
Curvature-controlled Curve Editing
using Piecewise Clothoid Curves

Sven Havemanna, Johannes Edelsbrunnera, Philipp Wagnera, Dieter Fellnera,b

aInstitut für ComputerGraphik&WissensVisualisierung (CGV), TU Graz, Austria
bTU Darmstadt& Fraunhofer IGD, Germany

Abstract

Two-dimensional curves are conventionally designed usingsplines or Bézier curves. Although formally they are C2

or higher, the variation of the curvature of (piecewise) polynomial curves is difficult to control; in some cases it is
practically impossible to obtain the desired curvature. Asan alternative we propose piecewise clothoid curves (PCCs).
We show that from the design point of view they have many advantages: control points are interpolated, curvature
extrema lie in the control points, and adding control pointsdoes not change the curve. We present a fast localized
clothoid interpolation algorithm that can also be used for curvature smoothing, for curve fitting, for curvature blending,
and even for directly editing the curvature. We give a physical interpretation of variational curvature minimization,
from which we derive our scheme. Finally, we demonstrate theachievable quality with a range of examples.

1. Introduction

The creation of good-looking curves is a fundamental
task in 2D (and 3D) shape design. Through a recent col-
laboration with the surfacing department of a car manu-
facturer we realized how difficult it is in practice to con-
vert a given design curve into a high-quality parametric
curve that is suitable for further processing in a high-
end CAD system (CATIA). Observing the work of the
surface engineers we developed three hypotheses about
their requirements:

Hypothesis 1. The control polygon alone must unam-
biguously, and in a predictable way, define the shape.

Hypothesis 2. The control polygon must be as sparse
as possible (a) to offer control and (b) to avoid artifacts.

Hypothesis 3. Controlling curvature is essential; much
time is spent on removing curvature artifacts.

Curvature control is so important in high-quality
(“class-A”) shape design because curves are the basis
for creating surfaces, and curvature artifacts lead to bad
light reflections. State of the art in industrial design is
the use of (piecewise) polynomial curves such as Bézier
curves, B-splines, and their numerous variations. They
are efficient to compute, their properties are well under-
stood, and many algorithms exist for knot insertion, de-
gree elevation, etc. The first hypothesis, however, pre-

Figure 1: Design curves of a car captured with PCCs.

cludes curve representations with invisible extra param-
eters such as NURBS,β-, τ-, or ν-splines; even varying
the knot spacing is usually avoided. The use of any such
non-graphical parameters has the crucial disadvantage
that the curve shape cannot be judged only by looking
at the control polygon; but this is exactly the expertise of
surface engineers. This is why professional class-A sur-
facing software likeIcemSurfstill uses exclusively the
oldest and most direct surface technique, tensor product
Bézier surfaces of degree three up to nine.

The curvature of spline curves is difficult to control.
In some cases it is even impossible to obtain the de-
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sired curvature practically, i.e., using a sparse control
polygon (see Section 8). The reason is that, informally
speaking, spline control points exert an ’extra pull’ on
the curve. A B-Spline with a regularn-gon as control
polygon still deviates noticeably from a circle; without
an extra weight parameter (rational splines) it is impos-
sible to obtain a perfect circle. The real problem, how-
ever, is the lack of clear rules for the placement of con-
trol points. Surface engineers need years of experience
to master the control point placement intuitively.

1.1. Piecewise clothoid curves as superior alternative

The work presented in this paper is the result of the
quest for a curve representation that has no hidden pa-
rameters and offers exactly the degrees of freedom that
designers need in order to control both the shape and the
curvature of a 2D curve. We propose replacing splines
by piecewise clothoid curves (PCCs). The heart of the
framework is a fast algorithm to compute a PCC from
a given (open or closed) sequence of input points. The
problem can be stated formally as follows:

Given 2D points p1, . . . , pn, compute
clothoid segmentsc1(t), . . . , cn−1(t) with arc
lengthsd1, . . . , dn−1 so thatc1(0) = p1, ci(0) =
ci−1(di−1) = pi for i > 1, andcn−1(dn−1) = pn.

There is no suitable closed-form representation of
clothoid curves; they are defined via Fresnel integrals
and computing them is impractical [1]. Therefore we
use an iterative discrete scheme (see Section 3).

