
Fleet-DAgger: Interactive Robot Fleet
Learning with Scalable Human Supervision

Ryan Hoque, Lawrence Yunliang Chen, Satvik Sharma,
Karthik Dharmarajan, Brijen Thananjeyan, Pieter Abbeel, Ken Goldberg

University of California, Berkeley

Abstract:
Commercial and industrial deployments of robot fleets at Amazon, Nimble, Plus
One, Waymo, and Zoox query remote human teleoperators when robots are at risk
or unable to make task progress. With continual learning, interventions from the
remote pool of humans can also be used to improve the robot fleet control policy
over time. A central question is how to effectively allocate limited human attention.
Prior work addresses this in the single-robot, single-human setting; we formalize
the Interactive Fleet Learning (IFL) setting, in which multiple robots interactively
query and learn from multiple human supervisors. We propose Return on Human
Effort (ROHE) as a new metric and Fleet-DAgger, a family of IFL algorithms.
We present an open-source IFL benchmark suite of GPU-accelerated Isaac Gym
environments for standardized evaluation and development of IFL algorithms.
We compare a novel Fleet-DAgger algorithm to 4 baselines with 100 robots in
simulation. We also perform a physical block-pushing experiment with 4 ABB
YuMi robot arms and 2 remote humans. Experiments suggest that the allocation
of humans to robots significantly affects the performance of the fleet, and that the
novel Fleet-DAgger algorithm can achieve up to 8.8× higher ROHE than baselines.
See https://tinyurl.com/fleet-dagger for supplemental material.

Keywords: Fleet Learning, Interactive Learning, Human-Robot Interaction

1 Introduction
Amazon, Nimble, Plus One, Waymo, and Zoox use remote human supervision of robot fleets in
applications ranging from self-driving taxis to automated warehouse fulfillment [1, 2, 3, 4, 5]. These
robots intermittently cede control during task execution to remote human supervisors for corrective
interventions. The interventions take place either during learning, when they are used to improve the
robot policy, or during execution, when the policy is no longer updated but robots can still request
human assistance when needed to improve reliability. In the continual learning setting, these occur
simultaneously: the robot policy has been deployed but continues to be updated indefinitely with
additional intervention data. Furthermore, any individual robot can share its intervention data with
the rest of the fleet. As opposed to robot swarms that must coordinate with each other to achieve a
common objective, a robot fleet is a set of independent robots simultaneously executing the same
control policy in parallel environments. We refer to the setting of a robot fleet learning via interactive
requests for human supervision (see Figure 1) as Interactive Fleet Learning (IFL).

Of central importance in IFL is the supervisor allocation problem: how should limited human
supervision be allocated to robots in a manner that maximizes the throughput of the fleet? Prior
work studies this in the single-robot, single-human case. A variety of interactive learning algorithms
have been proposed that estimate quantities such as uncertainty [6], novelty [7, 8, 9], risk [8, 9], and
predicted action discrepancy [10, 11]. However, it remains unclear which algorithms are the most
effective when generalized to the multi-robot, multi-human case.

To this end, we formalize the IFL problem and present the IFL Benchmark (IFLB), a new open-source
Python toolkit and benchmark for developing and evaluating human-to-robot allocation algorithms

AUTOLab at UC Berkeley. Correspondence to ryanhoque@berkeley.edu, goldberg@berkeley.edu.

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

ar
X

iv
:2

20
6.

14
34

9v
2

 [
cs

.R
O

]
 1

6
N

ov
 2

02
2

https://tinyurl.com/fleet-dagger

𝟂

Figure 1: In the Interactive Fleet Learning (IFL) setting, a set of M remote human supervisors are allocated to a
fleet of N robots (N �M) with a robot-gated allocation policy ω. The humans share control policy πH and
the robot fleet shares control policy πθt , which learns from new human intervention data over time (Section 3).

for fleet learning. The IFLB includes environments from Isaac Gym [12], which enabled efficient
simulation of thousands of learning robots for the first time in 2021. This paper makes the following
contributions: (1) the first formalism for multi-robot, multi-human interactive learning, (2) the
Return on Human Effort (ROHE) metric for evaluating IFL algorithms, (3) the IFLB, an open-source
software benchmark and toolkit for IFL algorithms with 3 Isaac Gym environments for complex
robotic tasks, (4) Fleet-DAgger, a novel family of IFL algorithms for supervisor allocation, (5) results
from large-scale simulation experiments with a fleet of 100 robots, and (6) real robot results with 4
physical robot arms and 2 human supervisors providing teleoperation remotely over the Internet.

2 Related Work
2.1 Allocating Human Supervisors to Robots at Execution Time
For human-robot teams, deciding when to transfer control between robots and humans during
execution is a widely studied topic in the literature of both sliding autonomy [13, 14, 15] and Human-
Robot Interaction (HRI). In sliding autonomy, also known as adjustable autonomy [16, 17] or adaptive
automation [18], humans and robots dynamically adjust their level of autonomy and transfer control
to each other during execution [15, 18]. Since identifying which robot to assist in a large robot fleet
can be overwhelming for a human operator [19, 20, 21, 22, 23], several strategies, such as using
a cost-benefit analysis to decide whether to request operator assistance [13] and using an advising
agent to filter robot requests [24], have been proposed to improve the performance of human-robot
teams [22, 24, 25] and increase the number of robots that can be controlled [26], a quantity known
as “fan-out” [27]. Other examples include user modeling [13, 14, 22, 25] and studying interaction
modes [28] for better system and interface design [29, 30]. Zheng et al. [31] propose computing the
estimated time until stopping for mobile robots and prioritizing robots accordingly. Ji et al. [32]
consider the setting where physical assistance is required to resume tasks for navigation robots and
formalize single-human, multi-robot allocation as graph traversal. Dahiya et al. [33] formulate the
problem of multi-human, multi-robot allocation during execution as a Restless Multi-Armed Bandit
problem. Allocation of humans to robots has also been studied from the perspectives of queueing
theory and scheduling theory [23, 34, 35, 36, 37, 38]. The vast majority of the human-robot teaming
and queueing theory work, however, does not involve learning; the robot control policies are assumed
to be fixed. In contrast, we study supervisor allocation during robot learning, where allocation affects
not only human burden and task performance but also the efficiency of policy learning.

2.2 Single-Robot, Single-Human Interactive Learning
Imitation learning (IL) is a paradigm of robot learning in which a robot uses demonstrations from a
human to initialize and/or improve its policy [39, 40, 41, 42, 43, 44]. However, learning from purely
offline data often suffers from distribution shift [45, 46], as compounding approximation error leads
to states that were not visited by the human. This can be mitigated with online data collection with
algorithms such as Dataset Aggregration (DAgger) [45] and interactive imitation learning [47, 48, 49].
Human-gated interactive IL algorithms [50, 51, 52] require the human to monitor the robot learning
process and decide when to take and cede control of the system. While intuitive, these approaches
are not scalable to large fleets of robots or the long periods of time involved in continual learning,
as humans cannot effectively focus on many robots simultaneously [21, 22, 23] and are prone to
fatigue [53]. To reduce the burden on the supervisor, several robot-gated interactive IL algorithms
such as SafeDAgger [10], EnsembleDAgger [6], LazyDAgger [11], and ThriftyDAgger [9] have
been proposed, in which the robot actively solicits human interventions when certain criteria are met.

2

Interactive reinforcement learning (RL) [54, 55, 56, 57, 58] is another active area of research in which
robots learn from both online human feedback and their own experience. However, these interactive
learning algorithms are designed for and primarily studied in the single-robot, single-human setting.
Other works related to single-robot interactive learning include task allocation [59]; in contrast, we
focus on efficient robot learning of a single control policy.

