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Abstract— This paper presents a novel attention mechanism
to improve stereo-vision based object recognition systems in
terms of recognition performance and computational efficiency
at the same time. We utilize the Stixel World, a compact
medium-level 3D representation of the local environment, as an
early focus-of-attention stage for subsequent system modules.
In particular, the search space of computationally expensive
pattern classifiers is significantly narrowed down. We explicitly
couple the 3D Stixel representation with prior knowledge about
the object class of interest, i.e. 3D geometry and symmetry, to
precisely focus processing on well-defined local regions that are
consistent with the environment model.

Experiments are conducted on large real-world datasets
captured from a moving vehicle in urban and rural traffic.
In case of vehicle recognition as an experimental testbed, we
demonstrate that the proposed Stixel-based attention mech-
anism significantly reduces false positive rates at constant
sensitivity levels by up to a factor of 8 over state-of-the-art.
At the same time, computational costs are reduced by more
than an order of magnitude.

I. INTRODUCTION

Many advanced driver assistance systems (ADAS) rely on
visual cues derived from camera sensors to interpret and
understand their environment. A key ability is to recognize
and discriminate between different object classes, such as
pedestrians, bicyclists or vehicles. At the core, this prob-
lem is usually tackled using statistical pattern recognition
techniques which provide powerful classification capabilities,
however at a large computational burden. A typical approach
starts by identifying regions-of-interest (ROIs) in the image
and thereafter moves on to a more expensive pattern classi-
fication and tracking step, e.g. [6], [12].

In this paper, we aim to both improve the recognition
performance and reduce the computational costs of a state-
of-the-art stereo-based object recognition system. For this,
we employ the Stixel World [29] as an attention stage.

The general idea of Stixel-based focus-of-attention is
independent of the actual object recognition system. In this
work, we use stereo-based vehicle recognition, e.g. [30], as
an experimental testbed: ROIs are generated from the Stixel
World and subsequently classified by a neural network using
local receptive field features (NN/LRF) [6], [33]. Temporal
integration is provided by an α-β tracker, see Fig. 1. Our
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Fig. 1. Vehicle recognition system overview. The Stixel World is utilized
to precisely generate regions-of-interest for subsequent classification and
tracking modules.

results are expected to generalize to other object classes and
pattern classifiers that are sufficiently complex to represent
the large training sets, e.g. [5], [6], [17], [28], [32].

II. PREVIOUS WORK

The architecture of most vision-based object recognition
systems involves three parts: a pre-processing step to select
initial object hypotheses (ROI), object classification and a
post-processing step to integrate classification results over
time (tracking). A variety of features, classifiers and trackers
to solve the classification and tracking problems have been
proposed in the literature. At this point, we refer to corre-
sponding surveys, e.g. [6], [14], [17], [30], and focus on the
hypotheses generation step.

A straightforward step to obtain object hypotheses is the
sliding window approach, where detector windows at various
scales are shifted over the image constrained by camera
geometry [6], [12], [15], [23]. Additionally, a significant
speed-up results from applying an increasingly complex
cascade of classifiers [9], [32], [35], [36].

Besides geometric constraints, some approaches derive
cues for potential object locations directly from the image
data using depth (stereo vision) [3], [8], [12], [15], [19],
[20], [23], [27] or motion information [7], [21]. A more
specialized attention-focusing strategy involves interest point
detectors to recover regions with high information content
based on local discontinuities of the image brightness func-
tion which often occur at object boundaries [4], [23], [24].
Prior knowledge about the target object class at hand, e.g.



Fig. 2. Low-level SGM disparity image (left) and medium-level Stixel World representation (right) for an urban traffic scene. The colors encode distance
from the camera from near (red) to far (green).

on-road vehicles, can provide even stronger constraints on
regions-of-interest. Common cues involve the shadow below
a vehicle [25], [31], vehicle symmetry [22], [37] or image
entropy [18].

