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What is in Front? Multiple-Object Detection and
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2Image Understanding, Daimler AG, Boeblingen, Germany
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Abstract. This paper proposes a multiple-object detection and tracking method
that explicitly handles dynamic occlusions. A context-based multiple-cue detec-
tor is proposed to detect occluded vehicles (occludees). First, we detect and track
fully-visible vehicles (occluders). Occludee detection adopts those occluders as
priors. Two classifiers for partially-visible vehicles are trained to use appearance
cues. Disparity is adopted to further constrain the occludee locations. A detected
occludee is then tracked by a Kalman-based tracking-by-detection method. As
dynamic occlusions lead to role changes for occluder or occludee, an integrative
module is introduced for possibly switching occludee and occluder trackers. The
proposed system was tested on overtaking scenarios. It improved an occluder-
only tracking system by over 10% regarding the frame-based detection rate, and
by over 20% regarding the trajectory detection rate. The occludees are detected
and tracked in the proposed method up to 7 seconds before they are picked up by
occluder-only method.

1 Introduction

Multiple-object detection and tracking is a main subject in computer vision. Exam-
ples of considered objects are pedestrians [9] or vehicles [15]. Tracking-by-detection
methods are developed for, e.g., surveillance, robotics, or autonomous driving [1, 9, 15].
These methods are mainly focusing on data association[1, 7, 21]. Occlusions pose diffi-
culties for data association due to appearance changes. Because of occlusions, detection
results (i.e. bounding boxes) for the occluded objects are noisy, containing partially their
occluders. An occluder is a fully-visible vehicle; some fully-visible vehicles may not
have any occludee but we still call them occluders in this paper.

By occludee we denote any partially occluded vehicle. Heavily occluded objects
are often not detected at all, as the object model is designed or learned to detect non-
occluded objects. Instead of taking occludees as exceptions, this paper proposes to de-
tect occludees explicitly. The visible part of an occludee is obtained for further tracking,
which is considered as being separated from its occluder. In this way, noise introduced
by detection is suppressed in subsequent tracking. There are already methods [5, 10]
aiming at a detection of occludees separated from their occluders.

For a heavily occluded object, only weakly visible evidence complicates the de-
tection task. Consider the scenario shown in Fig. 1. Without context knowledge it is
even challenging for a human observer to recognize the partially-visible vehicle. But by



Fig. 1. Left: A sample frame with a tracked occluder (the filled pink rectangle). Middle: A
partially-visible car. Right: Zoom-in view on an occludee (the yellow rectangle).

identifying a vehicle as a (possible) occluder, it is more likely that we can also recog-
nize occludees. Occludees act as valuable context information in a traffic scenario; they
support the analysis of the behavior of their occluders. An occluder behaves possibly
differently with or without an occludee. On the other hand, a visible vehicle, being po-
tentially an occluder, also defines context for scanning for occludees. Simple as is, each
occludee has at least one occluder. In this paper, we propose to detect occludees, using
the occluders as priors.

We propose an integrated occluder-occludee object detection and tracking method
Input sequences are recorded from a mobile binocular system. Occluders are detect-
ed and tracked independently. Occludees are explicitly detected and tracked, adopting
occluders as priors. Finally, we integrate the occluder and occludee tracking systems.
Figure 2, top row, shows three consecutive frames from a test sequence. The figure il-
lustrates the following scenarios: An occluder switches to be an occludee (shown in the
left and middle frames); an occludee is about to switch into an occluder (shown in the
middle and right frames). The middle row illustrates results for occluder detection and
tracking, shown by red filled rectangles; the bottom row shows detection and tracking
results from the proposed system, with occluders and occludees shown by filled pink
and green rectangles, respectively. In this paper we propose a context-based occludee
detector, detecting occludees with occlusion portions up to 80%; we also apply the

Fig. 2. Top: Input frames (intensity channel). Middle: A tracked vehicle acts as occluder (pink
rectangles). Bottom: Tracked occludees (green rectangles) and occluders (pink rectangles).



proposed occludee detector in an integrated occluder-occludee detection and tracking
system to handle dynamic occlusions. Finally, we demonstrate the potential assistance
for avoiding collisions in critical highway driving scenarios.

This paper is structured as follows. Section 2 provides a brief review of related
work on occludee detection. Section 3 introduces our occluder detection and tracking
method, followed by a proposed occludee detection and tracking method in Section 4.
Section 5 describes the integration of both the occluder and occludee tracking systems.
Experimental results and evaluations are given in Section 6. Section 7 concludes.