2.3 Multi-Robot Interactive Learning

In this paper, we study allocation policies for multiple humans and multiple robots. While many
existing works [60, 61, 62, 63, 64] have leveraged NVIDIA’s Isaac Gym’s [12] capability of parallel
simulation to accelerate reinforcement learning with multiple robots, these approaches do not involve
human supervision. The work that is closest to ours is by Swamy et al. [65], who study the multi-robot,
single-human problem of allocating the attention of one human operator during robot fleet learning.
They propose to learn an internal model of human preferences as a human supervises a small fleet of
4 robots and use this model to assist the human in supervising a larger fleet of 12 robots. While this
approach mitigates the scaling issue in human-gated interactive IL, even a small fleet of robots can be
difficult for a single human supervisor to simultaneously monitor and control.

To the best of our knowledge, this work is the first to formalize and study multi-robot, multi-human
interactive learning. This problem setting poses unique challenges, especially as the size of the fleet
grows large relative to the number of humans, as each human allocation affects both the robot that
receives supervision and the robots that do not receive human attention.

3 Interactive Fleet Learning Problem Formulation
We consider a fleet of N robots operating in parallel as a set of N independent Markov decision
processes (MDPs) {Mi}Ni=1 specified by the tuple (S,A, p, r, γ, p0

i) with the same state space S,
action spaceA, unknown transition dynamics p : S×A×S → [0, 1], reward function r : S×A → R,
and discount factor γ ∈ [0, 1), but potentially different initial state distributions p0

i . We assume the
MDPs have an identical indicator function c(s) : S → {0, 1} that identifies which states s ∈ S
violate a constraint in the MDP. States that violate MDP constraints are fault states from which the
robot cannot make further progress. For instance, the robot may be stuck on the side of the road or
have incurred hardware damage. We assume that the timesteps are synchronized across all robots and
that they share the same non-stationary policy πθt : S → A, parameterized by θt at each timestep t.

The collection of {Mi}Ni=1 can be reformulated as a single MDP M = (SN ,AN , p̄, r̄, γ, p̄0),
composed of vectorized states and actions of all robots in the fleet (denoted by bold font) and joint
transition dynamics. In particular, s = (s1, ..., sN) ∈ SN , a = (a1, ..., aN) ∈ AN , p̄(st+1|st,at) =
ΠN
i=1p(s

t+1
i |sti, ati), r̄(s,a) = ΣNi=1r(si, ai), and p̄0 = ΠN

i=1p
0
i (s

0
i).

We assume that robots can query a set of M � N human supervisors for assistance interactively
(i.e., during execution of πθt). We assume that each human can help only one robot at a time and that
all humans have the same policy πH : S → AH , where AH = A ∪ {R} and R is a hard reset, an
action that resets the MDP to the initial state distribution s0 ∼ p0

i . As opposed to a soft reset that
can be performed autonomously by the robot via a reset action r ∈ A (e.g., a new bin arrives in an
assembly line), a hard reset requires human intervention due to constraint violation (i.e., entering
some s where c(s) = 1). A human assigned to a robot either performs hard reset R (if c(s) = 1)
or teleoperates the robot system with policy πH (if c(s) = 0). A hard reset R takes tR timesteps to
perform, and all other actions take 1 timestep.

Supervisor allocation (i.e., the assignment of humans to robots) is determined by an allocation policy

ω : (st, πθt ,α
t−1,xt) 7→ αt ∈ {0, 1}N×M s.t.

M∑
j=1

αtij ≤ 1 and
N∑
i=1

αtij ≤ 1 ∀i, j, (1)

where st are the current states for each of the robots, αt is an N ×M binary matrix that indicates
which robots will receive assistance from which human at the current timestep t, and xt is an
augmented state containing any auxiliary information for each robot, such as the type and duration
of an ongoing intervention. Unlike Dahiya et al. [33] which studies execution-time allocation, the
allocation policy ω here depends on the current robot policy πθt , which in turn affects the speed of
the policy learning. While there are a variety of potential objectives to consider, e.g., minimizing
constraint violations in a safety-critical environment, we define the IFL objective as return on human

3

effort (ROHE):

max
ω∈Ω

Eτ∼pω,θ0 (τ)

[
M

N
·

∑T
t=0 r̄(s

t,at)

1+
∑T
t=0 ‖ω(st, πθt ,α

t−1,xt)‖2F

]
, (2)

where Ω is the set of allocation policies, T is the total amount of time the fleet operates (rather than
the time horizon of an individual task execution), θ0 are the initial parameters of the robot policy,
and ‖ · ‖F is the Frobenius norm. The objective is the expected ratio of the cumulative reward across
all timesteps and all robots to the total amount of human time spent helping robots with allocation
policy ω, with a scaling factor to normalize for the number of robots and humans and an addition of
1 in the denominator for the degenerate case of zero human time. Intuitively, the ROHE measures
the performance of the robot fleet normalized by the total human effort required to achieve this
performance. We provide a more thorough derivation of the ROHE objective in Appendix 8.1.

Since human teleoperation with πH provides additional online data, this data can be used to update
the robot policy πθt with some policy update function f (e.g., gradient descent):{

Dt+1 ← Dt ∪Dt
H where Dt

H := {(sti, πH(sti)) : πH(sti) 6= R and
∑M
j=1 α

t
ij = 1}

πθt+1
← f(πθt , D

t+1)
(3)

4 Interactive Fleet Learning Algorithms
4.1 Fleet-DAgger
Given the problem formulation above, we propose Fleet-DAgger, a family of IFL algorithms, where
an IFL algorithm is a supervisor allocation strategy (i.e., it specifies an ω ∈ Ω as defined in Section 3).
The learning algorithm in Fleet-DAgger is interactive imitation learning with dataset aggregation
from prior work [45, 50, 9]: its policy update function f is supervised learning on Dt, which consists
of all human data collected so far (Section 3). The novel component of each Fleet-DAgger algorithm
is its supervisor allocation scheme based on unique priority function p̂ : (s, πθt) → [0,∞) that
indicates a priority score to assign to each robot based on its state s and the current policy πθt ,
where, similar to scheduling theory, a higher value indicates a higher priority robot. To reduce
thrashing [11, 9], Fleet-DAgger algorithms also specify tT , the minimum time a human supervisor
must spend teleoperating a robot.

Fleet-DAgger uses priority function p̂ and tT to define an allocation ω as follows (see Appendix 8.2
for the full pseudocode). At each timestep t, Fleet-DAgger first scores all robots with p̂ and sorts
the robots by their priority values. If a human supervisor is currently performing hard reset action R
and tR timesteps have not elapsed, that human continues to help that robot. If a human is currently
teleoperating a robot and the minimum tT timesteps have not elapsed, that human continues to
teleoperate the robot. If a robot with a human supervisor continues to be high priority after the
minimum intervention time (tR for a hard reset or tT for teleoperation) has elapsed, that human
remains assigned to the robot. If a human is available to help a robot, the human is reassigned to
the robot with the highest priority value that is currently unassisted. Finally, if a robot has priority
p̂(·) = 0, it does not receive assistance even if a human is available.

4.2 Fleet-DAgger Algorithms
All algorithms below specify a unique priority function p̂, which is synthesized with Fleet-DAgger as
described in Section 4.1 to specify an allocation ω. More details are available in the appendix.

Constraint (C): The Constraint baseline measures the performance of the robot fleet when only
trained on offline human demonstrations (i.e., ∀t, πθt = πθ0). At all timesteps t, this baseline gives
priority p̂(·) = 1 for robots that have violated a constraint (c(sti) = 1) and require a hard reset,
and p̂(·) = 0 for all other robots. We refer to this as C-prioritization for Constraint. Thus, the
robot fleet can only receive hard resets from human supervisors (no human teleoperation). Without
C-prioritization, robots that require hard resets would remain indefinitely idle.

Random: This baseline simply assigns a random priority for each robot at each timestep. To control
the total amount of human supervision, we introduce a threshold hyperparameter such that if a robot’s
priority value is below the threshold, its priority is set to zero and it will not request help.

