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Abstract—NVIDIA GPUs are becoming increasingly popular 

in scientific computation as a way to accelerate the execution of 

computationally demanding codes.  The graphics memory used 

in GPUs is not protected against soft errors that may be caused 

by cosmic radiation and thus is a source of concern for the 

scientific computing community.  In this short paper we report 

on an attempt to test GPU memory for both permanent 

memory errors due to manufacturing defects and prolonged 

use and soft errors due to single radiation events.  We present 

a new GPU memory test methodology and show results of 

error measurements on two large GPU clusters. 
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I.  INTRODUCTION 

Modern high-performance computers (HPCs) are built 
from highly reliable components that are generally 
guaranteed not to corrupt data during normal operation.  
Prior to production deployment, HPC systems are rigorously 
tested by the manufacturers to eliminate defective 
components.  In addition, various error detection and 
correction schemas are implemented directly in hardware to 
ensure data integrity during the normal operation of the 
equipment.  Users of HPC systems expect that the computed 
results are correct and are not subject to errors due to 
hardware faults.  Consequently, the HPC community is very 
reluctant to accept any new technology that does not 
guarantee data integrity. 

Not surprisingly, one of the arguments against using 
graphics processing units (GPUs) in scientific computing is 
based on the fact that the Graphics Double Data Rate 3 
(GDDR3) memory chips used in GPU cards are not 
protected against “soft errors.”  Even though Compute 
Unified Device Architecture (CUDA) GPUs from NVIDIA 
deliver performance levels far exceeding those attainable on 
modern multi-core CPUs, the scientific computing 
community remains skeptical and cautious when it comes to 
using GPUs in production runs. 

Since NCSA deployed two large GPU clusters for use by 
the scientific computing community, we thought to 
investigate how reliable the GPU memory is in practice.  In 
our GPU memory tests we consider both manufacturing 
defects and susceptibility to “soft errors.”  This is still an 
ongoing work and in this paper we report on the 
methodology used to test GPU memory and our initial 

findings based on testing over 500 NVIDIA Tesla GPUs. 

II. NVIDIA GPU MEMORY SYSTEM 

This work is based on the NVIDIA Tesla GPU product 
line that is specifically designed for use in general purpose 
computing.  C1060 Computing Processor and S1070 1U 
GPU Computing Server are the latest products based on 
NVIDIA‟s T10 GPU chip that are widely used in HPC 
systems.  Both products use 32 pieces 32M × 32 GDDR3 
136-pin ball grid array (BGA) mounted synchronous 
dynamic random access memory (SDRAM), or 4 GB of 
memory per GPU.  The memory operates at 800 MHz and is 
connected to the GPU via a 512-bit memory interface that 
provides over 102 GB/s memory bandwidth. 

III. GPU MEMORY TEST METHODOLOGY 

We consider two classes of errors in GPU memory chips: 
i) permanent hardware errors due to manufacturing defects 
and as a result of prolonged use, and ii) transient, or soft 
errors that are induced by cosmic radiation. 

A. Detecting permanent errors 

Permanent memory errors can manifest themselves in a 
number of ways and under varying conditions [1], and thus 
require a comprehensive test suite.  We adapted test 
methodology used in Memtest86 utility [5] modified for 
GPU device memory.  The main idea is to write a test pattern 
to memory, read it back and verify if it is the same as what 
was written.  To realize this idea, we implemented separate 
GPU kernels in CUDA C that execute the basic functions 
listed above and can be used to assemble tests consisting of 
sequences of basic operations using different test patterns. 

The GPU kernels are executed on a grid of Nx1x1 thread 
blocks, with only 1 thread per each thread block. When 
launched, each kernel works with N MBs of GPU memory, 
one MB per thread.  To test the entire M MB of GPU 
memory, we run M/N kernels with different initial memory 
addresses.  In our tests M=4,037 MB and N=128 MB. 

The GPU memory test program starts by allocating all 
allocatable GPU memory (M MB) and launching a sequence 
of individual tests.  Within the kernels that verify values 
stored in the GPU memory, when the expected values are not 
the same as the values stored in memory, the error counter is 
incremented and the error address, current and expected 
values, and other useful information are saved. When the 
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GPU kernel exits, the error information is pulled out to the 
CPU memory and is logged in an error file. 