2 Related Work

Occlusions cause appearance changes and pose difficulties for data association in track-
ing. We review papers regarding occludee detection methods. Approaches used for
fully-visible vehicles cannot be simply adapted for partially occluded vehicles. For ex-
ample, Haar-like features, horizontal edges, visual symmetry, and corner density are
properties used in [16] for detecting fully-visible vehicles. The visual appearance of
partially occluded vehicles varies, edges might be too short to be identifiable. We can-
not assume visual symmetry. This section reviews detection methods for occluded or
general objects based on context information.

Single object model occlusion handling. [3] introduces a rich object representation
for a deformable part model, extensively studied for object detection and pose esti-
mation. For handling occlusion, [4] proposes to introduce a binary variable for each
bounding box fragment, denoting whether it is from object or background; structured
SVM and inference methods are used for learning and testing. In [5], a hierarchical
deformable part model is proposed to explicitly handle occluded objects. Each part is
further divided into subparts, and a modified structure SVM is adopted for learning. [20]
discusses the training of two detectors (global bounding box-based or part-based); an
occlusion map is generated by the global detector, and used for the part-based detector.

Occluder-occludee pair model. Occluders are often modelled together with oc-
cludee for detection. [17] proposes to train a pairwise object detector to detect occluder-
occludee pairs explicitly. In [14], occluder-occludee occlusion patterns are explored for
detection. A clustering method is adopted to obtain the occlusion patterns from a train-
ing set of pairs. Two joint deformable part models are proposed for learning those oc-
clusion patterns. [11, 12] adopt an and-or graph model to couple the occluders and oc-
cludees based on structure SVM. The occluder-occludee models are manually designed
for specific occlusions, e.g. on a parking lot.

Context-based methods. Contextual information, adopted for object class recogni-
tion tasks, leads to performance improvement [2, 8, 13, 23]. [13] proposes to adopt a
visual-cue surround to improve individual pedestrian detection. [2] adopts co-occurrence
context evolution in a deformable part model. In [23], touch-codes are explored to mod-
el the interaction between two people in a photo.

Single model methods focus on occludees separately from their occluders. In or-
der to handle dynamic occlusion patterns, designed occluder-occludee-pair models are
not suitable. With promising results achieved by adopting contextual information, this
paper proposes a context-based multiple-cue occludee detector. It uses occluders for



extracting the context cue, the visible part for exploring appearance information, and
stereo pairs for obtaining depth information. The combined verification of threes cues,
context, appearance, and depth, is sufficient for robust occludee detection.

We handle dynamic occlusions by applying an occludee detector in a vehicle-detection
and tracking system. Occluders are detected and tracked independently, and subsequent-
ly used as priors for occludee detection. Due to dynamic occlusions, occludees and
occluders may change their roles. Thus, we propose an integrative module to switch
occluder-occludee detection and tracking systems while processing an image sequence.
The proposed integrated occluder-occludee tracking system handles dynamic occlu-
sions efficiently; see Section 6 for experiments.

3 Occluder Detection and Tracking

Vehicles may appear fully visible (occluders) or partially occluded (occludees). Occlud-
er detection and tracking is done independently from occludees. We use a stereo pair as
input at each time step. A sliding window generates initial hypothesesH◦ = {h◦i : 1 ≤
i ≤ N}, with h◦i = (xi, yi,Wi, Hi), where (xi, yi) are the top-left coordinates, and Wi

and Hi the width and height of the bounding box of hypothesis h◦i .
Two layers of classifiers are adopted for classification. The first layer uses a cas-

caded AdaBoost classifier as commonly used for face, pedestrian, or vehicle classifica-
tion [18, 19]. We adopt it for rejecting ’easily’ identifiable false hypotheses. Remaining
hypotheses are fed into a small convolutional network. For details see [22]. Verified
hypotheses define the subset B◦ ⊆ H◦; they are passed on for tracking. We note that
our overall approach is independent from the actual type of classifiers used.