Fleet-EnsembleDAgger (U.C.): This baseline adapts EnsembleDAgger [6] to the IFL setting. En-
sembleDAgger uses the output variance among an ensemble of neural networks bootstrapped on

4

subsets of the training data as an estimate of epistemic uncertainty; accordingly, we define the robot
priority for Fleet-EnsembleDAgger as ensemble variance. Since ensemble variance is designed
for continuous action spaces, for environments with discrete action spaces we instead estimate the
uncertainty with the Shannon entropy [66] among the outputs of a single classifier network.We refer
to this priority function as U -prioritization for Uncertainty. Finally, since EnsembleDAgger was not
designed for environments with constraint violations and idle robots will negatively affect the ROHE,
we add C-prioritization for a more fair comparison. Specifically, given an uncertainty threshold value,
robots with uncertainty above threshold are prioritized first in order of their uncertainty (U), followed
by constraint-violating robots (C).

Fleet-ThriftyDAgger (U.G.C.): This baseline adapts the ThriftyDAgger algorithm [9] to the IFL
setting. ThriftyDAgger uses a synthesis of uncertainty (which we refer to as the U -prioritization
value) and the probability of task failure (G-prioritization, estimated with a Goal critic Q-function) to
query a human for supervision. Since Fleet-DAgger requires a single metric by which to compare
different robots, we adapt ThriftyDAgger to the fleet setting by calculating a linear combination of
the U value and G value after normalizing each value with running estimates of their means and
standard deviations. As in [9], we pretrain the goal critic on an offline dataset of human and robot task
execution. Similar to Fleet-EnsembleDAgger, we first prioritize by the combined uncertainty-goal
value above a parameterized threshold, followed by C-prioritization.

Constraint-Uncertainty-Risk (C.U.R.): Here we propose a novel Fleet-DAgger algorithm. As
the name suggests, C.U.R. does C-prioritization, followed by U -prioritization, followed by R-
prioritization. R stands for Risk, which we define as the probability of constraint violation. Intuitively,
idle robots should be reset in order to continue making progress, uncertain robots should receive
more human supervision in areas with little to no reference behavior to imitate, and robots at risk
should request human teleoperation to safety before an expensive hard reset. As in [67], we estimate
the probability of constraint violation with a safety critic Q-function and initialize the safety critic
on an offline dataset of constraint violations. C.U.R. also prioritizes differently at the beginning of
execution for a parameterized length of time, during which constraint violations are assigned zero
priority rather than high priority. Here, the intuition is that rather than attending to hard resets for an
initially low-performing policy, human intervention should instead be spent on valuable teleoperation
data that can improve the robot policy. Hence, during the initial period, constraint-violating robots
remain idle and human attention is allocated to the teleoperation of a smaller number of robots.

5 Interactive Fleet Learning Benchmark
While many algorithms have been proposed for interactive learning [11, 6, 9, 10], to our knowledge
there exists no unified benchmark for evaluating them. To facilitate reproducibility and standardized
evaluation for IFL algorithms, we introduce the Interactive Fleet Learning Benchmark (IFLB). The
IFLB is an open-source Python implementation of IFL with a suite of simulation environments and a
modular software architecture for rapid prototyping and evaluation of new IFL algorithms.

5.1 Environments

The IFLB is built on top of NVIDIA Isaac Gym [12], a highly optimized software platform for end-
to-end GPU-accelerated robot learning released in 2021, without which the simulation of hundreds of
learning robots would be computationally intractable. The IFLB can run efficiently on a single GPU
and currently supports the following 3 Isaac Gym environments with high-dimensional continuous
state and action spaces (see Figure 2): (1) Humanoid, a bipedal legged locomotion task from OpenAI
Gym [68], (2) Anymal, a quadruped legged locomotion task with the ANYmal robot by ANYbotics,
and (3) AllegroHand, a task involving dexterous manipulation of a cube with a 4-finger Allegro
Hand by Wonik Robotics. Constraint violation is defined as (1) the humanoid falling down, (2) the
ANYmal falling down on its torso or knees, and (3) dropping the cube from the hand, respectively.
End users can also add their own custom Isaac Gym environments with ease.

5.2 Software Architecture

The IFLB defines 3 interfaces for the development of IFL algorithms: (1) agents, (2) supervisors, and
(3) allocations. An agent is an implementation of the robot fleet policy πθt (Section 3), such as an
IL or RL agent. A supervisor is an implementation of the supervisor policy πH (Section 3), such
as a fully trained RL agent, a model-based planner, or a teleoperation interface for remote human
supervisors. Lastly, an allocation is an implementation of the priority function p̂ (Section 4), such as

5

Figure 2: Isaac Gym benchmark environments in the IFLB.

C.U.R. priority or ThriftyDAgger priority. For reference, the IFLB includes an imitation learning
agent, a fully trained RL supervisor using Isaac Gym’s reference PPO [69] implementation, and
all allocations from Section 4, which we use in our experiments. Users of the IFLB can flexibly
implement their own IFL algorithms by defining new agents, supervisors, and allocations.

Given an agent, supervisor, allocation, and environment, the IFLB runs Fleet-DAgger as described in
Section 4.1. IFLB allows flexible command line configuration of all parameters of the experiment (e.g.,
tT , tR, N , M) as well as the parameters of the agent, supervisor, and allocation. If desired, the code
can also be modified to support families of IFL algorithms other than Fleet-DAgger. The benchmark
is available open-source at https://github.com/BerkeleyAutomation/ifl_benchmark.

6 Experiments
6.1 Metrics

Throughout online training, we measure four metrics at each timestep t: (1) the cumulative number
of successful task completions across the fleet and up to time t; (2) cumulative hard resets (i.e.,
constraint violations); (3) cumulative idle time, i.e., how long robots spend idle in constraint-violating
states waiting for hard resets; and (4) the return on human effort (ROHE, Equation 2), where reward
is a sparse r ∈ {0, 1} for successful task completion and cumulative human time is measured in
hundreds of timesteps. For the Humanoid and Anymal locomotion environments, success is defined
as reaching the episode horizon without constraint violation and with reward of at least 95% of
that of the supervisor policy. For the goal-conditioned tasks, i.e., AllegroHand and the physical
block-pushing task, success is defined by reaching the goal state.

6.2 IFLB Simulation Experiments

Experimental Setup: We evaluate all Fleet-DAgger algorithms in the 3 benchmark simulation
environments: Humanoid, Anymal, and AllegroHand. We use reinforcement learning agents fully
trained with PPO [69] as the algorithmic supervisor πH . We initialize the robot policy πθ0 with
behavior cloning on an offline dataset of 5000 state-action pairs. For a fair comparison, the Constraint
baseline is given additional offline data equal to the average amount of human time solicited by
C.U.R. by operation time boundary T . The Random baseline’s priority threshold is set such that
in expectation, it reaches the average amount of human time solicited by C.U.R. by time T . Since
Fleet-ThriftyDAgger requires a goal-conditioned task, it is only evaluated on AllegroHand. All
training runs are executed with N = 100 robots, M = 10 humans, tT = 5, tR = 5, and operation
time T = 10000, and are averaged over 3 random seeds. In the appendix, we provide additional
experiments including ablation studies on each component of the C.U.R. algorithm and an analysis of
hyperparameter sensitivity to the number of humans M , minimum intervention time tT , and hard
reset time tR. The IFLB code provides instructions for reproducing results.

Results: We plot results in Figure 3. First, we observe that the choice of IFL algorithm has a
significant impact on all metrics in all environments, indicating that allocation matters in the IFL
setting. We also observe that the robot fleet achieves a higher throughput (number of cumulative task
successes) with C.U.R. allocation than baselines in all environments at all times. C.U.R. also attains
a higher ROHE, indicating more efficient use of human supervision. An increase in ROHE over
time signifies that the improvement in the robot policy πθt outpaces cumulative human supervision,
indicating that the IFL algorithms learn not only where to allocate humans but also when to stop
requesting unnecessary supervision. C.U.R. also incurs fewer hard resets than baselines, especially

6

https://github.com/BerkeleyAutomation/ifl_benchmark

H
um

an
oi

d
A

ny
m

al
A

lle
gr

o
H

an
d

Cumulative
Successes

Cumulative
Hard Resets

Cumulative
Idle Time

Return on
Human Effort

C Random U.C. C.U.R.U.G.C.

