
1 About this Do
ument

1.1 Author

These notes were originally written by Joona Kiiski, but may of 
ourse be up-

dated by others.

1.2 Purpose

To give a qui
k introdu
tion to 
lothoids and help to 
larify the implementation

details

1.3 Maintanen
e

This do
ument is maintained using Lyx-editor. If you need to update the do
-

ument, do the following:

• apt-get install lyx ghosts
ript

• Go through the basi
 tutorial: http://wiki.lyx.org/L

Y

X/Tutorials

• Update the do
ument: lyx 
lothoid_implementation_notes.lyx

• Re-export PDF: File -> Export -> PDF (ps2pdf)

2 Normalized Euler Spiral

2.1 Basi
s

Read the following:

• https://en.wikipedia.org/wiki/Euler_spiral

• https://en.wikipedia.org/wiki/Fresnel_integral

2.2 Notes

For normalized Euler Spiral (L is distan
e from origin):

x = S(L) =
´ L

0
cos(s2) · ds

y = C(L) =
´ L

0 sin(s2) · ds
S(L) and C(L) are 
alled Fresnel integrals whi
h need to be 
al
ulated nu-

meri
ally. Currently we use 
ephes math-library to do this. However some

authors (in
luding the author of 
ephes-library) prefer to represent the Fresnel

integrals as:

C(t) =
´ t

0
cos(π2 t

2) · dt

S(t) =
´ t

0 sin(π2 t
2) · dt

However it's easy to swit
h between the two forms just by 
hanging the

integration variable: τ =
√

π
2 · t
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3 Arbitrary Clothoid

3.1 De�nition

By an arbitrary 
lothoid, we mean a 
lothoid whi
h 
an have any length, start


urvature, end 
urvature, starting point and orientation.

3.2 Conne
tion to Normalized Euler Spiral

An arbitrary 
lothoid 
an be 
onstru
ted as follows:

• Pi
k a se
tion [s0, s1] from Euler Spiral (s1 > s0)

• Move it (translation)

• S
ale it

• Rotate it

• Mirror it along x-axis (or not!)

All the above operations 
an be done by using elementary geometri
 transfor-

mations.

The inverse is also true. Any 
lothoid 
an 
an be 
onverted into a [s0, s1]
se
tion on Euler Spiral by elementary geometri
 transformations.

3.3 Normalization and Denormalization

When we want to solve any 
lothoid spe
i�
 problem:

• We �rst perform a 
oordinate transformation where 
lothoid be
omes a

se
tion on Euler spiral. We 
all this pro
ess �Normalization�.

• Then we solve the problem - usually this involves use of Fresnel integral.

• After solving the problem we perform the inverse transformation for the

result. We 
all this pro
ess �Denormalization�.

Obviously the whole point of doing this is to be able to use Fresnel integrals for

any problem.

�ClothoidSe
tion� 
lass in the 
urrent implementation provides fun
tions for

Normalization, Denormalization and for basi
 
al
ulations in the normalized

frame.

3.4 Degeneration

3.4.1 Cir
le Ar


If 
lothoid start 
urvature is equal to 
lothoid end 
urvature, then we 
annot

use normalization/denormalization te
hnique outlined above as the s
aling 
o-

e�
ient be
omes zero/in�nity. Instead we have a 
ir
le ar
 and we need to solve

the problem using the geometri
 properties of a 
ir
le.
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3.4.2 Line Segment

If 
lothoid start 
urvature and end 
urvature are both zero, then we have a

straight line, and need to solve the problem using the geometri
 properties of a

line segment.

4 Clothoid Fitting

4.1 Problem Statement

Given a sequen
e of (x, y) points, �t a pie
e-wise 
lothoid whi
h is G1 
ontinuous

and �
lose to� G2 
ontinuous. For pra
ti
al reasons, (x, y) points may also


ontain additional tangent and 
urvature 
onstraints. The resulting pie
e-wise


lothoid needs to be �sensible�, but it's impossible to give an exa
t mathemati
al

de�nition for this.

4.2 Re
ipe

Our 
urrent strategy is as follows:

1. Our implementation of PCC-library provides good-looking 
urves whi
h

are good approximations of real 
lothoids. Unfortunately it doesn't pro-

vide analyti
al formulas. After �tting we read a tangent for ea
h point, so

that we have a sequen
e of triplets (x, y, ϑ), where ϑ is the tangent angle

of the 
urve at (x, y).