We assign a tracker T er
j (using tracking-by-detection; superscript “er” for “occlud-

er”, j denotes the tracker ID) to each verified hypothesis b◦j ∈ B◦, 1 ≤ j ≤ M ≤ N ,
which uses a Kalman filter for tracking the vehicle 3D position (Xj , Zj).X denotes the
lateral position, Z the longitudinal position, and (Xj , Zj) is the mid-point at the bot-
tom of the vehicle, assuming vertical position Y = 0 (vehicles are not flying). The 3D
location is provided by a disparity map generated by a semi-global matching technique
[6]. We assume that disparity values inside b◦j are all identical (i.e. we use the mean
disparity). To calculate the initial state xer

j = (Xj , Zj)
T , we use the mean disparity

and the mid-bottom point coordinates (xj , yj) of the vehicle bounding box.
The sketched detection-by-tracking method uses the trackers T er = {T er

j : 1 ≤
j ≤ M} for generating hypotheses, denoted by Her. Her are verified by occluder
classifiers. In this way we include the trackers’ capabilities into the detection process
which improves the detection rate. The process is robust with respect to jittering and
small scale changes.

By verification we obtain a subset Ber ⊆ Her of hypotheses, where each berj ∈ Ber
is flagged with its tracker ID j. Thus, data association can be done by matching track-
er IDs. Currently active trackers are updated by detections obtained in initial (detected)
hypotheses B◦ or in tracked hypotheses Ber when applying the occluder trackers. Some
detected bounding boxes b◦j may overlap with some tracked boxes berg . Mean-shift based
non-maximum suppression is used to merge multiple detection responses. New track-



ers are initialized if there are unmatched boxes b◦j . Overall, our approach effectively
combines the tracking-by-detection and detection-by-tracking paradigms.

4 Occludee Detection and Tracking

This section describes a new occludee detection and tracking method. We employ mul-
tiple cues, occlusion context, appearance, and disparity. Each cue poses individually a
weak constraint which is not yet sufficient for detecting a vehicle in general based on a
small fragment of its rear side.

Detected occludees, denoted by beekj , are tagged with their occluder track ID. Let j
denote the occluder tracker ID, and k the index of the occludee (superscript “ee” for “oc-
cludee”). We assume that each occluder has a maximum of two occludees, with k = l if
on the left, or k = r if on the right. We adopt again the tracking-by-detection method to
track detected occludees. Different to occluders, where we apply detection-by-tracking,
occludees are detected by our proposed context-based multiple-cue detector. We do not
use tracking of predictions in this case. The prediction from occludee trackers may not
be as reliable, due to small visible regions. The appearance may change considerably
caused by dynamic occlusions. For occluder j, the occludee trackers T ee

kj define a set
T ee
j (of up to two elements).

Context-based Multiple-cue Occludee Detector. Occludees do not appear every-
where in the image. The occluder gives hints for scanning for its occludees. Assuming
a (nearly) planar road surface, the occludees are located further away (in longitudinal
direction), and the occludee is occluded by this occluder in the image plane. The bound-
ing box of an occludee beekj and that of its occluder berj are expected to be overlapping, or
adjacent to each other. Considering real-world applications (e.g. autonomous driving),
a range of possible positions of an occludee can be estimated according to the position
of its occluder. Given a candidate occludee position (Xi, Zi) in a defined 3D region, the
corresponding occludee hypothesis heei in the image plane is obtained with a defined
vehicle size. The context, i.e. occlusion with its occluder in the image plane, is adopt-
ed as context cue. More context cues, e.g. lane detection results, could be included to
further improve the robustness.

Intuitively, since the occludees are partially-visible vehicles, we propose to train
partial-vehicle classifiers. Those classifiers are applied for recognising that the occluded
object is a vehicle, instead of, for example, a traffic sign or any other object in a traffic
scene. We train a quarter- and a half-width classifier. Both classifiers’ training data
are cropped from a fully-visible vehicle training set used for training of the occluder
classifier.

Using an occlusion check, the classifier can be applied to various occlusion patterns.
Adopting occluders as priors, with a given candidate occludee at 3D position (Xi, Zi),
the visible part of the occludee is known by occlusion check in the image plane as
mentioned above. When the occludee’s bounding box heei is visible more than half of
the usual width, both the quarter- and the half-width classifier are adopted to classify a
quarter or half of heei in the intensity image.



Fig. 3. Multiple-cue responses shown in heat-color maps. The corresponding 3D top-view is
shown in Fig. 4. A more reddish color denotes large response values, meaning more likely a
3D position (X,Z) of an occludee. The combined response map (shown on the bottom, right)
denotes that there is possibly an occludee at a distance of about 100 m ahead. Top, left: Quarter-
width classifier response. Top, right: Half-width classifier response. Bottom, left: Disparity re-
sponse. Bottom, right: Combined multiple-cue response.