Figure 3: Simulation results in the IFLB with N = 100 robots and M = 10 human supervisors, where the
x-axis is timesteps from 0 to T = 10, 000. Shading indicates 1 standard deviation. The C.U.R. algorithm
outperforms all baselines on all environments in terms of ROHE and cumulative successes. (Note that the shape
of the Anymal curves is due to its success classification, episode horizon of 2500, and low hard resets.)

Remote Teleoperation

Hard
Reset

Autonomous
Autonomous

πθ

πθ

Figure 4: Physical Task Setup: an example timestep t in the physical experiment with 2 humans and 4
independent identical robot arms each executing the block pushing task. Robot 1 queries robot policy πθt for an
action given an overhead image of the workspace and executes it in the workspace. Robot 2 is teleoperated by
a remote Human 1, where the human views the overhead image and specifies a pushing action through a user
interface. The red region at the edges of the workspace are constraint violation regions. Human 2 is performing
a physical hard reset for Robot 3, which has violated a constraint in a previous timestep. Robot 4 autonomously
executes the same robot policy as that of Robot 1 on its own state.

Constraint, which must constantly hard reset robots with a low-performing offline policy. For
AllegroHand, however, C.U.R. incurs higher hard resets and a smaller ROHE margin over baselines.
We hypothesize that since the task is too challenging to execute without human supervision in
the given fleet operation time, prioritizing hard resets ironically only gives the robots additional
opportunities to violate constraints. We also see that C-prioritization effectively eliminates idle time;
C.U.R. idle time flattens out after the initial period without C-prioritization.

6.3 Physical Block-Pushing Experiment

Experimental Setup: Finally, we evaluate Fleet-DAgger in a physical block-pushing experiment
with N = 4 ABB YuMi robot arms and M = 2 human supervisors. Each robot arm has an identical
setup for the block-pushing task that consists of a square wooden workspace, a small blue cube, and
a cylindrical end-effector. See Figure 4 for the hardware setup. Constraint violation occurs when the
cube hits the boundary or has moved into regions out of reach for the end-effector at two opposite
corners of the workspace. The objective of each robot is to reach a goal position randomly sampled
from the allowable region of the workspace. At each timestep, the robot chooses one of four discrete
pushing actions corresponding to pushing each of the four vertical faces of the cube orthogonally by
a fixed distance. The robot policy takes an overhead image observation of the cube in the workspace

7

Cumulative
Successes

Cumulative
Hard Resets

Cumulative
Idle Time

Return on
Human Effort

C Random U.C. C.U.R.

Figure 5: Physical results for the block-pushing task with 4 robots and 2 humans, where the x-axis is timesteps.
C.U.R. achieves higher ROHE and cumulative successes as well as lower cumulative hard resets and idle time.
Shading indicates 1 standard deviation.

with the goal programatically generated in the image. Hard resets are physical adjustments of the
cube, while teleoperation is performed over the Internet by a remote human supervisor, who specifies
one of the 4 pushing actions via a keyboard interface. We set tT = 3, tR = 5, and T = 250
for a total of 4 × 250 pushing actions per trial and run each algorithm with 3 random seeds. All
algorithms are initialized with an offline dataset of 3750 image-action pairs (375 samples with 10×
data augmentation).

Results: We plot results in Figure 5. We observe that the C.U.R. algorithm achieves higher ROHE,
higher cumulative successes, lower hard resets, and lower idle time than baselines, albeit by a small
margin. Results suggest that (1) training an accurate safety critic is more difficult in high-dimensional
image space, leading to a smaller gap between C.U.R. and U.C. (i.e., Fleet-EnsembleDAgger), and
(2) U -prioritization in its current form is less suitable for real-world multimodal human supervisors
than it is for deterministic algorithmic supervisors, resulting in a smaller increase in ROHE over time.
Since a human may arbitrarily choose one of multiple equally suitable actions, high robot uncertainty
over these actions does not necessarily translate to a need for human supervision.

7 Limitations and Future Work
The IFL formulation has a number of modeling assumptions that limit its generality. (1) The human
supervisors are homogeneous, (2) all robots operate in the same state and action space, (3) all
robots are independent and do not coordinate with each other, (4) humans have perfect situational
awareness [23] and can move to different robots without any switching latency, (5) hard reset time is
constant, and (6) timesteps are synchronous without network latency or other communication issues
[70]. In terms of experiments, the simulations have algorithmic rather than human supervision, and
the physical task is relatively straightforward with discrete planar actions.

In future work, we will work on removing the assumptions above: learning from nonhomogeneous
supervisors [71] and collecting data from large fleets with limited network bandwidth [72], for
instance. We will also study reinforcement learning algorithms for IFL and run more large-scale
physical experiments. We hope that other robotics researchers will develop their own IFL algorithms
and evaluate them using the benchmark toolkit to accelerate progress.

8

Acknowledgments
This research was performed at the AUTOLab at UC Berkeley in affiliation with the Berkeley AI
Research (BAIR) Lab and the CITRIS “People and Robots” (CPAR) Initiative. The authors were
supported in part by donations from Google, Siemens, Toyota Research Institute, and Autodesk and
by equipment grants from PhotoNeo, NVidia, and Intuitive Surgical. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the sponsors. We thank our colleagues who provided helpful feedback,
code, and suggestions, especially Ashwin Balakrishna, Alejandro Escontrela, and Simeon Adebola.

References
[1] A. Brown. Robin deals with a world where things are changing all around it. Ama-

zon Science Blog, Apr. 2022. URL https://www.amazon.science/latest-news/
robin-deals-with-a-world-where-things-are-changing-all-around-it.

[2] J. Smith. Robotic Arms Are Using Machine Learning to Reach Deeper Into Distribution. Wall
Street Journal, Jan. 2022. ISSN 0099-9660. URL https://tinyurl.com/bdhvfnjc.

[3] Logistics Automation with Plus One Robotics. Parcel Monitor, May 2022. URL https:
//tinyurl.com/4susnhmz.

[4] A. C. Madrigal. Waymo’s Robot Cars, and the Humans Who Tend to Them. The Atlantic,
Aug. 2018. URL https://www.theatlantic.com/technology/archive/2018/08/
waymos-robot-cars-and-the-humans-who-tend-to-them/568051/. Section: Tech-
nology.

[5] E. Chu. How Zoox Builds Autonomous Vehicles from the Wheels Up-Blog.
AI Exchange, Apr. 2022. URL https://exchange.scale.com/public/blogs/
how-zoox-builds-autonomous-vehicles-from-the-wheels-up.

[6] K. Menda, K. Driggs-Campbell, and M. J. Kochenderfer. EnsembleDAgger: A Bayesian
Approach to Safe Imitation Learning. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2019.

[7] B. Kim and J. Pineau. Maximum mean discrepancy imitation learning. In Robotics: Science
and Systems (RSS), 2013.

[8] M. Laskey, S. Staszak, W. Hsieh, J. Mahler, F. Pokorny, A. Dragan, and K. Goldberg. SHIV:
Reducing supervisor burden using support vectors for efficient learning from demonstrations in
high dimensional state spaces. In Proc. IEEE Int. Conf. Robotics and Automation (ICRA), 2016.

[9] R. Hoque, A. Balakrishna, E. Novoseller, A. Wilcox, D. S. Brown, and K. Goldberg. Thriftydag-
ger: Budget-aware novelty and risk gating for interactive imitation learning. Conference on
Robot Learning (CoRL), 2021.