2. For ea
h 
onse
utive triplet pair (xn, yn, ϑn) (xn+1, yn+1, ϑn+1), �t a real

lothoid between the points. Use 
urve provided by PCC-library as an

initial guess. This provides G1 
ontinuous 
urves, but dis
ontinuities in


urvature seem to be relatively minor.

5 PCC

PCC-library has it's own do
umentation, so it's not in the s
ope of this do
u-

ment.

6 Single Clothoid Fit

6.1 Paper

We use the algorithm outlined in paper �Fast And A

urate Clothoid Fitting�

by Enri
o Bertolazzi and Mar
o Frego. However there are some signi�
ant and

non-obvious di�eren
es in the implementation whi
h are do
umented in this

se
tion.
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6.2 Class

The implementation is 
ontained in a 
lass named �SingleClothoidFitter�. All

variables in the 
lass are named to mat
h the variables used in the paper.

6.3 Algorithm

We use algorithm that is 
alled �FindA� in the paper. The 
orresponding im-

plementation method is �SingleClothoidFitter::�t()�. The key 
hallenge of the

algorithm is around 
al
ulating g(A) and g′(A) whi
h are dis
ussed next.

6.4 g(A) and h(A)

The implementation method is �SingleClothoidFitter::ThetaFun
tion�.

In the paper g(A) and h(a) are de�ned as follows:

g(A) =
´ 1

0 sin(Aτ2 + (∆ϑ−A)τ +∆ϕ) · dτ

h(A) =
´ 1

0
cos(Aτ2 + (∆ϑ−A)τ +∆ϕ) · dτ

The paper goes very deep into numeri
al methods about solving these inte-

grals. Instead we just note that these mat
h exa
tly the formula of generalized


lothoid:

x(s) =
´ s

0
cos(12κ

′τ2 + κτ + ϑ0) · dτ

y(s) =
´ s

0
sin(12κ

′τ2 + κτ + ϑ0) · dτ
where κ′τ + κ is 
urvature and ϑ0 is the initial angle (
lothoid orientation).

So 
al
ulating g(a) and h(a) is identi
al to 
al
ulating ∆x = xend − xstart and

∆y = yend − ystart for the 
orresponding 
lothoid. Our Spiral/ClothoidSe
tion


lass provides utilities to do just this, so we use them here. Of 
ourse the

degenerate 
ases (
ir
le, line) require spe
ial handling.

6.5 g'(A)

The implementation method is �SingleClothoidFitter::ThetaFun
tionDerivative�.

The most 
hallenging thing required by the paper is the 
al
ulation of g′(a).
Be
ause we've already 
al
ulated h(a) and g(a) numeri
ally we want to reuse

them. The formula for g′(a) as a fun
tion of h(a) and g(a) is derived below:

De�nitions:

C(A) := h(A) =
´ 1

0
cos(Aτ2 + (∆ϑ−A)τ +∆ϕ) · dτ

S(A) := g(A) =
´ 1

0 sin(Aτ2 + (∆ϑ−A)τ +∆ϕ) · dτ

Solve Derivative S
′

(A):

S
′

(A) =
´ 1

0 cos(Aτ2 + (∆ϑ−A)τ +∆ϕ) · (τ2 − τ) · dτ

S
′

(A) =
´ 1

0
cos(Aτ2 +(∆ϑ−A)τ +∆ϕ) · τ2 · dτ −

´ 1

0
cos(Aτ2 +(∆ϑ−A)τ +

∆ϕ) · τ · dτ

S′(A) = S
′

1(A)− S
′

2(A)
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6.5.1 General Case, A 6= 0

First S
′

2(A):