1.2. Contribution

Our contribution is a unified framework for
curvature-controlled curve design with PCCs:

• Fast adaptive clothoid interpolation algorithm

• Curvature simplification by dynamic programming

• Clothoid blending by nonlinear subdivision

• Direct editing of the curvature plot

• Physical interpretation of curvature smoothing

• Different control modes for points: free, con-
strained tangents, and constrained curvature.

1.3. Benefit

Clothoid curves are well known for their aesthetic
quality. However, they have never been widely used
in shape design, maybe for efficiency reasons, but cer-
tainly also because of the lack of suitable design tools.
We argue that with PCCs, designers can reach their
goal much faster and with an excellent level of control,

for example to meet max/min curvature constraints, to
limit the curvature variation, and to obtain aesthetically
pleasing results. PCCs are much more ’relaxed’ than
splines; the infamous ’spikes’ with unbounded curva-
ture are avoided. Tension can still be added to the curve
intentionally by explicitly inserting short segments as it
is demonstrated, e.g., in Figures 1 and 14.

In summary, we show that PCCs are superior to
splines in practice: Any spline curve can be approxi-
mated by a PCC with a sparse control polygon, but the
converse is not true (see Section 8).

2. Related Work

A variational approach for computing discrete ap-
proximations of piecewise clothoid curves was pre-
sented in a fairing context in [2]. Like in our algorithm,
they refine a given polygon by inserting new points and
moving them such that the curvature distribution be-
comes piecewise linear (direct approach). They also
propose an indirect approach, iteratively alternating be-
tween curvature estimation at the control points and cur-
vature interpolation at intermediate points. Our method
is similar to their direct method, but we take the segment
lengths into account. This assures fast convergence also
for adjacent segments of greatly varying lengths. This
is the key for adding fine details and ’tension’ to the
clothoids. Clarifying about terminology, ourpiecewise
clothoid curve(PCC) is calleddiscrete clothoid spline
(DCS) in [2]; but since splines are often associated with
convolution or blending, we find it more appropriate to
call aclothoid splinethe result of the curvature refine-
ment process presented in Section 5.

It was observed already in the 1970s that clothoids
are useful for interpolating data points with specified
tangent and curvature. As proposed in [3] they can be
connected withlinear curvature elements(linces) that
are integrated to yield clothoids. The approach was ex-
tended by [4, 5] who developed blending patterns for
bi-, tri-, quadrilinces to connect a pair of data points.
They used a direct integration method while our method
is global and works in a variational setting, interpolat-
ing all control points. While their method requires tan-
gents and curvature in every control point, our method
guarantees that every two points are connected only by
a single clothoid. An advantage of their method is that
modifications have only local impact, in contrast to our
method where the impact is global; however, we can
also achieve the same, since specifying constraints ef-
fectively decouples the parts of our curves.

An extension of the clothoid (Cornu spiral) to the
generalized Cornu spiral (GCS) is presented in [6]. The
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curvature is not only linear but rational, so additional
degrees of freedom are available; however, they are not
visual, and so they are difficult to control by design-
ers. A useful overview of clothoid (Euler spiral) tech-
niques is given in the comprehensive thesis [7]. It in-
cludes mathematical foundations, application examples,
and also historical background.

The approaches [8, 9] are concerned with fitting a
clothoid curve to sketched input data. They use a dy-
namic programming approach in the curvature domain
in order to identify portions of the input curve that can
be approximated by a clothoid segment. The fitting al-
gorithm presented in Section 7.3 borrows from their dy-
namic programming approach, but we use it to directly
extract suitable PCC control points from the input curve.
This simplifies the procedure since we do not have to fit
so many clothoid segments; and our PCC does not devi-
ate so much from the input curve since the control points
are interpolated.

The method of [10] builds upon the principles of [8]
for fitting clothoid curves to sketched input data. A large
number of straight line, circle, and clothoid segments
is tentatively fitted, and then represented as nodes of a
graph from which the best candidate segments are iden-
tified using a flow algorithm. The segments found are
then optimized in order to meet, thus obtaining a piece-
wise clothoid curve. This approach has fewer problems
than [8] concerning the deviation from the input data,
but the method is much more complex than ours; and it
does not yield conveniently editable control points.

