
1

LL3D Aligner Formulation
Zoox, Inc.

I. INTRODUCTION

The LL3D aligner aligns a new metaspin to the current voxel grid,
so that points can be added to the correct voxels. More specifically,
the points in the metaspin are aligned to surfels built from the voxel
grid using ICP. The standard ICP iterates between a data association
step and an optimization step. For the aligner, we replace the data
association step by a voxel lookup and finds the closest point from
the point to the surfel of the voxel it is in.

This document contains the exact mathematical formulation of the
aligner, with derivations and proofs.

II. COST FUNCTION DEFINITION

Given the current voxel grid G, and set of points {pi}, we want
to find a transform T ∈ SE(3) that minimizes the following cost
function:

C(T) =

N∑
i=1

f(g(pi, T), G) (1)

where g is a vector function that applies the SE(3) transform T to
a point p, and f is a scalar function that given a point p, gives a
measure of its “distance” to the grid G.

To define precisely the grid G, we index its voxels by an integer
triple v ∈ Z3, some voxels have surfels, some do not (unoccupied,
too few points etc.), let the set H ⊆ Z3 be the set of voxels having
valid surfels, and P : H → P be a function that maps a valid voxel
to its surfel (here P is the set of all planes in R3, any representation
will do). Then G = (H,P).

Next we define the function f as follows:

f(p, G) =

{
||p− r(p, Pv(p))||2 if v(p) ∈ H
l2 otherwise

(2)

Here v : R3 → Z3 is a function that finds the voxel a point falls
in, r is a function that given a point p and a plane P , returns the
point on the plane that is closet to p, and l is the diagonal length of
a voxel. Because l2 is an upper bound on any square distance from
a point to a surfel (see Theorem 1), Equation 2 penalizes the case a
point falls to an invalid voxel.

III. ICP SOLVER

We follow the standard ICP procedure of first fixing T and compute
the closest points, then fixing the closest points and optimize for T .
Let’s rearrange the cost function to make the two steps explicit. First
define a sequence of voxel indices {vi} that is a function of T , each
voxel index is given by vi = v(g(pi, T)), that is, the index of voxel
the transformed point falls in. Then define the set of closest points
{ri}(T, {vi}, G), where each ri is given by:

ri =

{
r(g(pi, T), Pvi) if vi ∈ H
0 otherwise

(3)

And define a set I that is a function of {vi} and G:

I({vi}, G) = {i : vi ∈ H} (4)

Then the cost C(T) can be written as

C(T) = C(T, {vi}(T), {ri}(T, {vi}(T)))

=
∑

i∈I({vi}(T))

||g(pi, T)− ri(T,vi(T))||2 +
∑

i/∈I({vi}(T))

l2

(5)

here we are only showing dependency on T for clarity (you can think
of G as a constant).

Then ICP amounts to first fix T = T ∗ to find {vi}(T ∗) and
{ri}(T ∗, {vi}(T ∗)), then fix {vi}(T ∗) and {ri}(T ∗, {vi}(T ∗)),
and optimize:

C∗(T) = C(T, {vi}(T ∗), {ri}(T ∗, {vi}(T ∗)))

=
∑

i∈I({vi}(T∗))

||g(pi, T)− ri(T
∗,vi(T

∗))||2 +
∑

i/∈I({vi}(T∗))

l2

(6)

It turns out there is a closed-form solution to finding the global
minimum of C∗(T). If we parameterize the SE(3) transform by a
unit quaternion and a translation vector T = (q, t), Algorithm 1 lists
the steps required to compute the global minimum in closed-form,
based on an eigenvalue decomposition. In the algorithm pseudo code,
I = I({vi}(T ∗)) and ri = ri(T

∗,vi(T
∗)) to keep the presentation

clear. The fact this algorithm indeed gives the global minimum is
proved in Theorem 2. Note that Algorithm 1 is essentially the same as
the algorithm described in Section III-C of the original ICP paper [1],
except the small difference that the matrix M defined in Algorithm 1
is the transpose of the cross-covariance matrix Σpx defined in [1].

IV. REGULARIZED ICP

Once alignment has been run long enough, we may drift arbitrarily.
Drifting in pitch and roll is particularly harmful because the ground
plane may eventually drift off to be vertical and extend outside of the
limited z-bounds of the LL3D volume. In this section we consider
adding a regularization term to the standard formulation to constrain
drift in pitch and roll.

The local utm frame’s z-axis is always opposite to the gravity
direction. Hence, we can use local utm frame’s z-axis to constrain
LL3D aligner’s pitch and roll. In order to do this, we can compute
the 6dof transformation local utm from grid. Last column of the
rotation matrix of local utm from grid transformation gives us the
drift in pitch and roll from the reference vertical direction.