S
′

2(A) =
´ 1

0
cos(Aτ2 + (∆ϑ−A)τ +∆ϕ) · τ · dτ

S
′

2(A) =
1
2A

´ 1

0 2Aτ · cos(Aτ2 + (∆ϑ−A)τ +∆ϕ) · dτ

S
′

2(A) =
1
2A

´ 1

0
(2Aτ +∆ϑ−A−∆ϑ+A) · cos(Aτ2 + (∆ϑ−A)τ +∆ϕ) · dτ

S
′

2(A) =
1
2A

´ 1

0
[(2Aτ +∆ϑ−A) · cos(Aτ2 +(∆ϑ−A)τ +∆ϕ) + (−∆ϑ+A) ·

cos(Aτ2 + (∆ϑ−A)τ +∆ϕ)] · dτ

S
′

2(A) =
1
2A

´ 1

0 (2Aτ+∆ϑ−A)·cos(Aτ2+(∆ϑ−A)τ+∆ϕ)·dτ+ 1
2A

´ 1

0 (−∆ϑ+
A) · cos(Aτ2 + (∆ϑ−A)τ +∆ϕ) · dτ

S
′

2(A) = 1
2A

∣

∣

∣

1

0
sin(Aτ2 + (∆ϑ − A)τ + ∆ϕ) + 1

2A (−∆ϑ + A)
´ 1

0 cos(Aτ2 +

(∆ϑ−A)τ +∆ϕ) · dτ
S

′

2(A) =
1
2A (sin(A+∆ϑ−A+∆ϕ)− sin(∆ϕ)) + 1

2A (−∆ϑ+A) · C(A)

S
′

2(A) =
1
2A [sin(∆ϑ+∆ϕ)-sin(∆ϕ) + (A−∆ϑ) · C(A)]

Se
ond S
′

1(A):

S
′

1(A) =
´ 1

0
cos(Aτ2 + (∆ϑ−A)τ +∆ϕ) · τ2 · dτ

S
′

1(A) =
1
2A

´ 1

0 τ · 2Aτ · cos(Aτ2 + (∆ϑ−A)τ +∆ϕ) · dτ

S
′

1(A) =
1
2A

´ 1

0
τ · (2Aτ +∆ϑ−A−∆ϑ+A) ·cos(Aτ2+(∆ϑ−A)τ +∆ϕ) ·dτ

S
′

1(A) =
1
2A

´ 1

0
τ ·(2Aτ +∆ϑ−A) ·cos(Aτ2+(∆ϑ−A)τ +∆ϕ) ·dτ + 1

2A

´ 1

0
τ ·

(−∆ϑ+A) · cos(Aτ2 + (∆ϑ−A)τ +∆ϕ) · dτ

S
′

1(A) =
1
2A

´ 1

0
τ ·(2Aτ+∆ϑ−A)·cos(Aτ2+(∆ϑ−A)τ+∆ϕ)·dτ+ 1

2A (−∆ϑ+

A) ·
´ 1

0
τ · cos(Aτ2 + (∆ϑ−A)τ +∆ϕ) · dτ

S
′

1(A) =
1
2A

´ 1

0 τ ·(2Aτ+∆ϑ−A)·cos(Aτ2+(∆ϑ−A)τ+∆ϕ)·dτ+ 1
2A (−∆ϑ+

A) · S
′

2(A)

S
′

1(A) =
1
2A [
´ 1

0 τ · (2Aτ +∆ϑ−A) · cos(Aτ2 + (∆ϑ−A)τ +∆ϕ) · dτ + (A−

∆ϑ) · S
′

2(A)]
Integrating in parts

S
′

1(A) =
1
2A [

∣

∣

∣

1

0
τ · sin(Aτ2 + (∆ϑ − A)τ +∆ϕ) −

´ 1

0
sin(Aτ2 + (∆ϑ − A)τ +

∆ϕ) · dτ + (A−∆ϑ) · S
′

2(A)]
S

′

1(A) =
1
2A [sin(∆ϑ+∆ϕ)− S(A) + (A−∆ϑ) · S

′

2(A)]
Solution Algorithmi
ally:

C = C(A)
S = S(A)
D = sin(∆ϑ+∆ϕ)
E = sin(∆ϕ)
F =A−∆ϑ

Based on these S
′

2(A) and S
′

1(A):
S

′

2(A) =
1
2A (D − E + F · C)

S
′

1(A) =
1
2A (D − S + F · S

′

2(A))

And �nal result S
′

(A):

S
′

(A) = S
′

1(A) − S
′

2(A) =
2A·(D−S+F ·S

′

2
(A))−2A·(D−E+F ·C)
4A2
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S
′

(A) =
−2AS+2AF ·S

′

2
(A)+2AE−2AFC)
4A2

S
′

(A) = −2AS+F (D−E+FC)+2AE−2AFC)
4A2

S
′

(A) = 2A(E−S−FC)+F (D−E+FC)
4A2

6.5.2 Degenerate Case, A = 0, ∆ϑ 6= 0

First S
′

2(0):

S
′

2(0) =
´ 1

0 cos(∆ϑτ +∆ϕ) · τ · dτ

S
′

2(0) =
1

∆ϑ

´ 1

0
τ ·∆ϑ · cos(∆ϑτ +∆ϕ) · dτ

Integrating in parts:

S
′

2(0) =
1

∆ϑ
[
∣

∣

∣

1

0
τ · sin(∆ϑτ +∆ϕ)−

´ 1

0 sin(∆ϑτ +∆ϕ) · dτ ]

S
′

2(0) =
1

∆ϑ
[
∣

∣

∣

1

0
τ · sin(∆ϑτ +∆ϕ)−

´ 1

0 sin(∆ϑτ +∆ϕ) · dτ ]

S
′

2(0) =
1

∆ϑ
[sin(∆ϑ+∆ϕ) + 1

∆ϑ

∣

∣

1

0
cos(∆ϑτ +∆ϕ) · dτ ]

S
′

2(0) =
1

∆ϑ
[sin(∆ϑ+∆ϕ) + 1

∆ϑ
(cos(∆ϑ+∆ϕ)− cos(∆ϕ))]

S
′

2(0) =
∆ϑ sin(∆ϑ+∆ϕ)+cos(∆ϑ+∆ϕ)−cos(∆ϕ)

(∆ϑ)2

Se
ond S
′

1(0):

S
′

1(0) =
´ 1

0 cos(∆ϑτ +∆ϕ) · τ2 · dτ

S
′

1(0) =
1

∆ϑ

´ 1

0
τ2 ·∆ϑ · cos(∆ϑτ +∆ϕ) · dτ

Integrating in parts:

S
′

1(0) =
1

∆ϑ
(
∣

∣

∣

1

0
τ2 · sin(∆ϑτ +∆ϕ)− 2

´ 1

0 τ sin(∆ϑτ +∆ϕ) · dτ)

S
′

1(0) =
1

∆ϑ
(sin(∆ϑ+∆ϕ)− 2

´ 1

0 τ sin(∆ϑτ +∆ϕ) · dτ)

S
′

1(0) =
1

∆ϑ
(sin(∆ϑ+∆ϕ)− 2

∆ϑ

´ 1

0 τ ·∆ϑ sin(∆ϑτ +∆ϕ) · dτ)
Integrating in parts se
ond time:

S
′

1(0) =
1

∆ϑ
(sin(∆ϑ+∆ϕ)− 2

∆ϑ
(−

∣

∣

∣

1

0
τ · cos(∆ϑτ +∆ϕ)+

´ 1

0
cos(∆ϑτ +∆ϕ) ·

dτ)))

S
′

1(0) =
1

∆ϑ
(sin(∆ϑ+∆ϕ)− 2

∆ϑ
(− cos(∆ϑ+∆ϕ)+ 1

∆ϑ

∣

∣

∣

1

0
sin(∆ϑτ+∆ϕ)·dτ)))

S
′

1(0) = 1
∆ϑ

(sin(∆ϑ + ∆ϕ) − 2
∆ϑ

(− cos(∆ϑ + ∆ϕ) + 1
∆ϑ

(sin(∆ϑ + ∆ϕ) −
sin(∆ϕ))))

S
′

1(0) =
(∆ϑ)2·sin(∆ϑ+∆ϕ)+2·∆ϑ cos(∆ϑ+∆ϕ)−2·sin(∆ϑ+∆ϕ)+2·sin(∆ϕ)

(∆ϑ)3

And �nally:

S′(0) = S
′

1(0)− S
′

2(0)

S′(0) = (∆ϑ)2·sin(∆ϑ+∆ϕ)+2·∆ϑ cos(∆ϑ+∆ϕ)−2·sin(∆ϑ+∆ϕ)+2·sin(∆ϕ)−(∆ϑ)2 sin(∆ϑ+∆ϕ)−∆ϑ cos(∆ϑ+∆ϕ)+∆ϑ cos(∆ϕ)
(∆ϑ)3

S′(0) = ∆ϑ cos(∆ϑ+∆ϕ)−2·sin(∆ϑ+∆ϕ)+2·sin(∆ϕ)+∆ϑ cos(∆ϕ)
(∆ϑ)3

6.5.3 Degenerate Case, A = 0, ∆ϑ=0

S
′

(A) =
´ 1

0
cos(∆ϕ) · (τ2 − τ) · dτ

S
′

(A) = cos(∆ϕ)
´ 1

0
(τ2 − τ) · dτ
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S
′

(A) = cos(∆ϕ)
∣

∣

∣

1

0
(13 τ

3 − 1
2τ

2) · dτ

S
′

(A) = − 1
6 cos(∆ϕ)
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