Another approach building upon [8] is [11]; it is con-
cerned with the related topic of fitting French curves to
sketched input data. Also concerned with fitting curves
to sketched input data is [12]. They define a so-called
Elasticurvewhich is roughly a smooth version of the
input curve, represented as lines, parabolas, and arcs.

Like our paper, [13] is concerned with a clothoid
curve representation that is interactively controllable.
In contrast to our interpolated control points, they use
a control polyline to which a clothoid curve is fitted.
A generalization of clothoids to 3D was presented in
[14]; their fitting algorithm produces 3D curves where
not only curvature but also torsion varies linearly with
arc length; however, they are not concerned with high-
quality curve design as their main topic.

3. Computing Piecewise Clothoid Curves

A piecewise clothoid curve (PCC) consists of vari-
ous clothoid segments, which may also comprise line
segments and circle segments. The segments are joined

together such that they are both tangent and curvature
continuous in the joints (G2 continuous).

3.1. Discrete PCC Curves

We use a method where a sequence of control points
is either specified interactively by the user, or chosen
appropriately from a given input curve; then our algo-
rithm constructs clothoid segments joining these points.
Clothoids are defined by Fresnel integrals, for which
different approximations exist [1]. Instead of comput-
ing the parameters of the clothoid segments we use a
variational approach generating a polyline with linear
discrete curvature, thus approximating the clothoid seg-
ment. The approximation error can be made arbitrarily
small by iterative refinement.

3.2. Iterative Algorithm

The iteration starts with the control polygon, i.e., the
polyline through the control points. Then we repeat two
alternating steps. First, a new point is inserted between
every two points of the polyline; the sequence of points
that are inserted between consecutive control points are
called asegment. Second, the position of all inner seg-
ment points (i.e., except the original control points) is
optimized. The new position of a point is computed
on the perpendicular bisector of its neighbors in such
a way that the curvature is the arithmetic mean of the
curvatures of its neighbors.

Throughout this paper, the (discrete) curvature in a
point p of a polyline is computed simply as the inverse
radius of the circle throughp and its two polyline neigh-
bors. Consequently, five points are involved when op-
timizing C, namely its direct neighbours and their re-
spective neighbours. The curvature information is trans-
ferred from one segment to the next over control points.
The second consequence is that inner segment points
quickly converge to equal spacing and to linear curva-
ture distribution, thus obtaining a discrete clothoid.

3.3. Point positioning

Figure 2 illustrates the position computation. In or-
der to insert (or update) pointC with neighboursB and
D, their respective neighborsA and E are considered.
Without loss of generality we use the normalized con-
figuration whereB lies in (−1, 0)T andD in (1, 0)T. We
use the following notation:

• let X be one of the five control points, andXl his
left andXr his right neighbor

• δX is the angle between
−−→
XXl and

−−−→
XXr

• κX is the discrete curvature in pointX
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Figure 2: Optimization of pointC. Anglesα andβ are given by the
position of the points with respect to the dotted lineg throughB and
D. C′ is positioned on the perpendicular bisector ofB andD such that
δC is the arithmetic mean ofδB andδD. γ is used for the calculation.

• g is the line throughB andD

• α is the angle betweeng and
−−→
BA

• β is the angle betweeng and
−−→
DE

• γ is the angle betweeng and
−−→
BC

Two conditions must be fulfilled forC:

• C must lie on the perpendicular bisector between
B andD.

• κC must be the arithmetic mean ofκB andκD

As more and more points are inserted, the polyline
gets refined and the angles between segments approach
π, and anglesα andβ approach 0. In the following for-
mulae we use some simplifications whose errors con-
verge to 0 whenα andβ approach 0. From the condi-
tions we obtain:

κC =
1
2

(κB + κD). (1)

We approximate the discrete curvature ofX by

κX = 2
π − δX

|
−−→
XXl | + |

−−−→
XXr |

(2)

as proposed in [15]. Then we substitute

δB = π − α + γ (3)

δC = π − 2γ (4)

δD = π − β + γ. (5)

Since|
−−→
BD| = 2 we approximate|

−−→
BC| and |

−−→
CD| with 1,

because whenα andβ approach 0,γ also approaches 0.
Solving the resulting formula forγ finally yields

γ =
β(|
−−→
BA| + 1)+ α(|

−−→
DE| + 1)

2|
−−→
BA||
−−→
DE| + 3(|

−−→
BA| + |

−−→
DE|) + 4

. (6)

Point C is now inserted on the perpendicular bisector
betweenB andD in distance tanγ from g.