The ten memory tests are similar to those used in the 
Memtest86 utility, with adjustments made for the GPU 
execution.  Table I provides information about these tests.  
Figure 1 gives an example of the moving inversion with 8-bit 
pattern test (test #3 in Table I), and Figure 2 shows the GPU 
implementation of one of the three kernels used in the test. 

 
void move_inv_test(char* ptr, unsigned int tot_num_blocks, unsigned int 
p1, unsigned p2) { 
    unsigned int i; 
    char* end_ptr = ptr + tot_num_blocks* BLOCKSIZE; 
    for (i= 0;i < tot_num_blocks; i+= GRIDSIZE) { 
        dim3 grid;  grid.x= GRIDSIZE; 
        _move_inv_write<<<grid, 1>>>(ptr + i*BLOCKSIZE, end_ptr, p1); 
    } 
    for (i=0;i < tot_num_blocks; i+= GRIDSIZE) { 
        dim3 grid;  grid.x= GRIDSIZE; 
        _move_inv_readwrite<<<grid, 1>>>(ptr + i*BLOCKSIZE, end_ptr, 
p1, p2, err_count, err_addr, err_expect, err_current); 
        error_checking("move_inv_readwrite",  i); 
    } 
    for (i=0;i < tot_num_blocks; i+= GRIDSIZE) { 
        dim3 grid;  grid.x= GRIDSIZE; 
        _move_inv_read<<<grid, 1>>>(ptr + i*BLOCKSIZE, end_ptr, p2, 
err_count, err_addr, err_expect, err_current); 
        error_checking("move_inv_read",  i);  
    } 
} 

Figure 1.  Host side of the moving inversion with 8-bit pattern test. 

__global__ void _move_inv_readwrite(char* _ptr, char* end_ptr, unsigned 
int p1, unsigned int p2, unsigned int* err, unsigned long* err_addr, unsigned 
long* err_expect, unsigned long* err_current) { 
    unsigned int i; 
    unsigned int* ptr = (unsigned int*) (_ptr + blockIdx.x*BLOCKSIZE); 
    if (ptr >= (unsigned int*) end_ptr) return; 
    for (i = 0;i < BLOCKSIZE/sizeof(unsigned int); i++) { 
        if (ptr[i] != p1) { RECORD_ERR(err, i, p1, ptr[i]); } 
        ptr[i] = p2; 
    } 
    return; 
} 

Figure 2.  Read-test-write GPU kernel used in the moving inversion test. 

B. Detecting soft errors 

A single radiation event can cause a data bit stored in 
memory to be corrupted until new data is written to the 
memory, manifesting itself as a soft error.  The predominant 
source of such single radiation events is cosmic rays [3].  
The rate at which soft errors occur is measured in the number 
of failures in time (FIT); 1 FIT equals 1 soft error per billion 
hours of device operation.  This rate is also sometimes 
reported as FIT per Mbit. 

Soft memory errors occur mostly during memory access, 
so the error rate rises with the intensity of memory use [4].  
Thus, some of the tests described in the previous section, if 
run long enough, can be used to detect soft errors as well.  In 
particular, the moving inversion with shifted pattern test (#6) 
is a good candidate, as it writes to memory and reads from it 
continuously for a prolonged period of time.  However, the 
tests designed for hardware error detection do not stress the 
memory system enough, thus not maximizing the chances of 

catching many soft errors.  Therefore, we implemented a 
GPU kernel (test #10 in Table I) that launches a large 
number of threads that access the memory simultaneously.  It 
reads the test pattern previously stored in the GPU memory, 
checks it against the expected value, and writes its 
complement back to the memory.  If an error is found, it 
reads from the affected memory one more time and reports 
the two read values. The test patterns are random numbers.  
The kernel is launched in an infinite loop and uses the same 
test pattern 1,000 times before moving to a new test pattern. 

TABLE I.  IMPLEMENTED GPU MEMORY TESTS 

Test Test pattern Purpose 

0: walking ones walking ones address bus test 

1: own address own physical address address bus test 

2: moving inversion moving inversions 
(ones and zeros) 

stuck-at faults 
errors 

3: moving inversion 
with 8-bit pattern 

moving inversions (8-
bit pattern) 

stuck-at faults 
errors 

4: moving inversion 
with random pattern 

moving inversions 
(random pattern) 

data sensitive 
errors 

5: block move test block move, 64 
moves 

data sensitive 
errors 

6: moving inversion 
with shifted pattern  

moving inversions, 
32-bit pat 

data sensitive 
errors 

7: random numbers 
sequence 

random values and 
their compliments 

data sensitive 
errors 

8: modulo 20 
random pattern 

modulo 20, ones and 
zeros 

data sensitive 
errors 

9: bit fade test 0xFFFFFFFF  data retention test 

10: soft errors test random values soft errors 

IV. EXPERIMENTAL RESULTS 

For our experiments, we used two clusters with NVIDIA 
Tesla S1070 GPU accelerators attached.  AC, which is an 
extension of QP cluster [8], is an AMD based research 
cluster with 32 nodes and four GPUs per node.  Lincoln is an 
Intel-based production cluster with 192 nodes and two GPUs 
per node (96 Teslas, each shared between two nodes). 

We envision the GPU memory test as a utility that is used 
continuously for monitoring the system for the appearance of 
new hardware faults and for collecting statistics about the 
rate of soft errors.  To accomplish this goal, on AC we ran 
the GPU memory test during all the time available on the 
system that would otherwise be idle.  To facilitate this, the 
batch system and scheduler (Torque and Moab, respectively) 
are configured to allow for preemptible jobs.  By default, any 
job submitted would be a preemptor.  The GPU memory test 
jobs are submitted with the preemptee flag, allowing regular 
job submission to cause them to be canceled and restarted 
when resources were available.  A separate memtest job is 
created for each node, specifically targeted to that node.  In 
the event of error detection, the job emails notification and 
continues testing. 