[10] J. Zhang and K. Cho. Query-efficient imitation learning for end-to-end autonomous driving. In
Association for the Advancement of Artificial Intelligence (AAAI), 2017.

[11] R. Hoque, A. Balakrishna, C. Putterman, M. Luo, D. S. Brown, D. Seita, B. Thananjeyan,
E. Novoseller, and K. Goldberg. LazyDAgger: Reducing context switching in interactive
imitation learning. In IEEE International Conference on Automation Sciences and Engineering
(CASE), 2021.

[12] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, and G. State. Isaac gym: High performance gpu-based physics simulation
for robot learning. ArXiv, abs/2108.10470, 2021.

[13] B. Sellner, R. Simmons, and S. Singh. User modelling for principled sliding autonomy in
human-robot teams. In Multi-Robot Systems. From Swarms to Intelligent Automata Volume III,
pages 197–208. Springer, 2005.

[14] B. Sellner, F. W. Heger, L. M. Hiatt, R. Simmons, and S. Singh. Coordinated multiagent teams
and sliding autonomy for large-scale assembly. Proceedings of the IEEE, 94(7):1425–1444,
2006.

9

https://www.amazon.science/latest-news/robin-deals-with-a-world-where-things-are-changing-all-around-it
https://www.amazon.science/latest-news/robin-deals-with-a-world-where-things-are-changing-all-around-it
https://tinyurl.com/bdhvfnjc
https://tinyurl.com/4susnhmz
https://tinyurl.com/4susnhmz
https://www.theatlantic.com/technology/archive/2018/08/waymos-robot-cars-and-the-humans-who-tend-to-them/568051/
https://www.theatlantic.com/technology/archive/2018/08/waymos-robot-cars-and-the-humans-who-tend-to-them/568051/
https://exchange.scale.com/public/blogs/how-zoox-builds-autonomous-vehicles-from-the-wheels-up
https://exchange.scale.com/public/blogs/how-zoox-builds-autonomous-vehicles-from-the-wheels-up

[15] M. B. Dias, B. Kannan, B. Browning, E. Jones, B. Argall, M. F. Dias, M. Zinck, M. Veloso,
and A. Stentz. Sliding autonomy for peer-to-peer human-robot teams. In Proceedings of the
international conference on intelligent autonomous systems, pages 332–341, 2008.

[16] P. Scerri, D. V. Pynadath, and M. Tambe. Towards adjustable autonomy for the real world.
Journal of Artificial Intelligence Research, 17:171–228, 2002.

[17] D. Kortenkamp, D. Keirn-Schreckenghost, and R. P. Bonasso. Adjustable control autonomy for
manned space flight. In 2000 IEEE Aerospace Conference. Proceedings (Cat. No. 00TH8484),
volume 7, pages 629–640. IEEE, 2000.

[18] T. B. Sheridan. Adaptive automation, level of automation, allocation authority, supervisory
control, and adaptive control: Distinctions and modes of adaptation. IEEE Transactions on
Systems, Man, and Cybernetics-Part A: Systems and Humans, 41(4):662–667, 2011.

[19] J. Y. Chen and M. J. Barnes. Supervisory control of multiple robots: Effects of imperfect
automation and individual differences. Human Factors, 54(2):157–174, 2012.

[20] M. Lewis. Human interaction with multiple remote robots. Reviews of Human Factors and
Ergonomics, 9(1):131–174, 2013.

[21] S.-Y. Chien, M. Lewis, S. Mehrotra, and K. Sycara. Imperfect automation in scheduling operator
attention on control of multi-robots. In Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, volume 57, pages 1169–1173. SAGE Publications Sage CA: Los
Angeles, CA, 2013.

[22] J. R. Peters, V. Srivastava, G. S. Taylor, A. Surana, M. P. Eckstein, and F. Bullo. Human
supervisory control of robotic teams: Integrating cognitive modeling with engineering design.
IEEE Control Systems Magazine, 35(6):57–80, 2015.

[23] S.-Y. Chien, Y.-L. Lin, P.-J. Lee, S. Han, M. Lewis, and K. Sycara. Attention allocation
for human multi-robot control: Cognitive analysis based on behavior data and hidden states.
International Journal of Human-Computer Studies, 117:30–44, 2018.

[24] A. Rosenfeld, N. Agmon, O. Maksimov, and S. Kraus. Intelligent agent supporting human–
multi-robot team collaboration. Artificial Intelligence, 252:211–231, 2017.

[25] J. W. Crandall, M. L. Cummings, M. Della Penna, and P. M. De Jong. Computing the effects
of operator attention allocation in human control of multiple robots. IEEE Transactions on
Systems, Man, and Cybernetics-Part A: Systems and Humans, 41(3):385–397, 2010.

[26] S. A. Zanlongo, P. Dirksmeier, P. Long, T. Padir, and L. Bobadilla. Scheduling and path-planning
for operator oversight of multiple robots. Robotics, 10(2):57, 2021.

[27] D. R. Olsen Jr and S. B. Wood. Fan-out: Measuring human control of multiple robots. In
Proceedings of the SIGCHI conference on Human factors in computing systems, pages 231–238,
2004.

[28] M. Cakmak, C. Chao, and A. L. Thomaz. Designing interactions for robot active learners. IEEE
Transactions on Autonomous Mental Development, 2(2):108–118, 2010.

[29] S. Amershi, M. Cakmak, W. B. Knox, and T. Kulesza. Power to the people: The role of humans
in interactive machine learning. Ai Magazine, 35(4):105–120, 2014.

[30] J. Y. Chen and M. J. Barnes. Human–agent teaming for multirobot control: A review of human
factors issues. IEEE Transactions on Human-Machine Systems, 44(1):13–29, 2014.

[31] K. Zheng, D. F. Glas, T. Kanda, H. Ishiguro, and N. Hagita. Supervisory control of multiple
social robots for navigation. In 2013 8th ACM/IEEE International Conference on Human-Robot
Interaction (HRI), pages 17–24. IEEE, 2013.

[32] T. Ji, R. Dong, and K. Driggs-Campbell. Traversing supervisor problem: An approximately
optimal approach to multi-robot assistance. Robotics: Science and Systems (RSS), 2022.

10

[33] A. Dahiya, N. Akbarzadeh, A. Mahajan, and S. L. Smith. Scalable operator allocation for
multi-robot assistance: A restless bandit approach. IEEE Transactions on Control of Network
Systems, 2022.

[34] R. B. Cooper. Queueing theory. In Proceedings of the ACM’81 conference, pages 119–122,
1981.

[35] L. Sha, T. Abdelzaher, A. Cervin, T. Baker, A. Burns, G. Buttazzo, M. Caccamo, J. Lehoczky,
A. K. Mok, et al. Real time scheduling theory: A historical perspective. Real-time systems, 28
(2):101–155, 2004.

[36] M. C. Gombolay, R. J. Wilcox, and J. A. Shah. Fast scheduling of robot teams performing tasks
with temporospatial constraints. IEEE Transactions on Robotics, 34(1):220–239, 2018.

[37] W. B. Rouse. Adaptive allocation of decision making responsibility between supervisor and
computer. In Monitoring behavior and supervisory control, pages 295–306. Springer, 1976.

[38] A. Daw, R. C. Hampshire, and J. Pender. How to staff when customers arrive in batches. arXiv,
abs/1907.12650, 2019.

[39] J. A. Bagnell. An invitation to imitation. Technical Report CMU-RI-TR-15-08, Carnegie
Mellon University, Pittsburgh, PA, 3 2015.

[40] F. Torabi, G. Warnell, and P. Stone. Behavioral cloning from observation. In Proceedings of the
27th International Joint Conference on Artificial Intelligence (IJCAI), 7 2018.

[41] F. Codevilla, E. Santana, L. A. M., and A. Gaidon. Exploring the limitations of behavior cloning
for autonomous driving. International Conference on Computer Vision, 2019.