Figure 3: PCC configurations. The closed PCC through three control
points always becomes a circle. Four control points in an ’elliptical’
configuration do not lead to an ellipse, but to an ellipse-like ovoid with
piecewise linear curvature.

Figure 4: Damping of PCC curves. Top: The control points of the
PCC are uniformly distributed, and the middle one is moved upwards
by the same distance. Bottom: Curvature of the PCC.

When inserting a point next to an endpoint the prob-
lem is that a neighbor is missing on one side, i.e.,A
with α, or E with β. We need to specify an additional
constraint to obtain a unique solution. We can enforce
either a tangent or a curvature constraint, which are pre-
sented in Section 4. For endpoints the usual default is a
curvature constraint that enforces zero curvature.

In the case of evenly spaced points this formula is
identical to the discrete fairing approach proposed by
[2]. Their discrete clothoid spline(DCS) is an evenly
spaced polyline with the condition that the curvature at
each point is the average of its neighbor curvatures:

κi = (κi−1 + κi+1)/2 .

Thus, the curvature varies linearly, and the resulting
curve must be a clothoid. Note thatκi is the discrete
curvature, i.e., the inverse radius of the circle through
three pointspi−1, pi , pi+1. It can be computed using the
inverse of the well-known triangle circumcircle formula
κ = 1/r = 4A/abcof a triangle with edge lengthsa, b, c
and (signed) areaA.

3.4. Properties

PCCs have some nice properties for designers. The
closed PCC through three points always is a circle (see
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Figure 5: Damping effect of closely spaced control points.

Fig. 3); adding further control points is required only to
define the deviation from a circle shape.

The position of a control point influences the PCC
globally, meaning that every part of the PCC changes
when moving a single control point. The influence of
the control point, though, is heavily damped, as shown
in Fig. 4. The damping effect can also be amplified by
placing control points very closely together; moving a
point on one side then has little effect on the curve on
the other (Fig. 5). This is similar to a tangent constraint.

Inserting additional control points on a PCC neither
changes the curve nor its curvature. This is extremely
helpful in order to add fine detail, since a few close
points can be inserted to ’nail down’ some part of the
curve by exploiting the damping effect. One conse-
quence of the piecewise linear curvature behaviour is
that curvature maximaalwayslie in the control points
(in contrast to splines!). This makes PCCs much easier
to understand and control by designers.

4. Constraints on tangents and curvature

To speed up the design process, tangent or curvature
constraints can be defined for each control point:

Figure 6: Trading shape against curvature. With three points in a row,
a curvature constraint (marked in red) leads to a corner. It can be al-
leviated by moving the control point, changing shape until eventually
the designer chooses to release the curvature constraint asit is suffi-
ciently met. The curvature plot of all four curves is identical.

• A tangent constraint defines the tangent of an adja-
cent clothoid segment.

• A curvature constraint defines the curvature of an
adjacent clothoid segment.

The constraints can be the same or different on both
sides, e.g., different tangents produce a corner (G0). It is
also possible to define a tangent constraint on one side
and a curvature constraint on the other, to maintainG1.
Note, however, that prescribing the same curvature on
both sides will in general still lead to a corner (G0).
This mode is still valuable since the designer can move
the control point to make the tangents gradually more
collinear, to trade shape against curvature (see Fig. 6).

4.1. Tangent constraints

Formula (6) can be easily modified to account for a
tangent constraint (c.f. Fig. 2):B is the point with the
tangent constraint and neighbourA is discarded for the
computation. Instead, angleα is set to the angle be-
tween the prescribed tangent and the lineg throughB

andD. Length|
−−→
BA| can be set to zero because for the

computation we consider a point on the tangent instead
of A, and the tangent condition has more influence the
closer the point is toB.

