1 About this Document

1.1 Author

These notes were originally written by Joona Kiiski, but may of course be up-
dated by others.

1.2 Purpose

To give a quick introduction to clothoids and help to clarify the implementation
details

1.3 Maintanence

This document is maintained using Lyx-editor. If you need to update the doc-
ument, do the following;:

e apt-get install lyx ghostscript
e Go through the basic tutorial: http://wiki.lyx.org/LyX/Tutorials
e Update the document: lyx clothoid implementation notes.lyx

e Re-export PDF: File -> Export -> PDF (ps2pdf)

2 Normalized Euler Spiral

2.1 Basics
Read the following:
e https://en.wikipedia.org/wiki/Euler spiral

e https://en.wikipedia.org/wiki/Fresnel integral

2.2 Notes

For normalized Euler Spiral (L is distance from origin):

r=S(L) = fOL cos(s?) - ds

y=C(L) = fOL sin(s?) - ds

S(L) and C(L) are called Fresnel integrals which need to be calculated nu-
merically. Currently we use cephes math-library to do this. However some
authors (including the author of cephes-library) prefer to represent the Fresnel
integrals as:

C(t) = fot cos(5t?) - dt

S(t) = [, sin(Zt2) - dt

However it’s easy to switch between the two forms just by changing the
integration variable: 7 = /T -t



3 Arbitrary Clothoid

3.1 Definition

By an arbitrary clothoid, we mean a clothoid which can have any length, start
curvature, end curvature, starting point and orientation.

3.2 Connection to Normalized Euler Spiral
An arbitrary clothoid can be constructed as follows:

e Pick a section [sg, s1] from Euler Spiral (s1 > so)

e Move it (translation)

e Scale it

e Rotate it

e Mirror it along x-axis (or not!)

All the above operations can be done by using elementary geometric transfor-
mations.

The inverse is also true. Any clothoid can can be converted into a [sg, s1]
section on Euler Spiral by elementary geometric transformations.

3.3 Normalization and Denormalization
When we want to solve any clothoid specific problem:

e We first perform a coordinate transformation where clothoid becomes a
section on Euler spiral. We call this process “Normalization”.

e Then we solve the problem - usually this involves use of Fresnel integral.

e After solving the problem we perform the inverse transformation for the
result. We call this process “Denormalization”.

Obviously the whole point of doing this is to be able to use Fresnel integrals for
any problem.

“ClothoidSection” class in the current implementation provides functions for
Normalization, Denormalization and for basic calculations in the normalized
frame.

3.4 Degeneration
3.4.1 Circle Arc

If clothoid start curvature is equal to clothoid end curvature, then we cannot
use normalization/denormalization technique outlined above as the scaling co-
efficient becomes zero/infinity. Instead we have a circle arc and we need to solve
the problem using the geometric properties of a circle.



3.4.2 Line Segment

If clothoid start curvature and end curvature are both zero, then we have a
straight line, and need to solve the problem using the geometric properties of a
line segment.

4 Clothoid Fitting

4.1 Problem Statement

Given a sequence of (z,y) points, fit a piece-wise clothoid which is G; continuous
and “close to” Ga continuous. For practical reasons, (x,y) points may also
contain additional tangent and curvature constraints. The resulting piece-wise
clothoid needs to be “sensible”, but it’s impossible to give an exact mathematical
definition for this.

4.2 Recipe

Our current strategy is as follows:

1. Our implementation of PCC-library provides good-looking curves which
are good approximations of real clothoids. Unfortunately it doesn’t pro-
vide analytical formulas. After fitting we read a tangent for each point, so
that we have a sequence of triplets (z,y,?), where ¢ is the tangent angle
of the curve at (z,y).

2. For each consecutive triplet pair (2., Yn, 9n) (Tnt1, Yn+1, Ont1), fit a real
clothoid between the points. Use curve provided by PCC-library as an
initial guess. This provides (G; continuous curves, but discontinuities in
curvature seem to be relatively minor.

5 PCC

PCC-library has it’s own documentation, so it’s not in the scope of this docu-
ment.

6 Single Clothoid Fit

6.1 Paper

We use the algorithm outlined in paper “Fast And Accurate Clothoid Fitting”
by Enrico Bertolazzi and Marco Frego. However there are some significant and
non-obvious differences in the implementation which are documented in this
sectiomn.