We apply a local convolutional neural network; it could be replaced by any bounding-
box-based classifier. The quarter- or the half-width classifiers’ responses are taken as
appearance cues.

Given a candidate occludee’s 3D position (Xi, Zi), assuming the disparity value
for a vehicle (considered to be a vertically planar object), the measured disparity value
within the corresponding heei region should be aligned with the expected disparity value.
We model disparities by a Gaussian distribution with respect to differences between
expected disparity and measured disparity values.

Fig. 4. Left, top: Intensity image with tracked occluder (the pink filled rectangle). Left, bottom:
Corresponding disparity map, with close to far away encoded by red to green. Right: Top view
of the shown 3D scene with disparity map shown in lower-left. The zoom-in region (the light-
grey rectangle) shows two sample regions overlaid with colored dots. Each colored dot denotes a
sample. The region highlighted in orange denotes the same 3D position as show in Fig. 3.



So far we have multiple weak cues, context priors, classifiers, and disparities. Mul-
tiple cues are combined in a particle filter framework. Each particle is the 3D location
of a candidate occludee. The confidence for each particle presents those multiple cues.
A higher confidence value denotes a larger likelihood of an existing occludee. The most
confident particle is selected as an occludee detection. Left and right occludees are de-
tected independently.

Let N denote the number of particles (3D locations around an occluder); see Fig. 4.
Colored dots identify particles. For a given occluder, the occludees are located in a
range further away with valid occlusion to their occluder. The particles are denoted by
{(Xij , Zij) : 1 ≤ i ≤ N}. Each position (Xij , Zij), identifying the middle-bottom
point of a candidate occludee, can be projected into a hypothesis heeij in the image
plane with a defined 3D size (width and height). The occlusion between the candidate
hypothesis and its occluder is valid if their bounding boxes heeij and berj are non-disjoint.
In other words, the candidate occludee is actually occluded by its occluder. Non-valid
hypotheses are excluded from further processing, formally represented by

Ccont
i =

{
1 if τ1 > f(heeij , b

er
j ) > τ2

0 otherwise
(1)

where f(h, b) is a function which returns an overlap-ratio for input boxes h and b, and
τ1 and τ2 are upper and lower thresholds for the overlapping ratio.

The appearance of the visible part is verified by a quarter- or half-vehicle classifier.
According to occlusion patterns, we derive a visible part of an candidate occludee from
the occluder. Two partial vehicle classifiers are applied to obtain classifier responses
Cquar and Chalf . The appearance cue is defined by

Cclass
i =

{
ω1Cquar + ω2Chalf if f(heeij , b

er
j ) < τ3

Cquar otherwise
(2)

If more than half of the width of a candidate occludee appears, we adopt the half-
width classifier along with the quarter-width classifier. The ratio threshold τ is constant.
Weights ω1 and ω2 define the applied contributions of the two classifiers.

If there is an occludee then the measured disparity value from hypothesis heeij is
aligned to the expected disparity value. Even if being verified by context prior and
classifiers, hypotheses with high scores are still shattered across different distances,
which corresponds to different scaled bounding boxes in the image plane; see Fig. 3.

Given a candidate occludee (Xij , Zij), the expected disparity dexpi for the occludee
is obtained by assuming a vertical position Y = 0. The measured disparity dmea

i is
obtained by averaging disparity values in the central subregion of heeij . A Gaussian dis-
tribution is adopted to model the disparity cue with respect to the difference between
dmea
i and dexpi . The value of σ is obtained by measuring the uncertainty of disparity in

a statistical manner. The disparity-cue response is defined by

Cdisp
i =

1√
2σπ

exp−
(dmeai −dexp

i
)2

2σ2 (3)

Each sample (Xij , Zij) is measured with context, classifier response, and disparity
cues, obtaining responses Ccont

i , Cclass
i , and Cdisp

i . The higher the responses value,



the more likely that there is an occludee located at the sample position. The confidence
(i.e. combined response) of a sample (Xij , Zij) that contains an occludee is defined by

Ci = Ccont
i Cclass

i Cdisp
i (4)

All cues are required for a response with high confidence, as just individual cues are
insufficient. The occludee is detected by a greedy selection of that sample which has
the highest confidence, formally

beekj = argmax
heeij

Ci (5)

A low-pass filter is employed to reduce false positives. Figure 3 shows multiple-cue
responses of an occludee candidate; a corresponding 3D top-view is shown in Fig. 4.
The intensity image with a tracked occluder (the pink rectangle) and a disparity map are
shown in Fig.4. In Fig. 3, the more reddish color denotes large response values, meaning
a larger likelihood of an occludee at that position. The combined response map (bottom,
right) indicates that there is possibly an occludee at distance 100 m ahead.