In light of previous research, we propose a novel attention
mechanism to improve a state-of-the-art stereo-based object
recognition system regarding performance and computational
requirements. This attentive scheme is based on an abstract
super-pixel representation of the three-dimensional scene, the
Stixel World [29]. The estimate of obstacles and their loca-
tion within the scene derived from the Stixel representation
serves as a focus-of-attention for a hypotheses generation
step. Using this prior knowledge, a small number of regions-
of-interest are generated precisely in both scale and position
to narrow down the search space for subsequent classification
and tracking. The proposed scheme based on the medium-
level Stixel representation bridges the gap between pixel-
level processing and high-level object classification.

Recently, a closely related approach was presented in [2]
which has been developed in parallel to our work. While
focusing on a novel method to estimate Stixels without
computing an intermediate disparity/depth map first, the
authors of [2] evaluate a Stixel-based pruning of object
detections in their experiments amongst others. In [2], the
raw results of a pedestrian detector are validated in terms of
their overlap with the corresponding Stixels in the 2D image
space. In contrast, we explicitly couple the 3D information
(location, distance and height) obtained from the Stixel world
with prior knowledge about the 3D dimensions of the object
class of interest to effectively constrain the search space.
Additionally, we present techniques to filter out implausible
hypotheses in advance based on Stixel symmetry.

In this paper, we are not concerned with establishing the
best absolute vehicle recognition performance, given many
state-of-the-art approaches [30]. Instead, we demonstrate
the relative benefits obtained from the proposed attention
mechanism using both state-of-the-art depth-based ROI gen-
eration [12], [19] and the approach of [2] as an experimental
baseline.

III. SYSTEM ARCHITECTURE

A. The Stixel World

The Stixel World [29] is a compact medium-level rep-
resentation that describes the local three-dimensional envi-
ronment. Stixels are defined as vertically oriented rectangles
with a fixed width (e.g. 5 px in the image) and a variable

height. From left to right, every object within the image is
approximated by a set of adjacent Stixels, see Fig. 2. Hence,
Stixels allow for an enormous reduction of the raw input
data, e.g. approx. 400.000 disparity measurements from a
1024×440 px stereo image pair are reduced to a few hundred
Stixels only. At the same time, Stixels give easy access to
the most task-relevant information such as freespace and
obstacles and thus bridge the gap between low-level (pixel-
based) and high-level (object-based) vision.

As proposed in [29], Stixels are extracted from a stereo
image pair in two steps: the stereo computation, e.g. using
semi-global matching stereo (SGM) [13], [16], and the actual
Stixel computation.

The working principle of the Stixel computation [29]
is closely related to other scene labeling techniques, c.f.
[10], [11]. In our approach, the three-dimensional scene is
segmented into two different class types, namely ground
and object. Both types are expected as planar surfaces. The
difference lies within their orientation: ground is expected as
horizontal and object is assumed as vertical with a constant
depth.

The segmentation is regularized by a set of different
physically motivated world model priors, such as gravity and
ordering constraints. This way, the segmentation task leads to
a typical maximum a posteriori (MAP) estimation problem.
Solving for the most likely and thus optimum segmentation
is achieved through the use of dynamic programming [1].

B. ROI Generation

Several methods to generate ROIs in an image have
been proposed, see Sec. II. Common approaches employ a
monocular dense scan with a sliding detector window and
ground-plane constraints, see [6] for a review, as well as
additional stereo-based filtering of this ROI grid, e.g. [12],
[15], [19]. Such schemes usually discard any ROIs which do
not have enough support from the corresponding pixel-based
disparity (depth) estimation, e.g. a threshold on the density
of depth features within each ROI [12]. We use this depth-
filtering method as one experimental baseline in Sec. IV.

