the normal operation of the
equipment. Users of HPC systems expect that the computed
results are correct and are not subject to errors due to
hardware faults. Consequently, the HPC community is very
reluctant to accept any new technology that does not
guarantee data integrity.

Not surprisingly, one of the arguments against using
graphics processing units (GPUs) in scientific computing is
based on the fact that the Graphics Double Data Rate 3
(GDDR3) memory chips used in GPU cards are not
protected against “soft errors.” Even though Compute
Unified Device Architecture (CUDA) GPUs from NVIDIA
deliver performance levels far exceeding those attainable on
modern multi-core CPUs, the scientific computing
community remains skeptical and cautious when it comes to
using GPUs in production runs.

Since NCSA deployed two large GPU clusters for use by
the scientific computing community, we thought to
investigate how reliable the GPU memory is in practice. In
our GPU memory tests we consider both manufacturing
defects and susceptibility to “soft errors.” This is still an
ongoing work and in this paper we report on the
methodology used to test GPU memory and our initial

findings based on testing over 500 NVIDIA Tesla GPUs.

II. NVIDIA GPU MEMORY SYSTEM

This work is based on the NVIDIA Tesla GPU product
line that is specifically designed for use in general purpose
computing. C1060 Computing Processor and S1070 1U
GPU Computing Server are the latest products based on
NVIDIA‟s T10 GPU chip that are widely used in HPC
systems. Both products use 32 pieces 32M × 32 GDDR3
136-pin ball grid array (BGA) mounted synchronous
dynamic random access memory (SDRAM), or 4 GB of
memory per GPU. The memory operates at 800 MHz and is
connected to the GPU via a 512-bit memory interface that
provides over 102 GB/s memory bandwidth.

III. GPU MEMORY TEST METHODOLOGY

We consider two classes of errors in GPU memory chips:
i) permanent hardware errors due to manufacturing defects
and as a result of prolonged use, and ii) transient, or soft
errors that are induced by cosmic radiation.

A. Detecting permanent errors

Permanent memory errors can manifest themselves in a
number of ways and under varying conditions [1], and thus
require a comprehensive test suite. We adapted test
methodology used in Memtest86 utility [5] modified for
GPU device memory. The main idea is to write a test pattern
to memory, read it back and verify if it is the same as what
was written. To realize this idea, we implemented separate
GPU kernels in CUDA C that execute the basic functions
listed above and can be used to assemble tests consisting of
sequences of basic operations using different test patterns.

The GPU kernels are executed on a grid of Nx1x1 thread
blocks, with only 1 thread per each thread block. When
launched, each kernel works with N MBs of GPU memory,
one MB per thread. To test the entire M MB of GPU
memory, we run M/N kernels with different initial memory
addresses. In our tests M=4,037 MB and N=128 MB.

The GPU memory test program starts by allocating all
allocatable GPU memory (M MB) and launching a sequence
of individual tests. Within the kernels that verify values
stored in the GPU memory, when the expected values are not
the same as the values stored in memory, the error counter is
incremented and the error address, current and expected
values, and other useful information are saved. When the

2

GPU kernel exits, the error information is pulled out to the
CPU memory and is logged in an error file.

The ten memory tests are similar to those used in the
Memtest86 utility, with adjustments made for the GPU
execution. Table I provides information about these tests.
Figure 1 gives an example of the moving inversion with 8-bit
pattern test (test #3 in Table I), and Figure 2 shows the GPU
implementation of one of the three kernels used in the test.

void move_inv_test(char* ptr, unsigned int tot_num_blocks, unsigned int
p1, unsigned p2) {
 unsigned int i;
 char* end_ptr = ptr + tot_num_blocks* BLOCKSIZE;
 for (i= 0;i < tot_num_blocks; i+= GRIDSIZE) {
 dim3 grid; grid.x= GRIDSIZE;
 _move_inv_write<<<grid, 1>>>(ptr + i*BLOCKSIZE, end_ptr, p1);
 }
 for (i=0;i < tot_num_blocks; i+= GRIDSIZE) {
 dim3 grid; grid.x= GRIDSIZE;
 _move_inv_readwrite<<<grid, 1>>>(ptr + i*BLOCKSIZE, end_ptr,
p1, p2, err_count, err_addr, err_expect, err_current);
 error_checking("move_inv_readwrite", i);
 }
 for (i=0;i < tot_num_blocks; i+= GRIDSIZE) {
 dim3 grid; grid.x= GRIDSIZE;
 _move_inv_read<<<grid, 1>>>(ptr + i*BLOCKSIZE, end_ptr, p2,
err_count, err_addr, err_expect, err_current);
 error_checking("move_inv_read", i);
 }
}

Figure 1. Host side of the moving inversion with 8-bit pattern test.