[42] D. A. Pomerleau. Efficient training of artificial neural networks for autonomous navigation.
Neural Computation, 3(1), 1991.

[43] J. Ho and S. Ermon. Generative adversarial imitation learning. In Advances in Neural Informa-
tion Processing Systems, 2016.

[44] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from
demonstration. Robotics and autonomous systems, 57(5):469–483, 2009.

[45] S. Ross, G. J. Gordon, and J. A. Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In International Conference on Artificial Intelligence
and Statistics (AISTATS), 2011.

[46] M. Laskey, J. Lee, R. Fox, A. Dragan, and K. Goldberg. DART: Noise injection for robust
imitation learning. In Conf. on Robot Learning (CoRL), 2017.

[47] S. Chernova and M. Veloso. Interactive policy learning through confidence-based autonomy.
Journal of Artificial Intelligence Research, 34:1–25, 2009.

[48] S. Jauhri, C. Celemin, and J. Kober. Interactive imitation learning in state-space. In Conference
on Robot Learning (CoRL). PMLR, 2020.

[49] M. Rigter, B. Lacerda, and N. Hawes. A framework for learning from demonstration with
minimal human effort. IEEE Robotics and Automation Letters, 5(2):2023–2030, 2020.

[50] M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J. Kochenderfer. HG-DAgger: Interactive
imitation learning with human experts. In Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), 2019.

[51] J. Spencer, S. Choudhury, M. Barnes, M. Schmittle, M. Chiang, P. Ramadge, and S. Srinivasa.
Learning from interventions: Human-robot interaction as both explicit and implicit feedback.
In Proc. Robotics: Science and Systems (RSS), 2020.

[52] A. Mandlekar, D. Xu, R. Martı́n-Martı́n, Y. Zhu, L. Fei-Fei, and S. Savarese. Human-in-the-loop
imitation learning using remote teleoperation. arXiv, abs/2012.06733, 2020.

11

[53] R. R. Murphy and E. Rogers. Cooperative assistance for remote robot supervision. Presence:
Teleoperators & Virtual Environments, 5(2):224–240, 1996.

[54] L. Xie, S. Wang, S. Rosa, A. Markham, and N. Trigoni. Learning with training wheels: Speeding
up training with a simple controller for deep reinforcement learning. In Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), 2018.

[55] A. Kurenkov, A. Mandlekar, R. Martin-Martin, S. Savarese, and A. Garg. Ac-teach: A bayesian
actor-critic method for policy learning with an ensemble of suboptimal teachers. In Conf. on
Robot Learning (CoRL), 2019.

[56] F. Wang, B. Zhou, K. Chen, T. Fan, X. Zhang, J. Li, H. Tian, and J. Pan. Intervention aided
reinforcement learning for safe and practical policy optimization in navigation. In Conf. on
Robot Learning (CoRL), 2018.

[57] G. Kahn, P. Abbeel, and S. Levine. Land: Learning to navigate from disengagements. IEEE
Robotics and Automation Letters, 6(2):1872–1879, 2021.

[58] S. Trick, F. Herbert, C. A. Rothkopf, and D. Koert. Interactive reinforcement learning with
bayesian fusion of multimodal advice. IEEE Robotics and Automation Letters, 7(3):7558–7565,
2022.

[59] S. Vats, O. Kroemer, and M. Likhachev. Synergistic scheduling of learning and allocation of
tasks in human-robot teams. In Proc. IEEE Int. Conf. Robotics and Automation (ICRA), 2022.

[60] G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal. Rapid locomotion via reinforce-
ment learning. Robotics: Science and Systems (RSS), 2022.

[61] T. Xiao, I. Radosavovic, T. Darrell, and J. Malik. Masked visual pre-training for motor control.
arXiv preprint arXiv:2203.06173, 2022.

[62] A. Escontrela, X. B. Peng, W. Yu, T. Zhang, A. Iscen, K. Goldberg, and P. Abbeel. Adversarial
motion priors make good substitutes for complex reward functions. In Proc. IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), 2022.

[63] X. B. Peng, Y. Guo, L. Halper, S. Levine, and S. Fidler. Ase: Large-scale reusable adversarial
skill embeddings for physically simulated characters. ACM Transactions on Graphics, 41(4):
1–17, 2022.

[64] N. Rudin, D. Hoeller, P. Reist, and M. Hutter. Learning to walk in minutes using massively
parallel deep reinforcement learning. In Conference on Robot Learning, pages 91–100. PMLR,
2022.

[65] G. Swamy, S. Reddy, S. Levine, and A. D. Dragan. Scaled autonomy: Enabling human operators
to control robot fleets. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pages 5942–5948. IEEE, 2020.

[66] C. Shannon. A mathematical theory of communication. Bell System Technical Journal (1948),
1948.

[67] B. Thananjeyan, A. Balakrishna, S. Nair, M. Luo, K. P. Srinivasan, M. Hwang, J. E. Gonzalez,
J. Ibarz, C. Finn, and K. Goldberg. Recovery rl: Safe reinforcement learning with learned
recovery zones. IEEE Robotics and Automation Letters, 6:4915–4922, 2021.

[68] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. ArXiv, abs/1606.01540, 2016.

[69] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[70] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, and D. Bacon. Federated
learning: Strategies for improving communication efficiency. In NIPS Workshop on Private
Multi-Party Machine Learning, 2016.

12

[71] K. Gandhi, S. Karamcheti, M. Liao, and D. Sadigh. Eliciting compatible demonstrations for
multi-human imitation learning. Conference on Robot Learning (CoRL), 2022.

[72] O. Akcin, P. Li, S. Agarwal, and S. Chinchali. Data games: A game-theoretic approach to
swarm robotic data collection. Conference on Robot Learning (CoRL), 2022.

13

8 Appendix

8.1 Mathematical Details of the IFL Problem Formulation

Recall that ROHE takes the expectation over a distribution of trajectories, pω,θ0(τ), where each
trajectory τ = (s0,a0, ..., sT ,aT) is composed of consecutive task episodes separated by resets
and where the state-action tuples come from both πθ and πH . This distribution of trajectories is
induced by ω and θ0 because θ0 parameterizes the initial robot policy πθ0 , and ω affects the states that
comprise Dt

H , which updates the robot policy πθ for subsequent timesteps. In this section, we derive
the mathematical relationship between the trajectory distribution τ ∼ pω,θ0(τ) and the allocation
policy ω.

Given an allocation policy ω, the human policy πH , and the robot policy πθt at each timestep t, the
joint hybrid human-robot policy of all robots can be expressed as

πtH∪R(s) =

 πθt(s1)(1− 1ω(st,πθt ,α
t−1,xt)1) + πH(s1)1ω(st,πθt ,α

t−1,xt)1
...

πθt(sN)(1− 1ω(st,πθt ,α
t−1,xt)N) + πH(sN)1ω(st,πθt ,α

t−1,xt)N

 , (4)

where 1(.) is an indicator function that selects the robot policy πθt if robot i is allocated to a human
and selects the human policy πH(s) otherwise. For notational convenience, ω(st, πθt ,α

t−1,xt)i :=∑M
j=1 α

t
ij ∈ {0, 1}.

The trajectory distribution pω,θ0(τ) can then be expressed as

pω,θ0(τ) = pω,θ0(s0,a0, ..., sT ,aT) (5)

= p̄0(s0)

T∏
t=0

πtH∪R(at|st)
T−1∏
t=0

p̄(st+1|st,at). (6)

We comment that the soft and hard reset can be easily incorporated into the transition dynamics p̄
depending on the task. For example, for constraint violations (i.e., hard resets) c(sti) = 1, we can set
p(st+ki |sti, ati) = δ(sti) for 1 ≤ k ≤ tR−1 and p(st+TRi |sti, ati) = p0

i (s
0) where δ(·) is the Dirac delta

function and tR is the hard reset time. Similarly, for goal-conditioned tasks with goal g, soft resets
after achieving the goal can be expressed through the transition dynamics p(st+1

i |sti, ati) = p0
i (s

0) if
sti ⊆ g. For MDPs with finite time horizon where the environment resets when the maximum time
horizon is reached, we can augment the state with additional time information that keeps track of
the timestep in each episode, and reset the state when it times out. In this case, the MDP transition
dynamics will be time-dependent: pt(st+1

i |sti, ati).