In this work, we propose to employ the Stixel World to
precisely and efficiently generate ROIs for a subsequent clas-
sification step, as follows. Each Stixel provides an estimate of
3D position and height of the underlying object (part) in the
scene, see Fig. 2. We couple this estimated 3D information
with 3D prior knowledge about the target object class. In
particular, we generate a small set of ROIs for each Stixel,



Fig. 3. ROIs generated using a monocular dense scan with ground-
plane constraints [6] (top), stereo-based depth filtering [12] (center) and
the proposed Stixel-based filtering scheme (bottom).

where the dimensions and locations of the ROIs in the image
are constrained three-fold.

First, we assume objects to be ground-based and hence
determine the vertical position of ROIs based on the planar
ground model of the Stixel World. We align each ROI to the
estimated Stixel bottom location in the image.

Second, we use prior knowledge about sensible 3D di-
mensions, e.g. vehicle width, of the object class at hand
and adapt the size of ROIs accordingly. Here, we sample
differently sized ROIs within a characteristic class-specific
range of dimensions, in a similar fashion to regular sliding
window approaches. From Fig. 2 it is observed, that the
Stixel representation often (correctly) contains comparatively
tall Stixels, e.g. on buildings. Hence, we additionally place
a threshold on the maximum 3D height of a Stixel to
assess whether that particular Stixel is to be included in the
ROI generation process or not. This threshold is empirically
determined on the training set, so that a sizable fraction of
target class objects are covered, e.g. 99%.

Third, we combine the knowledge of 3D target geometry
with the estimated distance of the Stixel to the camera to
determine the scale(s) of the ROIs. An object with given 3D
dimensions at a given distance has a unique back-projection
to the image space.

This process is repeated for each Stixel and results in a
well-defined small set of ROIs. Compared to the aforemen-
tioned monocular dense scan and additional depth-based fil-
tering [12], the number of ROIs is reduced by approximately
two orders of magnitude (vs. dense scan) and one order of
magnitude (vs. depth-filtering), respectively. See Fig. 3.

The ROI generation scheme outlined above is suitable
for most object classes to be detected in urban traffic,
e.g. vehicles, pedestrians, etc. We propose an additional

Fig. 4. Hypotheses generation using Stixels as focus-of-attention. Each
Stixel serves as center of an ROI. ROI dimensions are determined using 3D
constraints, see Sec. III-B. An exemplary ROI R is marked in red, generated
from the Stixel marked in green. Note the symmetry of the Stixel set around
the center of the object of interest.

scheme to further thin out the ROI set which is particularly
tailored towards the detection of objects that exhibit a certain
symmetry. In our application for example, leading vehicles
are inherently symmetric. As a result, symmetry cues have
been successfully applied to the vehicle detection problem
[22], [37], see Fig. 4. Similar to elevating our environment
model from the low-level pixel space to the medium-level
Stixel World, we propose to also evaluate symmetry using
the Stixel representation, as follows.

For each ROI R, we obtain n (assuming n an odd number)
Stixels si with indices i = 0, . . . , n− 1 that overlap with R
in the image, as indicated in Fig. 4. Further, the image row
coordinates corresponding to the top and bottom points of
each Stixel si are denoted by vti and vbi , respectively. The
index of the center Stixel within R is given by c = bn2 c. We
obtain a symmetry score fs(R) for R by computing:

fs(R) =
1

c

 c∑
j=1

|vbc−j − vbc+j |+ |vtc−j − vtc+j |

 (1)

Eq. (1) effectively computes a normalized symmetry score,
by comparing similarity of the geometric configuration (lo-
cation and height) of corresponding Stixels, mirrored at an
equal distance from the center Stixel. Lower scores fs(R)
indicate higher symmetry. A threshold on the symmetry score
is applied to discard ROIs with low symmetry early in the
processing chain. We determine this threshold in the same
fashion as the height-filtering threshold outlined above.

Our application of 3D constraints effectively reduces the
number of ROIs and precisely focuses subsequent search
on image regions where the Stixel World is consistent with
the expectation about target-class geometry. Each ROI is
subject to classification by a texture-based pattern classifier,
as detailed in the following section.