4.2. Curvature constraints

Let againB be the point with the curvature constraint.
δB andκB are not relevant now, but we can imagine a

virtual segment
−−→
BA and choose it in such a way thatκB

has the desired curvature value. If|
−−→
BA| = 1, then

κB ≈
1

1
2 secδB2

= 2 cos
δB

2
= 2 sin

(

π

2
−
δB

2

)

≈ π − δB

(7)
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Figure 7: RestoringG2 continuity. Top: A 90◦ configuration with
straight sides and a rounded corner. The straightness of thesides is
ensured with tangent constraints. The constraints permit continuous
curvature, as can be seen in the curvature plot. Note: Because only
the discrete curvature is measured, the spot with the curvature jump
deviates from a vertical line. Bottom: An additional inserted point,
moved to the right spot restores continuous curvature.

for small values ofπ − δB. From this follows:

γ =
2β + κB (|

−−→
DE| + 1)

4 |
−−→
DE| + 6

(8)

At last, when we only have two endpoints and insert a
point between them, on both sides a neighbor is missing.

Taking |
−−→
DE| = 1 andκD = π − δD then leads to

γ =
1
4

(κB + κD) . (9)

4.3. Restoring G2 continuity for collinear tangents

A control point P with collinear tangents still
achieves onlyG1 continuity since in general, the cur-
vatures do not match anymore. To restoreG2, another
control point can be inserted on one side ofP and moved
such that the curvatures atP match on both sides; its po-
sition is not unique, so there is some design freedom.

Especially useful is the case ofG2 continuous
rounded corners (see Fig. 7). First, control points are
set in the positions for the start and end of the rounding.
Then the tangents for the rounding are specified. At last,
an additional control point is inserted in such a position
that the joints at both control points simultaneously be-
comeG2. The position of this point is unique and can,
thus, be computed automatically, e.g., iteratively.

4.4. Direct curvature control

The properties presented so far suggest a very
straightforward workflow for curve reconstruction with
PCCs: Since control points are interpolated, and insert-
ing a point does not change the curve, the designer can
simply keep adding points along the desired contour.
Curvature, however, is a very sensitive measure, and the
resulting profile is likely to look like in Fig. 8 (top); ob-
taining a good curvature profile is a fiddling task. We
now present a method where the designer candirectly
edit the curvature profileto obtain very rapidly the pro-
file shown in the bottom.

The idea is to simply move the control point per-
pendicular to the line through its neighbours. Consider
three pointsA, B, C and a desired target curvatureκt for
B. We use a simple linear estimate for the new posi-
tion of B. Let κB be the discrete curvature forB, x the
perpendicular projection ofB to

−−→
AC, andd the distance

betweenB and x. Whenx is positioned more towards
the center ofA andC, then the curvature does vary less

when B is moved perpendicular to
−−→
AC. So we calcu-

late a scalar factorλ for the relative position ofx with
λ = 2 min(‖A− x‖, ‖C − x‖ ) / ‖C − A‖.

The estimate for the needed offset distance is then
do = λ · (κt − κB) · ‖C − A‖2 · c with the constantc = 1

11
that was determined by experiment. PointB is moved by

do along the perpendicular to line
−−→
AC. Then the whole

PCC is recomputed, and the process is repeated until
the desired accuracy is achieved, or further movement
does not bring the curvature closer to the target curva-
ture anymore, e.g., in case a high curvature was desired
but the neighbours are too far apart.

5. Curvature blending and clothoid splines

5.1. Eliminating curvature spikes

The curvature of a PCC is piecewise linear but not
bounded; there can be arbitrarily steep spikes. One pos-
sibility to get rid of a curvature spike in a control point
P is to first insert two new control points close toP on
either side, which changes neither the curve nor its cur-
vature. Then removingP does change the curve, but
only slightly; and the curvature-spike is cut off.

5.2. Clothoid splines: Approaching the limit

Our method for iterating this scheme is inspired by
Chaikin’s corner cutting method for obtaining quadratic
B-Spline curves [16]. The method from the previous
Section 5.1 can be repeated arbitrarily often.

For closed PCC curves, new control points are in-
serted on each clothoid segment at1

4 and 3
4 of the arc
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Figure 8: Manual curvature editing. Top: Control points of aPCC
are placed in order to resemble a shape from a picture. Additional
curvature plot is given. Bottom: A new PCC, obtained from manual
editing of curvature values. Curvature plot is also given.

length. Then the old control points are removed and the
PCC is recalculated. This leads to a PCC with twice the
number of control points. This process is repeated for a
certain number of iterations. The control points of the
last step are taken as the points of a “clothoid spline”.