8.2 Fleet-DAgger Algorithm Details

In this section, we provide a detailed algorithmic description of Fleet-DAgger.

Fleet-DAgger uses priority function p̂ and tT to define an allocation policy ω. Concretely, it can
be interpreted as a function F where F (p̂) = ω, i.e., a “meta-algorithm” (algorithm that outputs
another algorithm) akin to function composition. The pseudocode of Fleet-DAgger is provided in
Algorithm 1.

8.3 Additional Experiment Details

8.3.1 Simulation Hyperparameters

Implementations of C.U.R. and baselines are available in the code supplement, where the scripts
are configured to run with the same hyperparameters as the simulation experiments in the main text.
Recall that N = 100 robots, M = 10 humans, minimum intervention time tT = 5, hard reset time
tR = 5, and operation time T = 10000. For reference, additional parameters are in Table 1, where
|S| is the dimensionality of the (continuous) state space, |A| is the dimensionality of the (continuous)
action space, r̂ is the risk threshold below which robots are assigned zero risk, û is the uncertainty
threshold below which robots are assigned zero uncertainty, and tI is the length of the initial C.U.R.
period during which constraint violation is not prioritized.

14

Algorithm 1 Fleet-DAgger
Input: MDPM, Number of robots N , Number of humans M , Priority function p̂, Minimum teleoperation

time tT , Hard reset time tR
Output: Allocation policy ω

1: function ω(st, πθt , α
t−1, xt) # The allocation policy ω returns a matrix αt ∈ {0, 1}N×M

2: Compute priority scores of each robot: p̂(sti, πθt) ∀i = 1, ..., N
3: Initialize αtij = 0 ∀i, j
4: for i ∈ {1, . . . , N} do
5: for j ∈ {1, . . . ,M} do
6: if αt−1

ij = 1 then # For robots that were receiving assistance during the last timestep,

check whether the minimum intervention time has lapsed using auxiliary information xt

7: if Intervention type for robot i = Hard reset and Intervention duration < tR then
8: αtij = 1

9: if Intervention type for robot i = Teleop and Intervention duration < tT then
10: αtij = 1

11: Let I = {i :
∑M
j=1 α

t
ij = 1} # Set of robots that will continue with past assistance

12: Let J = {j :
∑N
i=1 α

t
ij = 1} # Set of humans that will continue with past assistance

13: Sort robot indices with positive priority scores that are not in I from highest to lowest, denoted as
{i1, i2, ...}

14: Let k = 1
15: for j ∈ {1, . . . ,M} \ J do
16: αtik,j = 1
17: k = k + 1
18: return α

19: return ω

Environment |S| |A| r̂ û tI
Humanoid 108 21 0.5 0.05 1000
Anymal 48 12 0.5 0.05 250
AllegroHand 88 16 0.5 0.15 2500
Table 1: Simulation environment hyperparameters.

8.3.2 Training Critic Q-Functions

Some IFL algorithms require pretraining a safety critic (C.U.R.) or goal critic (Fleet-ThriftyDAgger)
to assist in supervisor allocation. Here we provide details on how we train these critics in practice.
Additional details about training these critics in practice are also available in Recovery RL [67] and
ThriftyDAgger [9] for the safety critic and goal critic respectively.

To collect a dataset of constraint violations, we simply run Behavior Cloning for a fixed amount of
timesteps. Intuitively, since the initial robot policy πθ0 is not highly performant, the robot should
expect to encounter constraint violations, and these violations will occur within the state distribution
visited by the robot fleet in the initial stages of online training. One could also inject noise into
the BC policy to induce more constraint violations, or explicitly solicit human demonstrations of
constraint violations as noted in [67]. For Humanoid, Anymal, and AllegroHand, we collect a dataset
of 19625 transitions with 376 constraint violations, 19938 transitions with 63 constraint violations,
and 19954 transitions with 47 constraint violations, respectively. The safety critic is then trained
via Q-learning for 3000 gradient steps where a constraint-violating transition can be interpreted as
incurring sparse reward r = 1 and all other transitions have reward r = 0. To reduce class imbalance
issues, transitions are sampled from the replay buffer such that constraint-violating samples constitute
25% of the minibatch, which was found to be useful in practice in [67].

To collect a dataset of successes to pretrain the goal critic, we instead run the expert policy πH , which
is more likely to reach the goal. For AllegroHand, we collect a dataset of 19994 transitions with 489
successes. We then pretrain the goal critic in the same manner as the safety critic. Both the safety
and goal critic continue to update during online training with the additional constraint violation and
success data encountered.

15

Environment Algorithm Successes (↑) Hard Resets (↓) Idle Time (↓)
Humanoid BC 0.0 ± 0.0 11925.3 ± 118.8 62473.7 ± 869.1

Random 746.3 ± 40.5 340.0 ± 59.2 1700.0 ± 296.1
Fleet-ED 617.7 ± 66.3 570.3 ± 139.0 2851.7 ± 694.8
C.U.R. 771.0 ± 25.5 289.3 ± 21.1 1446.7 ± 105.3
Expert 894 115 575

Anymal BC 32.7 ± 0.5 1134.3 ± 33.9 5669.7 ± 170.0
Random 207.3 ± 27.2 232.3 ± 89.6 1162.3 ± 449.1
Fleet-ED 257.3 ± 1.2 109.0 ± 16.9 545.0 ± 84.4
C.U.R. 257.0 ± 8.8 64.3 ± 8.6 321.7 ± 42.9
Expert 293 1 5

AllegroHand BC 70.0 ± 5.0 523.0 ± 9.4 2614.3 ± 46.4
Random 7360.3 ± 231.0 2954.3 ± 131.0 14767.7 ± 653.2
Fleet-ED 3032.0 ± 191.2 1764.7 ± 225.4 8818.0 ± 1129.7
Fleet-TD 4296.3 ± 161.7 1397.7 ± 112.6 6988.0 ± 562.9
C.U.R. 6032.7 ± 236.2 2343.7 ± 82.5 11715.0 ± 411.9
Expert 21609 1202 6013

Table 2: Robot policy performance for each of the algorithms in Section 6.2. We report cumulative successes,
hard resets, and idle time. We do not report return on human effort as teleoperation is not performed for this
experiment.

8.3.3 Physical Experiment Protocol
We execute 3 trials of each of 4 algorithms (Behavior Cloning, Random, Fleet-EnsembleDAgger,
C.U.R.) on the fleet of 4 robot arms for 250 timesteps each, for a total of 3× 4× 4× 250 = 12000
individual pushing actions. Human teleoperation and hard resets were performed by the authors, where
teleoperation is collected through an OpenCV (https://opencv.org/) graphical user interface
and hard resets are physical adjustments of the cube toward the center of the workspace. Each of the
2 ABB YuMi robots is connected via Ethernet to a Linux machine on its local area network; the driver
program connects to each machine over the Internet via the Secure Shell Protocol (SSH) to send robot
actions and receive camera observations. The 2 YuMis are in different physical locations 0.5 miles
apart, and all 4 arms execute actions concurrently with multiprocessing. 10× data augmentation is
performed on the initial offline dataset of 375 state-action pairs as well as the online data collected
during execution as follows:

• Linear contrast uniformly sampled between 85% and 115%
• Add values uniformly sampled between -10 and 10 to each pixel value per channel
• Gamma contrast uniformly sampled between 90% and 110%
• Gaussian blur with σ uniformly sampled between 0.0 and 0.3
• Saturation uniformly sampled between 95% and 105%
• Additive Gaussian noise with σ uniformly sampled between 0 and 1

80 × 255

8.3.4 Evaluating Trained Simulation Policies
Here we execute all policies from Section 6.2 after the 10,000 timesteps of online training for an
additional 10,000 timesteps without additional human teleoperation to evaluate the quality of the
learned robot policies in isolation. As in Section 6.2, N = 100 robots, M = 10 humans (for hard
resets only), tR = 5, and T = 10000, where allocation is performed by C-prioritization. We also
include the expert policy performance (allN = 100 robots teleoperated by the trained PPO supervisor
for T = 10000 steps) in the table for reference.