In the following equations, let’s denote grid frame as G, local utm
frame as L, cloud frame as C and rotation from source coordinate
frame A to destination coordinate frame B as RB

A . So, the above
constraint can be added as a regularization term:

ζ(q) = (RL
G(q)ẑ)T ẑ (7)

Here, ẑ = [0, 0, 1]T . Goal here is to maximize ζ(q).
Note that the goal of the aligner is to compute the transformation:

grid from cloud. So, ζ(q) becomes:

ζ(q) = (RL
CRG

C

T
(q)ẑ)T ẑ = ẑTRG

C(q)RL
C

T
ẑ (8)

Choosing
û = RL

C

T
ẑ = RC

L ẑ (9)

2

Algorithm 1 Closed-form global solution for T̂ = arg minT C
∗(T)

1: if I = ∅ then
2: T̂ ← T ∗

3: return T̂
4: end if
5: Mrp ← 1

|I|
∑

i∈I rip
T
i

6: r̄← 1
|I|
∑

i∈I ri
7: p̄← 1

|I|
∑

i∈I pi

8: M←Mrp − r̄p̄T

9: Q←


M11 +M22 +M33 −M23 +M32 M13 −M31 −M12 +M21

−M23 +M32 M11 −M22 −M33 M12 +M21 M13 +M31

M13 −M31 M12 +M21 −M11 +M22 −M33 M23 +M32

−M12 +M21 M13 +M31 M23 +M32 −M11 −M22 +M33


10: q̂← EigenvectorOfLargestEigenvalue(Q)
11: R̂← ToRotationMatrix(q̂)
12: t̂← r̄− R̂p̄
13: T̂ ← (q̂, t̂)
14: return T̂

and denoting
R(q) = RG

C(q) (10)

we have:

ζ(q) = ẑT (R(q)û)

= tr(ẑ(R(q)û)T)

= tr(ẑûTRT (q))

(11)

If û = [u1, u2, u3], then we have

ẑûT =

 0 0 0
0 0 0
u1 u2 u3

 (12)

Maximizing the regularization term described in Equation 11 is
equivalent to minimizing its negative. Let λ be the regularization
weight which is independent of the number of points. As C(T) has
been defined as the sum of losses and not the average loss, we need to
multiply the regularization term with N . So the overall cost function
we optimize is:

C̄(T) =

N∑
i=1

f(g(pi, T), G)− λN(ζ(q)− 1) (13)

Note here that q is the quaternion representation of the rotation
component of T . We’ve also added a −1 to ζ(q) to ensure the overall
cost function is still ≥ 0.

Observing that Equation 11 and Equation 33, have very similar
form. This suggests that the optimal transformation can be achieved
by modifying the last row of M in Equation 34. Since the final
expression in Equation 33 also has a negative sign and a 2|I| factor
outside the trace, we can first modify λ to:

λ← λN/(2|I|) (14)

and then update M to be:

M31 ←M31 + λu1

M32 ←M32 + λu2

M33 ←M33 + λu3

(15)

APPENDIX

Theorem 1. Given a cubic box B in R3, a plane P fitted to points
in B in the least-square sense, and a point p ∈ B, we have

||p− r(p, P)||2 ≤ l2 (16)

where r is a function returning the closest point on P to p, and l is
the diagonal length of B.

Proof. Because P is a least-square-fit plane of points in B, it goes
through the mean of the points m, and we have m ∈ B (mean
preserves inequalities), then

||p− r(p, P)||2 = ((p−m) · n̂)2 ≤ ||p−m||2 ≤ l2 (17)

where n̂ is the unit normal of P .

Lemma 1. Given two sequences of vectors {ai} and {bi} of the
same length N > 0, and each vector is D-dimensional (with D > 0),
we have

1

N

N∑
i=1

aT
i bi = tr(

1

N

N∑
i=1

aib
T
i) (18)

Proof.

tr(
1

N

N∑
i=1

aib
T
i) =

D∑
j=1

1

N

N∑
i=1

[ai]j [bi]j

=
1

N

N∑
i=1

D∑
j=1

[ai]j [bi]j

=
1

N

N∑
i=1

aT
i bi

(19)

Lemma 2. Given a D ×D (D > 0) real symmetric matrix A, we
have

∀(x ∈ RD, ||x|| = 1),xTAx ≤ uTAu (20)

where u is the eigenvector (normalized) corresponding to the largest
eigenvalue of A.