For open curves, the process is nearly the same. How-
ever, the start point and the end point are never removed.
In the first and in the last segment, only a single new
control point is inserted at position12 in the first itera-
tion; otherwise the refined points would accumulate at
the start and at the end. Fig. 9 illustrates this construc-
tion of a clothoid spline withG3 continuity.

6. A physical interpretation of clothoids

A vast number of different curve representations has
been proposed in CAGD over the last 60 years. With
any new representation the question must be answered
how suitable it is for the targeted purpose. For high-end
curve design, it should make designing aesthetic curves
as simple as possible. Capturing the notion of aesthetics
is difficult, however, which is witnessed by the lack of a
common mathematical definition ofclass A quality.

Figure 9: Construction of a clothoid spline. Repeated insertion of new
points and removal of old points.

We have approached the problem from a different
side. The reader is encouraged to try a very simple phys-
ical experiment, namely designing a ’smooth’ curve
with fixed-length segments, e.g.,Kaplabricks (Fig. 11).
It will turn out sooner or later that instead of looking
’along’ the curve, the obvious thing to do is focusing on
the gap angles between the bricks, and to balance them;
an uneven gap distribution is deemed uglyby anybody.

Since the gaps are small, attaching normal rods to the
segments shows problems more clearly. Equalizing the
gap angles can then be seen as equalizing the distances
between the end points of consecutive rods. Physically,
this could be accomplished by attaching springs on the
end points; and for symmetry reasons, two such rods
should be attached, one on eiter side of the segment.

This leads to a variational energy minimization prob-
lem: A spring elementis made out of five points
A, B,C,D,E connected by line segments with two nor-
mal rods that are connected by six springs with rest
length zero (Fig. 12). The position ofC(t) is optimized
on the perpendicular bisector betweenB and D, the
other points are fixed. Findingt for which the spring
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Figure 10: PCC spline. The control points are the same as in Fig. 4.
There is hardly any difference between the curves, but a great differ-
ence between the curvatures: The PCC spline isG3.

Figure 11: Design experiment: Aesthetic improvement of a curve. In
this situation, virtually anybody will move the bricks downto equalize
the gap angles. Normal rods show the angle distribution moreclearly.

energyEs(t) is minimal is a convex univariate problem.
The spring energy is proportional to the square of

the distance, but the derivative is not linear int. How-
ever, since the energy is convex, the optimum is eas-
ily reached by a few Newton iterations. Mimicking
the manual method, we turned this into a curve opti-
mization scheme by keeping some of the input points
fixed while optimizing the free points. The implementa-
tion revealed a surprise: It converged rapidly to a curve
with a linear curvature profile between the fixed points
– obviously a sequence of clothoids! So the spring el-
ements provide a clear, intuitive physical interpretation
of curve design with clothoids that can be easily grasped
by artists and designers.

6.1. Analytical solution for infinite rod lengths

The length of the normal rods is a free parameter. We
made the observation that the optimization yields better
results with longer rods, which led us to examining the
case of infinite rod length. As shown in the following,
this yields the same formula as in Sec. 3.

The longer the rods, the smaller are the segments in
comparison. So instead of infinite rod length, we con-
sider rods of fixed (unit) length and zero length seg-

A

B

C

D

C ′

E

Figure 12: A spring element with fife points, four segments, eight nor-
mal rods and six springs connecting the end points of the rods. The
position of the center point is spring-optimized along the perpendicu-
lar bisector of the line segment connecting its neighbours.

ments. The end points of the rods lie on the unit circle;
letσ be the angle between two rods, then the forcef (σ)
is the squared distance of their endpoints:

f (σ) = 2 chord2σ = 8 sin2 σ

2
. (10)

For small values ofσ the sine function is approximately
the identity. This yields a simplified versionfs of the
force:

fs(σ) = 2σ2. (11)

Figs. 2 and 12 show that the angle between the 1st and
the 2nd rod isα − γ, between the 2nd and the 3rd it is
2γ, and between the 3rd and the 4th it isβ − γ. For the
spring element with pointsA, B,C,D,E we have a total
(simplified) forceft of

ft = fs(α − γ) + fs(2γ) + fs(β − γ) (12)

In order to find the value ofγ with the minimal force
in the spring elements we differentiateft, set it to zero,
and solve forγ:

f ′t = −4α + 24γ − 4β (13)

f ′t = 0 ⇒ γ =
1
6
α +

1
6
β (14)

This is indeed the same formula as in Eq. (6) when

|
−−→
BA| and |

−−→
DE| are equal to one. So with evenly spaced

points, the two approaches yield the same results.