Results are in Table 2. We find that the policy learned via C.U.R. outperforms baselines and
approaches expert-level performance for Humanoid and Anymal, but is second most performant and
significantly below expert-level performance for AllegroHand, indicating T = 10, 000 timesteps is
insufficient for learning a highly performant robot policy in this challenging environment.

8.4 Hyperparameter Sensitivity and Ablation Studies
In this section, we run additional simulation experiments in the IFL benchmark to study (1) ablations
of the components of the C.U.R. algorithm (Figure 6), (2) sensitivity to the ratio of number of robots

16

https://opencv.org/

N to number of humans M (Figure 7), (3) sensitivity to minimum intervention time tT (Figure 8),
and (4) sensitivity to hard reset time tR (Figure 9). All runs are averaged over 3 random seeds, where
shading indicates 1 standard deviation.

Ablations: We test C.U.R.(-i), the C.U.R. algorithm without the initial period during which constraint
violation is not prioritized. We also test all subsets of the C.U.R. priority function without the initial
period. For example, U. indicates only prioritizing by uncertainty, and C.R. indicates prioritizing
by constraint violations followed by risk (no uncertainty). Results suggest that C.U.R. outperforms
all ablations in all environments in terms of ROHE and cumulative successes and is competitive
in terms of hard resets and idle time. However, as in the main text, C.U.R. and C. incur more
hard resets in AllegroHand than alternatives, as again, prioritizing constraint violations for a hard
environment where learning has not converged may ironically enable more opportunities for hard
resets. Interestingly, while C.U.R. outperforms ablations in ROHE in AllegroHand for large T ,
U -prioritization’s ROHE is significantly higher for small values of T . We observe that since U.
achieves very low cumulative successes in the same time period, U. must be requesting an extremely
small amount of human time early in operation, resulting in erratic ratio calculations.

Number of Humans: While keeping N fixed to 100 robots, we run C.U.R. with default hyperpa-
rameters and vary M to be 1, 5, 10, 25, and 50 humans. In the Humanoid and Anymal environment,
as expected, cumulative successes increases with the number of humans. The performance boost
gets smaller as M increases: runs with 25 and 50 humans have very similar performance. Despite
lower cumulative successes, M = 10 achieves the highest ROHE, suggesting a larger set of humans
provides superfluous interventions. We also observe that with only 1 human, the number of hard resets
and idle time is very large, as the human is constantly occupied with resetting constraint-violating
robots, which fail at a faster rate than the human can reset them. Finally, in the AllegroHand environ-
ment, the number of humans when M ≥ 5 does not make much of a visible difference, perhaps due
to the relatively high number of cumulative successes.

Minimum Intervention Time: We run C.U.R. with default hyperparameters but vary tT to be 1, 5,
20, 50, 100, and 500 timesteps. We observe that both decreasing tT from 5 to 1 and increasing tT to
20 and beyond have a negative impact on the ROHE due to ceding control prematurely (in the former
case) and superfluous intervention length (in the latter). Hard resets are low and idle time is high for
large tT as the humans are occupied providing long teleoperation interventions. This also negatively
affects throughput, as cumulative successes falls for very large tT . Long interventions may also be
less useful training data, as in the limit these interventions reduce to more offline data (i.e., labels for
states encountered under the human policy rather than that of the robot).

Hard Reset Time: Finally, we run C.U.R. with default hyperparameters but vary tR to be 1, 5, 20,
50, 100, and 500 timesteps. As expected, the ROHE decreases as tR increases, as more human effort
is required to achieve the same return. The other metrics follow similar intuitive trends: increasing
tR results in a decrease in cumulative successes, decrease in hard resets, and increase in idle time.

Other Parameters: We also found that the batch size (256 in our experiments) and number of
gradient steps per experiment timestep (1 in our experiments) significantly impact the policy learning
speed as well as computation time, and the effect varies with the size of the fleet (N) and set of human
supervisors (M). This is because N and M (and ω) determine how much new data is available at
each time t, the batch size and number of gradient steps determine how much data to update the policy
with at each time t, and updating the policy with backpropagation is the computational bottleneck in
the IFLB simulation.

17

H
um

an
oi

d
A

ny
m

al
A

lle
gr

o
H

an
d

Cumulative
Successes

Cumulative
Hard Resets

Cumulative
Idle Time

Return on
Human Effort

C. C.U.R.U. R. C.U. U.R. C.R. C.U.R.(-w)

Figure 6: Ablations: Simulation results in the Isaac Gym benchmark tasks with ablations of C.U.R., where
the x-axis is timesteps from 0 to T = 10, 000. We plot the metrics described in 6.1. The C.U.R. algorithm
outperforms all ablations on all environments in terms of ROHE and cumulative successes (except AllegroHand
ROHE for low T values) and is competitive with ablations for cumulative hard resets and idle time.

H
um

an
oi

d
A

ny
m

al
A

lle
gr

o
H

an
d

Cumulative
Successes

Cumulative
Hard Resets

Cumulative
Idle Time

Return on
Human Effort

1 5 10 25 50

Figure 7: Number of Humans: Simulation results in the Isaac Gym benchmark tasks with N = 100 robots
and M human supervisors, where M varies and the x-axis is timesteps from 0 to T = 10, 000.

18

H
um

an
oi

d
A

ny
m

al
A

lle
gr

o
H

an
d

Cumulative
Successes

Cumulative
Hard Resets

Cumulative
Idle Time

Return on
Human Effort

1 5 20 50 100 500

Figure 8: Minimum Intervention Time: Simulation results in the Isaac Gym benchmark tasks for variations in
minimum intervention time tT , where the x-axis is timesteps from 0 to T = 10, 000.

H
um

an
oi

d
A

ny
m

al
A

lle
gr

o
H

an
d

Cumulative
Successes

Cumulative
Hard Resets

Cumulative
Idle Time

Return on
Human Effort

1 5 20 50 100 500

Figure 9: Hard Reset Time: Simulation results in the Isaac Gym benchmark tasks for variations in hard reset
time tR, where the x-axis is timesteps from 0 to T = 10, 000.

19

	1 Introduction
	2 Related Work
	2.1 Allocating Human Supervisors to Robots at Execution Time
	2.2 Single-Robot, Single-Human Interactive Learning
	2.3 Multi-Robot Interactive Learning

	3 Interactive Fleet Learning Problem Formulation
	4 Interactive Fleet Learning Algorithms
	4.1 Fleet-DAgger
	4.2 Fleet-DAgger Algorithms

	5 Interactive Fleet Learning Benchmark
	5.1 Environments
	5.2 Software Architecture

	6 Experiments
	6.1 Metrics
	6.2 IFLB Simulation Experiments
	6.3 Physical Block-Pushing Experiment

	7 Limitations and Future Work
	8 Appendix
	8.1 Mathematical Details of the IFL Problem Formulation
	8.2 Fleet-DAgger Algorithm Details
	8.3 Additional Experiment Details
	8.3.1 Simulation Hyperparameters
	8.3.2 Training Critic Q-Functions
	8.3.3 Physical Experiment Protocol
	8.3.4 Evaluating Trained Simulation Policies

	8.4 Hyperparameter Sensitivity and Ablation Studies