C. Classification, Non-Maximum Suppression and Tracking

We consider the proposed vehicle detection framework as
independent of the actual pattern classifier used. Out of a



Fig. 5. Exemplary system result showing the computed SGM disparity image, the Stixel World and actual system detections after the non-maximum
suppression step.

multitude of available pattern classifiers, e.g. [6], [17], [30],
we chose a multi-layer neural network with 5 × 5 pixel
local receptive field features (NN/LRF) [6], [26], [33] for
experimental evaluation. Results are expected to generalize to
other state-of-the-art classifiers that are sufficiently complex
to solve the problem at hand. Multiple classifier responses at
near-identical locations and scales are addressed by applying
mean-shift-based non-maximum suppression to the recovered
bounding boxes, i.e. a variant of [34]. Back-projection onto
the Stixel World yields the 3D position of the detected
objects.

Finally, temporal integration of detection results is em-
ployed to overcome gaps in detection and suppress spurious
false positives. A 2.5D bounding box tracker is utilized,
with an object state model involving bounding box position,
extent and depth [6], [12]. State parameters are estimated
using an α-β tracker. We acknowledge the existence of more
sophisticated trackers, e.g. see [6], that are however not a
focus of this paper. An exemplary result of the integrated
system is shown in Fig. 5.

IV. EXPERIMENTS

A. Experimental Setup

The presented approach has been tested in experiments in
the field of vehicle detection. Our training set consists of
manually labeled vehicle rears in images captured from a
vehicle-mounted calibrated stereo camera rig in real-world
urban environments. By shifting and mirroring, 96640 vehi-
cle training samples are created from 24160 unique vehicle
labels. As non-vehicle samples, 337107 random bounding

Description Labeled Jittered/Mirrored
Train: Vehicle Rear Samples 24,160 96,640

Non-Vehicle Samples 84,277 337,107

Test: Number of Images 2,853
Ground-Truth Labels 6,297

TABLE I
TRAINING AND TEST SET STATISTICS.

boxes (with ground-plane constraints) are sampled from
image regions without any vehicles. All training samples
are scaled to 36 × 36 pixels with an 8-pixel border on
each side. The test set consists of a roughly two minute
real-world sequence (2853 images) captured in urban traffic.
6297 2D ground-truth locations (bounding boxes) of vehicles
have been manually labeled in the images. Corresponding 3D
ground-truth positions are determined by back-projection of
the rectangular labels into 3D using known camera geometry
and the assumption that vehicles are constrained to the
ground, similar to [6]. See Fig. 6 and Table I for details.

For system evaluation, we follow the well-established
methodology of [6], [12]. The comparison of 3D system
output and ground-truth involves a localization tolerance, i.e.
the maximum positional deviation that allows to count the
system detection as a match. Following [6], [12], we define
this tolerance as percentage of distance, for longitudinal and

(a)

(b)
Fig. 6. Training and test data. (a) 36× 36 pixel vehicle and non-vehicle
samples used to train the NN/LRF classifier. (b) Excerpt from our urban
test sequence including manually labeled ground-truth annotations.
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Fig. 7. ROC performance (frame-level) of the evaluated system variants.

lateral direction (Z and X), with respect to the vehicle.
In our evaluation, we use Z = 15% and X = 5%,
which means that, for example at a distance of 10m, we
tolerate a localization error (including ground-truth back-
projection error) of ±1.5m and ±0.5m in the position of
the detected vehicle in both longitudinal and lateral direction.
Ground-truth labels corresponding to vehicle frontal and side
views, as well as partially occluded vehicles, are regarded as
optional and are neither credited nor penalized. Additionally,
we limit our evaluation to a detection range of 5m - 70m
from the camera. Vehicles outside the detection area are
considered optional as well. For this application we allow
many-to-many correspondences, i.e. a ground-truth object is
considered matched if there is at least one system detection
matching it.