7. Applications

7.1. Interactive shape design with PCCs
An important property for a curve representation is

how effective and accurate designers can work with
them. The proposed PCCs have some nice properties
for the design process:
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Figure 13: Inserting U-shapes on a large smooth curve segement with-
out affecting the rest of the curve. Top-to-bottom: Original curve.
Insertion of two control points with fixed tangents, then local modi-
fication on isolated part. The curvature of the seemably fixed-radius
blend and in the tips can be controlled by editing the curvature plot.

• Reasonable approximations can be computed quite
fast also for larger numbers of control points.

• Insertion of new control points neither changes the
curve nor does it affect other control points.

• Redundant control points (with the same curvature
slope on both sides) can be removed without af-
fecting the curve.

• Tangents or curvature constraints can be specified
for all control points.

7.2. Curve design rules for PCCs

We demonstrate the typical design flow with a partic-
ularly challenging example, the insertion of details on a
larger curve with very smooth curvature (Fig. 13):

1. The designer draws a few spacious control points
to define a shape with smoothly flowing curvature.

Figure 14: Shapes of a car captured with PCCs, c.f. Fig. 1. Zoom in
to examine typical constraint configurations (vector graphics).

2. Detail zones are isolated by inserting pairs of con-
trol points with tangent constraints.

3. Editing the zones does not affect the rest of the
curve, but reduces continuity toC1 in these points.

4. Finally, G2 continuity can be restored with the
technique explained in Sec. 4.3 (c.f. Fig. 7).

We claim that PCCs are especially well suited for
high-quality curve design. This is supported by empiri-
cal evidence since the characteristic curves of many ex-
isting high-quality shapes can be captured using only
very few control points, as illustrated by Figs. 1 and 14.
And even more important is that the control points can
be obtained using a clear coarse-to-fine recipe.

7.3. Computing a PCC for a sampled input curve

Our second use case is fitting a PCC to a given
densely sampled input curve (polyline). The automatic
algorithm presented in this section uses dynamic pro-
gramming to partition the curvature profile of the in-
put curve in order to find ideal control point positions.
The idea to use dynamic programming was borrowed
from [8]; the algorithm chooses points from the input
curve which are directly used as PCC control points.
The PCC shall follow the input curve very closely and
should have a sparse adaptive control polygon.

To penalize the number of control points, each PCC
segment is associated with a cost; and to enforce the
similarity of both curvature profiles, the deviation of the
PCC curvature from the input curvature is penalized as
well. Note that for demonstration purposes we donot
even include an explicit cost for the geometric distance
between the curves. In all of our examples it was suffi-
cient that (a) the PCC control points are drawn from the

9



Figure 15: Fitting a PCC to input data. From left to right: 1) Original curve, 2) Smoothed curve, 3) PCC fitted to the smoothed curve using dynamic
programming as described in Section 7.3. Big dots denote control points, small dots are points inserted by the PCC algorithm. 4) Clothoid spline
with smooth curvature profile as described in Section 5.2. The input curve is taken from [10].

input polygon, and (b) the curvature profiles are very
similar; note that 2D curves are uniquely defined by
their curvature (up to rigid transformations).