__global__ void _move_inv_readwrite(char* _ptr, char* end_ptr, unsigned
int p1, unsigned int p2, unsigned int* err, unsigned long* err_addr, unsigned
long* err_expect, unsigned long* err_current) {
 unsigned int i;
 unsigned int* ptr = (unsigned int*) (_ptr + blockIdx.x*BLOCKSIZE);
 if (ptr >= (unsigned int*) end_ptr) return;
 for (i = 0;i < BLOCKSIZE/sizeof(unsigned int); i++) {
 if (ptr[i] != p1) { RECORD_ERR(err, i, p1, ptr[i]); }
 ptr[i] = p2;
 }
 return;
}

Figure 2. Read-test-write GPU kernel used in the moving inversion test.

B. Detecting soft errors

A single radiation event can cause a data bit stored in
memory to be corrupted until new data is written to the
memory, manifesting itself as a soft error. The predominant
source of such single radiation events is cosmic rays [3].
The rate at which soft errors occur is measured in the number
of failures in time (FIT); 1 FIT equals 1 soft error per billion
hours of device operation. This rate is also sometimes
reported as FIT per Mbit.

Soft memory errors occur mostly during memory access,
so the error rate rises with the intensity of memory use [4].
Thus, some of the tests described in the previous section, if
run long enough, can be used to detect soft errors as well. In
particular, the moving inversion with shifted pattern test (#6)
is a good candidate, as it writes to memory and reads from it
continuously for a prolonged period of time. However, the
tests designed for hardware error detection do not stress the
memory system enough, thus not maximizing the chances of

catching many soft errors. Therefore, we implemented a
GPU kernel (test #10 in Table I) that launches a large
number of threads that access the memory simultaneously. It
reads the test pattern previously stored in the GPU memory,
checks it against the expected value, and writes its
complement back to the memory. If an error is found, it
reads from the affected memory one more time and reports
the two read values. The test patterns are random numbers.
The kernel is launched in an infinite loop and uses the same
test pattern 1,000 times before moving to a new test pattern.

TABLE I. IMPLEMENTED GPU MEMORY TESTS

Test Test pattern Purpose

0: walking ones walking ones address bus test

1: own address own physical address address bus test

2: moving inversion moving inversions
(ones and zeros)

stuck-at faults
errors

3: moving inversion
with 8-bit pattern

moving inversions (8-
bit pattern)

stuck-at faults
errors

4: moving inversion
with random pattern

moving inversions
(random pattern)

data sensitive
errors

5: block move test block move, 64
moves

data sensitive
errors

6: moving inversion
with shifted pattern

moving inversions,
32-bit pat

data sensitive
errors

7: random numbers
sequence

random values and
their compliments

data sensitive
errors

8: modulo 20
random pattern

modulo 20, ones and
zeros

data sensitive
errors

9: bit fade test 0xFFFFFFFF data retention test

10: soft errors test random values soft errors

IV. EXPERIMENTAL RESULTS

For our experiments, we used two clusters with NVIDIA
Tesla S1070 GPU accelerators attached. AC, which is an
extension of QP cluster [8], is an AMD based research
cluster with 32 nodes and four GPUs per node. Lincoln is an
Intel-based production cluster with 192 nodes and two GPUs
per node (96 Teslas, each shared between two nodes).

We envision the GPU memory test as a utility that is used
continuously for monitoring the system for the appearance of
new hardware faults and for collecting statistics about the
rate of soft errors. To accomplish this goal, on AC we ran
the GPU memory test during all the time available on the
system that would otherwise be idle. To facilitate this, the
batch system and scheduler (Torque and Moab, respectively)
are configured to allow for preemptible jobs. By default, any
job submitted would be a preemptor. The GPU memory test
jobs are submitted with the preemptee flag, allowing regular
job submission to cause them to be canceled and restarted
when resources were available. A separate memtest job is
created for each node, specifically targeted to that node. In
the event of error detection, the job emails notification and
continues testing.

On Lincoln, we run the GPU memory test as a regular
job for a period of time sufficient to run through all the tests
for detecting hardware faults. We have not yet attempted to
collect statistics about soft errors on Lincoln.

A. Soft errors

3

Modern memory devices are believed to have a 1,000 to
5,000 FIT per Mbit error rate, or about one bit error per
month per gigabyte of memory [2], and thus we should
expect to see error rates at the order of tens of millions FIT
per Mbit, or 4 bit errors per GPU card per month of
continuous operation. We conducted two independent runs
of the soft error memory test (test #10): i) combined 7,222
hours of operation per ~4 GB of memory while running the
test on AC cluster nodes when not in use during a 15-day
period, and ii) combined 10,080 hours of operation per ~4
GB of memory running the test on 15 AC cluster nodes
solely dedicated to this test. Neither of these tests, however,
detected any soft errors. This indicates that either our test
methodology is not correct, or the soft errors are much less
frequent than other studies have indicated.