Proof. Since A is real symmetric, it has an eigenvalue decomposition

A = WΛWT (21)

3

where W is orthogonal and Λ is the diagonal matrix with the
eigenvalues along the diagonal. Then we have ∀(x ∈ RD, ||x|| = 1):

xTAx = xTWΛWTx

= (WTx)TΛ(WTx)

= yTΛy

=

D∑
i=1

λiy
2
i

(22)

We defined the variable y = WTx in the above. Now because
||x|| = 1 and W is orthogonal, we have

D∑
i=1

y2i = yTy = xTWWTx = xTx = 1 (23)

Let λ be an eigenvalue such that λ = maxi λi, and u be its
(normalized) eigenvector, then because ∀i, λi ≤ λ, y2i ≥ 0

xTAx =

D∑
i=1

λiy
2
i ≤

D∑
i=1

λy2i = λ

D∑
i=1

y2i = λ (24)

Also we have

uTAu = uT (Au) = uT (λu) = λ (25)

This completes the proof.

Theorem 2. Algorithm 1 returns a T̂ that is the global minimum
of C∗(T). In other words, T̂ ∈ SE(3) and ∀T ∈ SE(3), C∗(T) ≥
C∗(T̂).

Proof. If I = ∅, we have C∗(T) =
∑N

i=1 l
2, which is constant,

hence any T̂ ∈ SE(3) is a global minimum. Since the transform
from the previous iteration T ∗ is in SE(3) by recursion, T̂ is also in
SE(3). Let us focus on the case I 6= ∅.

When I 6= ∅, by definition Algorithm 1 always returns a unit
vector q̂, hence we have T̂ ∈ SE(3). Now let’s concentrate on
proving the second half of the theorem statement, that is ∀T ∈
SE(3), C∗(T) ≥ C∗(T̂). First let’s get rid of the translation compo-
nent then we can focus on q. Expanding g(pi, T) = R(q)pi + t
into Equation 6, we have

C∗(T) =
∑
i∈I

||R(q)pi + t− ri||2 +
∑
i/∈I

l2 (26)

Concentrating on the first term and define bi = ri − R(q)pi, we
have∑

i∈I

||R(q)pi + t− ri||2 =
∑
i∈I

||t− bi||2

=
∑
i∈I

(t− bi)
T (t− bi)

=
∑
i∈I

(tT t− 2bT
i t + bT

i bi)

(27)

Now using the usual notation to denote the mean and covariance
matrix of {bi}, i.e b̄ = 1/|I|

∑
i∈I bi and Σ = 1/|I|

∑
i∈I(bi −

b̄)(bi − b̄)T , by Lemma 1, we have

tr(Σ) = tr

(
1

|I|
∑
i∈I

(bi − b̄)(bi − b̄)T
)

=
1

|I|
∑
i∈I

(bi − b̄)T (bi − b̄)

=
1

|I|
∑
i∈I

(bT
i bi − 2b̄Tbi + b̄T b̄)

=
1

|I|
∑
i∈I

bT
i bi − 2b̄T b̄ + b̄T b̄

=
1

|I|
∑
i∈I

bT
i bi − b̄T b̄

(28)

With this result, let us go back to Equation 27∑
i∈I

||R(q)pi + t− ri||2 =
∑
i∈I

(tT t− 2bT
i t + bT

i bi)

= |I|(tT t− 2b̄T t + tr(Σ) + b̄T b̄)

= |I|((t− b̄)T (t− b̄) + tr(Σ))

≥ |I|tr(Σ)
(29)

with equality at t = b̄ = r̄−R(q)p̄. Hence we have

C∗(T) = C∗(q, t) ≥ C∗(q, r̄−R(q)p̄) (30)

Let us define a new cost function on only q to be

C∗q (q) = C∗(q, r̄−R(q)p̄) (31)

Then we wish to show that C∗q (q) ≥ C∗q (q̂) for any q ∈ R4, ||q|| =
1. Let’s first expand the expression for C∗q (q)

C∗q (q) =
∑
i∈I

||R(q)pi + r̄−R(q)p̄− ri||2 +
∑
i/∈I

l2

=
∑
i∈I

||R(q)(pi − p̄)− (ri − r̄)||2 +
∑
i/∈I

l2

=
∑
i∈I

(R(q)(pi − p̄)− (ri − r̄))T (R(q)(pi − p̄)− (ri − r̄))

+
∑
i/∈I

l2

=
∑
i∈I

(
(pi − p̄)TRT (q)− (ri − r̄)T

)
(R(q)(pi − p̄)− (ri − r̄)) +

∑
i/∈I

l2

=
∑
i∈I

(
(pi − p̄)TRT (q)R(q)(pi − p̄)

−2(ri − r̄)TR(q)(pi − p̄) + (ri − r̄)T (ri − r̄)
)

+
∑
i/∈I

l2

=
∑
i∈I

(
(pi − p̄)T (pi − p̄)