Occludee Tracking. We detected occludees in Bee = {Bee
j : 1 ≤ j ≤ M}.

A Kalman filter-based tracking-by-detection method is adopted for occludee tracking.
Similar to occluder tracking, the middle-bottom 3D position of an occludee is defined as
tracking state (X,Z). A constant-velocity assumption is adopted. The detections from
a multiple-cue detector are used for updating the state.

Using the proposed context-based occludee detector, occludee detections are tagged
with their occluder tracker IDs. Instead of doing data association for each occludee a-
gainst the occludee trackers, an occludee detection, beekj , is associated with occludee
tracker T ee

kj . The occluder tracker ID j and occludee tracker ID k specify the corre-
sponding occludee detection to its tracker.

5 Integration of Occluder-occludee Tracking

In real world scenarios, a vehicle was fully visible (occluder) may be partially occluded
(occludee) in a few seconds. On the other hand, a partially-visible vehicle may become
fully visible. We introduce the proposed integration of occluder-occludee tracking.

Case 1: An occluder is gradually occluded by another occluder. The detection-by-
tracking method will fail to verify the predicted bounding box, due to occlusion. This
vehicle is lost even if it is still partially visible. Case 2: A tracked occludee is shifting
away to another lane and becomes gradually more visible. The occludee tracker can
generate a hypotheses for the occluder classifier for verification.

To interactively integrate occluder and occludee tracking systems, we propose to
switch occludee and occluder trackers when conditions apply.

Occluders Switch to Occludees. To switch an occluder tracker T er
j to an occludee

tracker T ee
kg , the occluder has a valid occluder T er

g that causes the occlusion. The oc-
cluder j is located further away from its potential occluder. The overlap in image plane
between berj and berg is over a given threshold. We conclude an occludee detection from



having occluder g matched to occluder j, with beekg overlapped by berj . The conditions
are formulated as

T er
j ⇒ T ee

kg , s.t. f(berj , b
er
g ) > τ4, ∃beekg, f(berj , beekg) > τ5, zj > zg (6)

Occludees Switch to Occluders. To switch an occludee tracker T ee
kj to an occluder

tracker T er
g , the occludee is tracked for a while and overlap ratio with its occluder are

low, defined by

T ee
kj ⇒ T er

g , s.t. g(T ee
kj ) > τ6, f(beekj , b

er
j ) < τ4 − ε (7)

where g(T ) denotes the tracked frames for the tracker T , and ε is a positive constant,
adopted to prevent a switching loop between occluders and occludees.

6 Experiments

The proposed system is evaluated on two types of sequences, Dynamic and Dense; see
Tab. 1. Dynamic contains four sequences of 1650 frames, approximately one minute
each. 6259 vehicles (occluder and occludees), 992 occludees, and 188 trajectories,
are labelled frame by frame. The Dynamic sequences contain scenarios with dynamic
occlusions, recorded with regular driving style. To evaluated the proposed occluder-
occludee integrative system, there are scenarios occluders changing lane with their
occludees becoming fully visible, or with occluders on fast lane driving pass the ego-
vehicle becoming occludees. The Dense sequence contains 8300 frames with every 100
frames labelled (approx. 5.5 minutes). 343 vehicles and 67 occludees are labelled. The
number of objects at the first glance seems limited, but those 83 frames are randomly
sampled from thousands of frames. This sequence is adopted to estimate the proposed
system on dense highway traffic, a more general evaluation. Both Dynamic and Dense

sequences are recorded at 25 fps, from stereo cameras mounted behind the windscreen
of an ego-vehicle.

One example frame with object labels shown in Fig. 5. The occluders and oc-
cludees are explicitly labelled respectively, denoted with different color rectangles. The
occludee labels (green rectangles) are overlapped with their occluders. The proposed
integrated system and occludee detector output the visible part exclusive to its occluder.
Thus, the overlap ratio for measuring is set relatively low 0.25. A zoom-in region shown
on top left corner illustrates what the perfect system is expected to detect. There are oc-
cluded vehicles appear further away from occludees. We will focus on those situations
in future work.