On Lincoln, we run the GPU memory test as a regular 
job for a period of time sufficient to run through all the tests 
for detecting hardware faults.  We have not yet attempted to 
collect statistics about soft errors on Lincoln. 

A. Soft errors 
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Modern memory devices are believed to have a 1,000 to 
5,000 FIT per Mbit error rate, or about one bit error per 
month per gigabyte of memory [2], and thus we should 
expect to see error rates at the order of tens of millions FIT 
per Mbit, or 4 bit errors per GPU card per month of 
continuous operation.  We conducted two independent runs 
of the soft error memory test (test #10): i) combined 7,222 
hours of operation per ~4 GB of memory while running the 
test on AC cluster nodes when not in use during a 15-day 
period, and ii) combined 10,080 hours of operation per ~4 
GB of memory running the test on 15 AC cluster nodes 
solely dedicated to this test.  Neither of these tests, however, 
detected any soft errors.  This indicates that either our test 
methodology is not correct, or the soft errors are much less 
frequent than other studies have indicated. 

B. Permanent errors 

A single pass through the GPU memory tests for 
detecting permanent hardware faults (tests #0-9) requires 
almost three and a half hours to execute all 10 tests.  The bit 
fade test (#9) is the most time-consuming at three hours.  
Since it is only designed to catch errors due to the data 
retention issues over long periods of time, we do not run it as 
part of the routine test.  All other tests combined are 
responsible for 27.8 minutes; the moving inversion with 
shifted pattern test (#6) is responsible for the majority of the 
time at about 23.5 minutes. After tests #0-8 are done, we also 
run test #10, which turned out to be instrumental in finding 
some sudden hardware errors, as described later. Once a 
node with memory error is found, we reboot the node and 
perform the same tests to confirm our findings. 

We were able to identify 4 GPU cards out of 128 on AC 
cluster and 5 GPU cards out of 378 tested on Lincoln cluster 
with faulty memory that we were able to consistently 
reproduce using our test methodology.  Here we list errors 
found on the AC cluster: 

 Node 3, GPU 3: Tests 1, 5-8, and 10 fail within minutes of 
starting the tests, reporting many errors for different 
memory addresses. 

 Node 5, GPU 1: Tests 6 and 10 fail a few times per a 24-
hour period.  Errors are detected on different memory 
addresses.  Test 10 reports single bit flips that would be 
characteristic of soft errors.  However, in light of no other 
GPU nodes on the same Tesla unit reporting similar errors, 
we do not think these are soft errors. 

 Node 25, GPU 1: Tests 6 and 10 fail within few hours.  
Errors are detected on different memory addresses.  In 
contrast to the previous node, test 10 reports errors that are 
not characteristic of soft errors.  Test 10 writes a random 
value to memory and then reads it back twice.  The value 
returned on the first read has one random bit flipped, but 
the value returned on the second read is correct. 

 Node 28, GPU 1: Tests 1-4, 6, and 10 report a single-bit 
flip error within a few hours of running, coming from the 
same memory address (0xe7fbc990).  The error appears to 
be that a single bit (bit # 6) is stuck at „1.‟  

While working on this paper, we discovered similar GPU 
memory test software under development at Stanford, called 
MemtestG80 [7].  Using the Stanford code, we were able to 

confirm memory errors on 3 out of 4 nodes; we were not 
able to confirm errors on Node 5, GPU 1. 

NVIDIA confirmed that some Tesla units that were in 
our clusters were not properly tested with the manufacturing 
tests and thus could have had bad memory. 

Since some of the tests use randomly generated test 
patterns, there is a danger that a test pattern that can trigger 
an erroneous response may not occur in a given test run.  We 
noticed, however, that when an error is detected it is 
repeatable at a frequency between every three minutes up to 
20 hours at most.  It is noteworthy that different GPUs had 
errors show up with different tests, but any given GPU failed 
consistently within the same test.  Also, no test would 
necessarily fail on its first pass. 

V. CONCLUSIONS AND FUTURE WORK 

We have implemented a comprehensive set of tests for 
checking the GPU memory for permanent hardware errors 
and are refining our methodology and software tools for 
monitoring the rate of transient soft errors.  In two large 
NVIDIA GPU installations at NCSA we have yet to see any 
soft errors, but 1.8% of tested GPUs turned out to have 
permanent memory errors.  Our tests found the failures on 
systems that should not have been shipped to customers if 
the manufacturing tests were run properly.  NVIDIA has 
since corrected the problem.  But even with 1.8% of systems 
confirmed to have memory issues, the memory failure rate is 
below of what has been reported on non-GPU clusters, e.g., 
Li et al. [6] discovered hardware memory faults on 9 out of 
212 (or 4.5%) Ask.com servers. 

The GPU memory test code is available for download 
from http://sourceforge.net/projects/cudagpumemtest/. 
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