6.2 Class

The implementation is contained in a class named “SingleClothoidFitter”. All
variables in the class are named to match the variables used in the paper.

6.3 Algorithm

We use algorithm that is called “FindA” in the paper. The corresponding im-
plementation method is “SingleClothoidFitter::fit()”. The key challenge of the
algorithm is around calculating g(A4) and ¢’(A) which are discussed next.

6.4 g(A) and h(A)

The implementation method is “SingleClothoidFitter:: ThetaFunction”.

In the paper g(A) and h(a) are defined as follows:

g(A) = [ sin(A7% 4+ (AY — A)r + Ag) - dr

h(A) = [ cos(AT? + (AY — A)r + Ag) - dr

The paper goes very deep into numerical methods about solving these inte-
grals. Instead we just note that these match exactly the formula of generalized
clothoid:

x(s) = [, cos(zr'7 4+ KT + Vo) - dT

y(s) = fos sin(%m’T2 + kT + ) - dT

where k'T + k is curvature and ¥y is the initial angle (clothoid orientation).
So calculating g(a) and h(a) is identical to calculating Az = Zeng — Tstart and
AY = Yend — Ystart for the corresponding clothoid. Our Spiral/ClothoidSection
class provides utilities to do just this, so we use them here. Of course the
degenerate cases (circle, line) require special handling.

6.5 g’(A)

The implementation method is “SingleClothoidFitter:: ThetaFunctionDerivative”.

The most challenging thing required by the paper is the calculation of ¢'(a).
Because we’ve already calculated h(a) and g(a) numerically we want to reuse
them. The formula for ¢’(a) as a function of h(a) and g(a) is derived below:

Definitions:

C(A) == h(A) = [} cos(AT? + (AY — A)T + Ap) - dr

S(A) == g(A) = [} sin(Ar2 + (A9 — A)T + Ap) - dr

Solve Derivative S’ (A):

S'(A) = [ cos(AT? + (A0 — A)r + Ag) - (2 — 1) - dr

S'(A) = [ cos(AT? + (AD — A)T + Ap) - 72 -dr — [} cos(AT? + (AY — A)T +
Ap)-T-dr ) )

S'(A) = 51(A) = 55(4)



6.5.1 General Case, A #0
First S;(A)
(A) = fo cos(AT? + (AY — A) 7+ Ap) - 7 - dr
( ) = 2A fo 2A7 - cos(AT? + (AY — A)T + Ap) - dr

Sy(A) = A [ (2AT + A9 — A — A9 + A) - cos(AT? + (AD — A)7 + Ap) - dr
Sy(A) = 5kt [ [(2AT + A9 — A) - cos(AT2 + (A — A7+ Ap) + (—AD + A) -
cos(AT? + (A19 —A)T + Ap)] - dr

S;(A = 2A fol 2AT+AY—A)- cos(ATQ—l-(Aﬁ—A)T—i—AgD)-dT—i—ﬁ fol(—Aﬁ—i—
A) - cos(AT? + (A19 AT+ Ap) - d

Sy(A) = ﬁ‘osm(AT + (AY — A)T + Ap) + S (—AY + A) fol cos(AT? +
(AY — A)T + Agp)

Sy(A) = —A(sm(A + AV — A+ Ap) —sin(Ap)) + 55 (A9 + A) - C(A)
Sy(A) = ;AA[Sln(Az9+A¢) -sin(Ag) + (A — AY) - C(A))

Second S, (A):

Sy(A) = 01 cos(AT2 + (AY — A)r + Ap) - 72 - dr

S (A) = ﬁfOT 2A7 - cos(AT? + (AY — A)T + Ap) - d

SH(A) = g [ 7+ (2A7 + AY— A— A9 + A) - cos(Ar? +(M AT+ Ap)-d
S1(A) = ﬁ i 7+ (AT + A — A) - cos(AT? + (AD — A) T+ Agp) -dr + 55 fo