B. Frame-Level Results

In our first experiment we evaluate the performance of
the proposed system on single-frame basis. As a first perfor-
mance baseline, we use state-of-the-art depth-based filtering
[12], as described in Sect. III-B. A system re-implementing
the filtering approach presented by Benenson et al. [2] is
used as a second performance baseline. Here, we combine
our computation of the Stixel World (see Sect. III-A) with
the filtering scheme proposed in [2]. This approach starts
with a set of monocular ground-plane based ROIs, as shown
in Fig. 3. A threshold is placed on the maximum allowed
2D deviation between the top (bottom) of each hypothesis
in this set and the top (bottom) of the corresponding Stixel
centered in this hypothesis. This margin is set to 50 pixels,
the optimum value determined in [2]. All evaluated systems
use the very same classifier and non-maximum suppression
setup but do not incorporate tracking at this point.

To evaluate our system, we employ a three-stage evalu-
ation procedure: We initially evaluate the Stixel-based ROI
generation, as shown Sect. III-A, while disregarding height-
and symmetry-filtering. Next, those filtering schemes based
on 3D Stixel height and symmetry are incrementally added.

Results in terms of ROC performance are given in Fig. 7. The
system using depth-based filtering (”Stereo ROIs”) yields
the worst performance in our evaluation. Stixel-based ROI
generation (”Stixel ROIs”) considerably improves perfor-
mance. Further significant performance gains are obtained by
additionally incorporating height and symmetry information
extracted from the Stixel World as a filter. The approach of
[2] (”Benenson ROIs”) reaches reasonable performance, but
cannot surpass our best approach. This shows the importance
of our tight coupling of all available 3D information vs. the
2D ROI filtering scheme as proposed in [2]. At a constant
detection rate of 80%, for example, false positives per frame
are reduced by a factor of 8 between our best Stixel-based
system variant and the stereo-based filtering. Compared to
the approach [2], our best system variant exhibits a factor of
2 less false positives.

C. Trajectory-Level Results

For the second experiment, we select depth-filtered ROI
generation (”Stereo ROIs”) [12] and the best perform-
ing Stixel-based system variant of the previous experiment
(”Stixel + Height + Symm. ROIs”) and compare performance
on trajectory-level after tracking. Performance is evaluated in
terms of the percentage of matched ground-truth trajectories
(sensitivity), the percentage of correct system trajectories
(precision) and the number of false trajectories per minute,
see [6]. Two types of trajectories are considered for this
evaluation: class-A trajectories where at least 50% of the
events in a trajectory have to match and class-B trajectories

Stixel-Based Stereo-Based
F A B F A B

Sensitivity 68.2% 77.7% 100.0% 68.2% 77.7% 100.0%
Precision 95.7% 97.0% 97.7% 87.5% 87.6% 96.3%
FP 103 fr./min. 54.8 4 3 208.5 27 8

TABLE II
RESULTS OF PERFORMANCE EVALUATION ON TRAJECTORY-LEVEL.



Number of ROIs Avg./Image
Stereo ROIs: 16,826,788 5,897
Stixel ROIs: 3,093,035 1,084
Stixel + Height ROIs: 1,466,916 514
Stixel + Height + Symm. ROIs: 1,058,422 370
Benenson ROIs [2]: 744,407 261

TABLE III
COMPUTATIONAL COSTS OF THE EVALUATED SYSTEMS.

where at least one event has to match. Results are given
in Table II. Similar to our evaluation of frame-level per-
formance, the Stixel-based system outperforms the stereo-
based system at the same sensitivity levels. The precision is
considerably higher and hence the number of class-A / class-
B false trajectories per minute is significantly lower (27 vs.
4 / 8 vs. 3).