In the following, leta andb denote the arclength pa-
rameters of two pointsP(a), P(b) of the input curve
(a discrete polyline), andP(a, b) is the curve segment
betweena and b. We define a cost matrixM where
each entryM(a, b) is the minimal cost of placing con-
trol points ata andb, and anywhere insideP(a, b). It is
defined recursively in the typical dynamic programming
fashion:

M(a, b) = min
a<k<b
{Ed(a, b) + λEi(a, b), M(a, k) + M(k, b)}

(15)
The first term is the cost when no other control point

is used betweena andb, and the second term applies
when splitting up the curve by inserting another control
point at any possible parametera < k < b of a polyline
point yields (recursively) even smaller cost. Concern-
ing the first term,Ed penalizes the deviation of the PCC
curvature from the input curvature (discrete integral of
absolute differences). We define it as

Ed(a, b) =
∑

c∈P(a,b)

f (c) ‖κ(a) − κ(c) + ls(c− a)‖ed (16)

wherels =
κ(b)−κ(a)

b−a is the slope of the curvature function
in this interval andf (c) = 1

2(c+ − c−) is the local strip

width with respect to the previous and next pointsc−, c+
of the polyline.Ei penalizes short segments:

Ei(a, b) =

(

d
b− a

)ei

(17)

whered is the overall length of the polyline. Parameters
λ, ed, ei can be tuned by the user in order to specify the
different trade-offs.

The matrixM is computed in a bottom-up fashion,
eventually yieldingM(0, d) as the cost of the best possi-
ble selection of polyline points as PCC control points to
match the input curve. An example of the fitting process
is shown in Fig. 15. The input curve is smoothed before
the fitting starts in order to achieve better results.

8. Comparison with B-spline curves

As mentioned in the Introduction, a fair comparison
from the design point of view can take into account
only spline types without non-visual parameters (knots,
weights). Comparing, for example, PCCs to uniform
cubic B-splines, PCCs have the obvious advantages that
control points are interpolated instead of approximated,
that point insertion does not change the curve, and that
circular arcs can be reproduced.

10



A more serious issue, though, is that despite the vari-
ation diminishing property and theirC2 continuity, the
curvature even of higher-degree polynomial splines is
unbounded and hard to control in practice. Uneven con-
trol point spacing is likely to result in unexpected cur-
vature maxima, and even spikes. With PCCs, the curva-
ture can clearly be (locally) maximal only in the control
points, which is a clear and practical placement rule.

We claim that for all practical design tasks, PCCs are
in fact superior to splines: While it is easy for PCCs
to realize the ’extra pull’ of spline curves, it is impos-
sible for splines to reproduce the perfectly clean curva-
ture profile of PCCs. For controlling curvature (class-A
design), PCCs may even be seen as theoptimal curve
representation because any desired curvature profile can
efficiently be approximated using linear segments.

To quantify these claims, Fig. 16 shows that a PCC
with three times as many control points can nicely re-
produce the curvature artifacts of a spline; and that by
doubling the number of spline control points, the arte-
facts are only damped but their frequency is doubled as
well. Note that curvature artifacts are unavoidable with
splines, as shown by Augsdoerfer et al. [17] who treat
the subject in considerable depth.

9. Conclusion and Future Work

We have presented in this paper a framework for the
design of high-quality curves. To summarize, piecewise
clothoid curves (PCCs) have the following key advan-
tages over splines:

• Direct editing: The control polygon is interpolated,
rather than just approximated.

• Insertion invariance: Inserting control points does
not change the curve.

• Curvature extrema: The curvature is (locally) max-
imal or minimal only in the control points.

• Predictability: Control points are needed only in
order to deviate from linear (circular) curvature.

Intuitive methods were presented for constraining the
PCC to specific tangents or curvature values, and for
automatically improving the piecewise linear curvature
profile, eventually resulting in a ’clothoid spline’ with
smooth curvature (G3). It was shown that a given input
curve can be efficiently converted to a PCC, and control-
ling curvature is possible even to the point of directly
editing the curvature profile.

For designers, this can be intuitively summarized as
“PCCs are class-A by default”; a relaxed type of curve
for which introducing tension requires specific effort.

Figure 16: Curvature artifacts of spline curves. Top: A uniform cubic
B-spline (magenta) with four control points can be approximated by
a PCC with twelve control points - including the curvature artifacts
(left). Completely avoiding the artifacts is not possible (right). Bot-
tom: A single clothoid segment is approximated by a spline. Despite
regular spacing the resulting curvature is simply inacceptable.

An important area for future research is a practi-
cal method for designing high-quality space curves,
where not only curvature but also torsion must be con-
trolled; for a 3D generalization of clothoids, Ben-Haim
et al.[14] propose varying also the torsion linearly. The
main goal, however, will be to find also a surface repre-
sentation that is acknowledged by practitioners as being
’class-A by default’.
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