(AT + (A9 — A)T + Ap) - dr

7' (2AT+ A9 —A)-cos(AT* + (AV— A)T+ Ap)-dT+ 35 (—AD+
—|— (AY — A)T + Agp) - dr

7' (QAT+AV—A)-cos(AT?+ (A — A) T+ Ap)-dT+ 2A( AY+

SHA) = 5l 7 (2A7 + AD — A) - cos(AT2 + (AD — A)T + Ag) - dr + (A —
AD) - S5(A)]

Integrating in parts

, 1

Si(A) = ﬁ[} 7-sin(A2 + (AD — A)7 + Ag) — [ sin(A2 + (A — A)7 +
Ap)-dr + (A - AD) - Sy (A)] /

S1(A) = S5 [sin(AY + Ap) — S(A) + (A — AY) - Sy(A)]

Solution Algorithmically:

C=C(A)

S =5(4)

D = sin(A9 + Ap)

E = sin(Ayp)

F=A-A9

Based on these Sy(A) and S (A):

S?(A) = ﬁ(D—E—i—F-Cj)

S1(4) = ﬁ(D _*?"' F-55(A))

And final result S (A):

S'(A) = Sy (A) — Sy(A) = 2A'(D—S+F»S2(121)4)2—214»(D—E+F,C)




S (A) = —2AS+2AF-Sy(A)+2AE—2AFC)

( )_ 4A2

S (A) — *2A5+F(D7EJ;£§)+2AE72AFC)
S (A) — 2A(E—S—FC4)Z2F(D—E+FC)

6.5.2 Degenerate Case, A — 0, AV #0
First S;( 0):

S5(0 fo cos(AIT + Ayp) - T - dT

S5(0 ) = fo T - AU - cos(AVT + Agp) - dr

Integrating in parts:

, 1

S5(0) = =5 [‘ 7 - sin(AIT + Ayp) — fol sin(AJT + Ayp) - dr]

S5(0) = Ai[’ T - sin(AYT + Ayp) — fol sin(AdT + Ayp) - dr]
55(0) = <L [sin(AY + Ay) + Aﬁ |0 cos(AIT + Ayp) - dr]

1
A9
S5(0) = Z5[sin(AY + Ap) + =5 (cos(AV + Ap) — cos(Ay))]
S’ 0 A SID(A’L?+A(,D)+COS(A19+ALP) cos(Ap)
»(0) = (A0)2

53

Second Si( 0):

570 fo cos(AIT + Ap) - 72 - dT

510 ) =5 I L2 AY - cos(ADT + Ay) - dr

Integrating i 1n parts:

S1(0) = ﬁ(‘;ﬁ -sin(AIT + Ap) — 2 fol 7sin(AIT 4+ Ap) - dr)

’

57(0) = Alﬂ (sin(AY + Ag) — 2 fol Tsin(ADT 4+ Ap) - dr)
$1(0) = =5 (sin(AY + Ap) — 25 fo 7 - AYsin(AYT + Agp) - dr)
Integrating in parts second time:

’

1
51(0) = 25 (sin(Ad+ Ap) — 25 (— ‘OT -cos(AIT + Ap) + fol cos(AVT + Ap) -

dr)))
S1(0) = 2= (sin(Ad+Ay)— 2 ( cos(Ad+Ap) + 2L ‘ sin(AYT+Agp)-dr)))
51(0) = A5 (sin(AV + Ap) — 25 (— cos(AY + Ap) + =5 (sin(AY + Ap) —
sin(Agp))))
S’ 0) = (AD)2-sin(A9+Ap)+2- AW cos(AI+Ap)—2-sin(AI+Ap)+2-sin(Ap)
1(0) = a0
And finally:

5'(0) = 5,(0) — 55(0)
S/(O) _ (Aﬁ)2~sin(Aﬁ+Aap)+2~Aﬂcos(Ai?JrA«p)72~sin(A19+A<p)+2A-51;;1§A@)7(A19)2 sin(AY+A@)— A9 cos(AIV+Ap)+ A9 cos(Ap)

S'(0) = AV cos(AV+Ap)—2-sin(AI+Ap)+2-sin(Ap)+AY cos(Ap)
(0) = @)’

6.5.3 Degenerate Case, A = 0, AYJ=0

S'( fo cos(Ap) - (12 —7’) dr
S/(A) = cos(Ayp) fo 2 —71)-dr