Sequences Frames Objects Occludees Trajectories
Dynamic 1,650 6,259 992 188
Dense 8,300 343 67 -

Table 1. The test sequences.



Fig. 5. A frame with labelled vehicles. Red rectangles denote the occluders; green rectangles
denote occludees.

6.1 Integrated System vs Occluder System

We begin the evaluation with comparing the proposed integrated system with the base-
line system (occluders detection and tracking system). The frame-wise detection rate
and precision are adopted. Since tracking is involved, the recall curve is not applicable.
The trajectory detection rate is used to evaluate tracking performance. A trajectory is
counted as detected if 50% frames over the trajectory length are detected.

For Dynamic sequences, both frame-wise detection and trajectory measures are
shown in Tab.2, left. ’Integrated’ denotes the proposed integrated system. ’Occluder’
denotes the occluder detection and tracking system. The proposed system fires more
false positives, but improves both the detection rate and trajectory detection rate by sig-
nificant margins 11% and 27.9% respectively. The proposed system detects and tracks
occludees with occlusion portion up to 80%. The detection rate is improved due to
the occludee detection and tracking system, and the integration between occluder and
occludee trackers. The evaluation results on Dense sequence are illustrated in Tab. 2,
right. Similar performance is observed. ’Integrated’ outperforms ’Occluder’ by a large
margin 17.8%.

6.2 Application Scenario

Different levels of autonomous driving on highways are available in serial production
cars, e.g auto-brake, distance keeping, lane keeping etc.. In order to enable more ad-
vanced autonomous driving, better understanding the environment offers better founda-

Detection
rate

Precision
Trajectory

detection rate
Occluder 59.9 88.9 44.2
Integrated 76.9 79.7 72.1

Detection
rate

Precision
Trajectory

detection rate
Occluder 55.7 89.2 -
Integrated 73.5 80.3 -

Table 2. Performance measured on the Dynamic sequences (left) and on the Dense sequence
(right).



tion for that purpose. Driving environment in real world is dynamic. Vehicles changing
from one lane to the other, because of the vehicle in front (their occludees) driving slow,
or even, suddenly broken down. The occludees affects the behavior of their occluders.
If the ego-vehicle observes a bit further away (the occludees), a more advanced reaction
could be made, instead of just braking abruptly.

Using occluder detection and tracking system, the occludees are not picked up due
to occlusion, although they are visible, partially. The proposed integration system de-
tects and tracks the occludees with the occlusion portion up to 80%. Four Dynamic
sequences are adopted to measure the time (frame) difference between the proposed
system and the occluder system picking up the previously heavy occluded then fully-
visible vehicles. The evaluation results are shown in Tab. 3.

Frames Time(s)
Sequence 1 40 1.6
Sequence 2 35 1.4
Sequence 3 29(27,32) 1.2
Sequence 4 191 7.64

Table 3. Frames ahead of occluder tracker by the integrated system picked up the occluded car
in front of a leading car.

In the first three Dynamic sequences, the proposed system picks up the occludees
30 − 40 frames ahead of the occluder. With recording frame rate 25 fps, the proposed
system ’sees’ the occludee 1.2 − 1.6 seconds before the occluder system. With high
speed, even a few milliseconds make a difference. In ’sequence 4’, the occludee is
partially visible for 7 s before appearing fully visible. This information can be used for
higher level decision making, e.g regarding changing lane for the ego-vehicle.

7 Conclusions

We proposed a vehicle detection and tracking system for handling dynamic occlusion-
s. The proposed method integrates detection and tracking of occludees and occluders.
We proposed a context-based multiple-cue method for occludee detection. The applied
classifiers for occluders and occludees may be replaced by other bounding-box-based
classifiers. A tracking-by-detection method is used for tracking occludee and occluder
respectively. The proposed integrated occluder-occludee tracking system shows promis-
ing results on handling dynamic occlusions. The proposed system improves detection
rate and trajectory detection rate by significant margins, compared with the occluder-
only system. The proposed context-based multiple-cue occludee detector detects the
immediate occludees for left and right sides of an occluder. It detects slightly to heav-
ily occluded vehicles, occlusion portion up to 80%. The proposed system contributes
to handle emergency situations in highway autonomous driving. Generally, instead of
focusing on the target-object, e.g occludees in isolation, adopting the contextual infor-
mation improves the performance.
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