−2(ri − r̄)TR(q)(pi − p̄) + (ri − r̄)T (ri − r̄)
)

+
∑
i/∈I

l2

=
∑
i∈I

(pi − p̄)T (pi − p̄)

− 2
∑
i∈I

(ri − r̄)TR(q)(pi − p̄) +
∑
i∈I

(ri − r̄)T (ri − r̄)

+
∑
i/∈I

l2 (32)

4

Let us now concentrate on the term involving q, the other terms are
all constant:

− 2
∑
i∈I

(ri − r̄)TR(q)(pi − p̄)

= −2|I|

(
1

|I|
∑
i∈I

(ri − r̄)TR(q)(pi − p̄)

)

= −2|I|tr

(
1

|I|
∑
i∈I

(ri − r̄)(R(q)(pi − p̄))T
)

= −2|I|tr

(
1

|I|
∑
i∈I

(ri − r̄)(pi − p̄)TRT (q)

)
= −2|I|tr

(
MRT (q)

)

(33)

Here again we applied Lemma 1, and the fact that M = Mrp −
r̄p̄T = 1

|I|
∑

i∈I(ri − r̄)(pi − p̄)T . To see this, expand the sum:

1

|I|
∑
i∈I

(ri − r̄)(pi − p̄)T =
1

|I|
∑
i∈I

(
rip

T
i − rip̄

T − r̄pT
i + r̄p̄T

)
=

1

|I|
∑
i∈I

rip
T
i − r̄p̄T − r̄p̄T + r̄p̄T

= Mrp − r̄p̄T = M
(34)

Using the standard conversion from a unit quaternion q = (w,v) to
a rotation matrix

R(q) =
(
w2 − ||v||2

)
I + 2

(
w[v]× + vvT

)
(35)

we have

R(q)

=

 w2 − v21 − v22 − v23 0 0
0 w2 − v21 − v22 − v23 0
0 0 w2 − v21 − v22 − v23


+ 2

w
 0 −v3 v2

v3 0 −v1
−v2 v1 0

+

 v21 v1v2 v1v3
v2v1 v22 v2v3
v3v1 v3v2 v23


=

 w2 − v21 − v22 − v23 0 0
0 w2 − v21 − v22 − v23 0
0 0 w2 − v21 − v22 − v23


+

 0 −2wv3 2wv2
2wv3 0 −2wv1
−2wv2 2wv1 0

+

 2v21 2v1v2 2v1v3
2v2v1 2v22 2v2v3
2v3v1 2v3v2 2v23


=

 w2 + v21 − v22 − v23 2(v1v2 − wv3) 2(v1v3 + wv2)
2(v2v1 + wv3) w2 − v21 + v22 − v23 2(v2v3 − wv1)
2(v3v1 − wv2) 2(v3v2 + wv1) w2 − v21 − v22 + v23


(36)

Substituting this result into tr(MRT (q)), we get

tr(MRT (q))

=
3∑

i=1

3∑
j=1

MijRij(q)

= M11(w2 + v21 − v22 − v23) + 2M12(v1v2 − wv3) + 2M13(v1v3 + wv2)

+ 2M21(v2v1 + wv3) +M22(w2 − v21 + v22 − v23) + 2M23(v2v3 − wv1)

+ 2M31(v3v1 − wv2) + 2M32(v3v2 + wv1) +M33(w2 − v21 − v22 + v23)

= (M11 +M22 +M33)w2 + 2(−M23 +M32)wv1 + 2(M13 −M31)wv2

+ 2(−M12 +M21)wv3 + (M11 −M22 −M33)v21 + 2(M12 +M21)v1v2

+ 2(M13 +M31)v1v3 + (−M11 +M22 −M33)v22

+ 2(M23 +M32)v2v3 + (−M11 −M22 +M33)v23

= qTQq (37)

where Q is the matrix defined in Algorithm 1. Now because Q is
real symmetric, Lemma 2 applies, and we have

∀(q ∈ R4, ||q|| = 1),qTQq ≤ q̂TQq̂ (38)

This implies

∀(q ∈ R4, ||q|| = 1), C∗q (q) ≥ C∗q (q̂) (39)

Hence ∀(T = (q, t) ∈ SE(3)),

C∗(T) = C∗(q, t) ≥ C∗(q, r̄−R(q)p̄)

= C∗q (q) ≥ C∗q (q̂) = C∗(q̂, r̄−R(q̂)p̄)

= C∗(q̂, t̂) = C∗(T̂)

(40)

REFERENCES

[1] P. J. Besl and N. D. McKay. A method for registration of 3-d shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(2):239–
256, 1992.