D. Computational Costs

Table III examines the computational complexity of the
approaches under consideration in terms of the number of
ROIs generated. Regarding computational costs, the number
of ROIs to classify is the dominating factor in the processing
chain, given that SGM stereo and the Stixel World can
be computed in real-time [29]. Compared to stereo-based
ROI generation, our best Stixel-based system reduces the
number of ROIs by a factor of 16 - at a better detection
performance, as shown earlier. The approach of Benenson et
al. [2] generates a comparatively low number of ROIs, albeit
at a reduced detection performance, see Fig. 7. Note that this
method has been evaluated at the optimum parameter setting,
as given in [2].

V. CONCLUSION

This paper introduced a novel approach which employs
the medium-level Stixel representation as a focus-of-attention
stage within an integrated object recognition system. In
extensive experiments in the domain of vision-based vehicle
recognition, the benefit of the proposed method is quanti-
fied regarding recognition performance and computational
efficiency: at equal detection rates, false positives can be
reduced by up to a factor of 8 while at the same time cutting
computational costs by more than an order of magnitude.

REFERENCES

[1] R. Bellman. The theory of dynamic programming. Bulletin of the
American Mathematical Society, 6(60):503–515, 1954.

[2] R. Benenson, R. Timofte, and L. van Gool. Stixels estimation without
depth map computation. Proc. ICCV, Workshop CVVT, 2011.

[3] M. Bertozzi and A. Broggi. GOLD: A parallel real-time stereo vision
system for generic obstacle and lane detection. IEEE Trans. on IP.,
7:62–81, 1998.

[4] M. Bertozzi, A. Broggi, and S. Castelluccio. A real-time oriented
system for vehicle detection. J. Systems Arch., pages 317–325, 1997.

[5] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. Proc. CVPR, pages 886–893, 2005.

[6] M. Enzweiler and D. M. Gavrila. Monocular pedestrian detection:
Survey and experiments. IEEE PAMI, 31(12):2179–2195, 2009.

[7] M. Enzweiler, P. Kanter, and D. M. Gavrila. Monocular pedestrian
recognition using motion parallax. IEEE IV Symp., pages 792–797,
2008.

[8] A. Ess, B. Leibe, and L. van Gool. Depth and appearance for mobile
scene analysis. Proc. ICCV, 2007.

[9] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan.
Object detection with discriminatively trained part based models. IEEE
PAMI, 32:1627–1645, 2010.

[10] P. F. Felzenszwalb and O. Veksler. Tiered scene labeling with dynamic
programming. In Proc. CVPR, pages 3097–3104, 2010.

[11] D. Gallup, M. Pollefeys, and J.-M. Frahm. 3d reconstruction using an
n-layer heightmap. In Proc. DAGM, pages 1–10, 2010.

[12] D. M. Gavrila and S. Munder. Multi-Cue pedestrian detection and
tracking from a moving vehicle. IJCV, 73(1):41–59, 2007.

[13] S. Gehrig, F. Eberli, and T. Meyer. A real-time low-power stereo
vision engine using semi-global matching. In Proc. ICVS, 2009.

[14] D. Geronimo, A. M. Lopez, A. D. Sappa, and T. Graf. Survey on
pedestrian detection for advanced driver assistance systems. IEEE
PAMI, 32(7):1239–1258, 2010.

[15] D. Geronimo, A. D. Sappa, D. Ponsa, and A. M. Lopez. 2D-3D based
on-board pedestrian detection system. CVIU, 114(5):583–595, 2010.

[16] H. Hirschmüller. Accurate and efficient stereo processing by semi-
global matching and mutual information. In Proc. CVPR, pages 807–
814, 2005.

[17] A. K. Jain, R. P. W. Duin, and J. Mao. Statistical pattern recognition:
A review. IEEE PAMI, 22(1):4–37, 2000.

[18] T. Kalinke, C. Tzomakas, and W. v. Seelen. A texture-based object
detection and an adaptive model-based classification. In IEEE IV
Symp., pages 341–346, 1998.

[19] C. Keller, M. Enzweiler, M. Rohrbach, D. F. Llorca, C. Schnörr, and
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