B. Permanent errors

A single pass through the GPU memory tests for
detecting permanent hardware faults (tests #0-9) requires
almost three and a half hours to execute all 10 tests. The bit
fade test (#9) is the most time-consuming at three hours.
Since it is only designed to catch errors due to the data
retention issues over long periods of time, we do not run it as
part of the routine test. All other tests combined are
responsible for 27.8 minutes; the moving inversion with
shifted pattern test (#6) is responsible for the majority of the
time at about 23.5 minutes. After tests #0-8 are done, we also
run test #10, which turned out to be instrumental in finding
some sudden hardware errors, as described later. Once a
node with memory error is found, we reboot the node and
perform the same tests to confirm our findings.

We were able to identify 4 GPU cards out of 128 on AC
cluster and 5 GPU cards out of 378 tested on Lincoln cluster
with faulty memory that we were able to consistently
reproduce using our test methodology. Here we list errors
found on the AC cluster:

 Node 3, GPU 3: Tests 1, 5-8, and 10 fail within minutes of
starting the tests, reporting many errors for different
memory addresses.

 Node 5, GPU 1: Tests 6 and 10 fail a few times per a 24-
hour period. Errors are detected on different memory
addresses. Test 10 reports single bit flips that would be
characteristic of soft errors. However, in light of no other
GPU nodes on the same Tesla unit reporting similar errors,
we do not think these are soft errors.

 Node 25, GPU 1: Tests 6 and 10 fail within few hours.
Errors are detected on different memory addresses. In
contrast to the previous node, test 10 reports errors that are
not characteristic of soft errors. Test 10 writes a random
value to memory and then reads it back twice. The value
returned on the first read has one random bit flipped, but
the value returned on the second read is correct.

 Node 28, GPU 1: Tests 1-4, 6, and 10 report a single-bit
flip error within a few hours of running, coming from the
same memory address (0xe7fbc990). The error appears to
be that a single bit (bit # 6) is stuck at „1.‟

While working on this paper, we discovered similar GPU
memory test software under development at Stanford, called
MemtestG80 [7]. Using the Stanford code, we were able to

confirm memory errors on 3 out of 4 nodes; we were not
able to confirm errors on Node 5, GPU 1.

NVIDIA confirmed that some Tesla units that were in
our clusters were not properly tested with the manufacturing
tests and thus could have had bad memory.

Since some of the tests use randomly generated test
patterns, there is a danger that a test pattern that can trigger
an erroneous response may not occur in a given test run. We
noticed, however, that when an error is detected it is
repeatable at a frequency between every three minutes up to
20 hours at most. It is noteworthy that different GPUs had
errors show up with different tests, but any given GPU failed
consistently within the same test. Also, no test would
necessarily fail on its first pass.

V. CONCLUSIONS AND FUTURE WORK

We have implemented a comprehensive set of tests for
checking the GPU memory for permanent hardware errors
and are refining our methodology and software tools for
monitoring the rate of transient soft errors. In two large
NVIDIA GPU installations at NCSA we have yet to see any
soft errors, but 1.8% of tested GPUs turned out to have
permanent memory errors. Our tests found the failures on
systems that should not have been shipped to customers if
the manufacturing tests were run properly. NVIDIA has
since corrected the problem. But even with 1.8% of systems
confirmed to have memory issues, the memory failure rate is
below of what has been reported on non-GPU clusters, e.g.,
Li et al. [6] discovered hardware memory faults on 9 out of
212 (or 4.5%) Ask.com servers.

The GPU memory test code is available for download
from http://sourceforge.net/projects/cudagpumemtest/.

ACKNOWLEDGMENT

This work is in part sponsored by the Institute for
Advanced Computing Applications and Technologies. Some
of the GPUs used in this study are available due to a
generous donation of hardware from NVIDIA. Special
thanks to NCSA‟s Jim Long for running tests on Lincoln
cluster and Trish Barker for help in preparing this article.

REFERENCES

[1] R. Dean Adams, High Performace Memory Testing: Design
Principles, Fault Modeling and Self-Test, Kluwer: Boston, 2003.

[2] Tezzaron Semiconductor, Soft errors in electronic memory. White
paper, 2004. http://www.tezzaron.com/about /papers/papers.html.

[3] R. Baumann, Soft errors in advanced computer systems, IEEE Design
& Test of Computers, vol. 22, no. 3, pp. 258–266, 2005.

[4] A. Johnston, Scaling and Technology Issues for Soft Error Rates, In
Proc. Fourth Ann. Research Conference on Reliability, 2000.

[5] Memtest86 Memory Diagnostic Utility, http://www.memtest86.com

[6] X. Li, K. Shen, M. Huang, A Memory Soft Error Measurement on
Production Systems, In Proc. USENIX Annual Technical Conference,
2007.

[7] MemtestG80: A Memory and Logic Tester for NVIDIA CUDA-
enabled GPUs, https://simtk.org/home/memtest/

[8] M. Showerman, J. Enos, A. Pant, V. Kindratenko, C. Steffen, R.
Pennington, W. Hwu, QP: A Heterogeneous Multi-Accelerator
Cluster, In Proc. 10th LCI International Conference on High-
Performance Clustered Computing, 2009

