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Abstract— This paper presents a stereo-vision based system
for the recognition of dangerous situations at roundabouts. At
first, we investigate the necessary field of view and viewing
direction using videos taken by a panoramic camera. Using
the insights of these tests we build up a stereo-vision sys-
tem. This system is based on the well established disparity
estimation scheme Semi-Global Matching and the recently
introduced medium-level representation called Dynamic Stixel-
World. A time-to-contact measure is defined that makes explicit
use of the roundabouts structural characteristics. Using this
measure enables us to create a system for driver warning or
possible automated intervention. Our empirical studies reveal
that the warning decision correctly mimics human driver
decisions.

I. INTRODUCTION

Most urban accidents occur at intersections. As a result,
roundabouts have become highly popular (at least in Eu-
rope), since the number of hazard points is significantly
smaller than on classical intersections [6]. Assuming right
lane driving, the major risk is that a driver entering the
roundabout overlooks traffic from the left side, as shown
in Fig. 1. Additionally, roundabouts can lead to a higher
traffic throughput.

However, in contrast to crossroads, roundabouts exhibit
many different complex (non-straight) driving routes that
other traffic participants can take.

Unfortunately, this causes problems for today’s collision
avoidance systems that usually assume straight motion of
both the ego-vehicle and the opponent [2]. A short glance on
Fig. 2 reveals that it is challenging to predict if an incoming
car will leave the roundabout. In the given example, the
motion vector of critical vehicle B intersects with the motion
vector of our ego-vehicle E only in the very last moment.

Accordingly, it is our goal to develop a driver assistance
system that helps to reduce the risk of accidents in such sce-
narios. To the best of our knowledge, this traffic situation has
not been investigated so far. Since today high-quality cameras
come at a very low price, we aim at a vision-based solution.
Furthermore, we assume that the car knows from a map (e.g.
navigation) that the driver approaches a roundabout.

Creating such a system requires the detection of other
traffic participants and the estimation of their pose and
motion state in order to compute the potential risk level.

For many similar problems, stereo-vision has already
proven a powerful solution. For instance, Barth et al. [2] have
shown that pose, size, and the full motion state (including

Fig. 1: A typical traffic situation at an urban two lane
roundabout.

Fig. 2: The entrance risk at roundabouts grows with descend-
ing distance. The ego-vehicle E has to consider that both cars
(A and B) will pass. Altogether, this is a very challenging
situation for the environment perception.

acceleration and yaw rate) can be robustly measured by
tracking oncoming vehicles.

Our recognition system uses preprocessing steps already
developed for forward looking cameras. The depth analysis
is based on Semi-Global Matching (SGM) using a real-
time FPGA implementation [7], [8]. The detection of mov-
ing obstacles utilizes the so called Dynamic Stixel-World,
a compact three-dimensional scene representation recently
introduced by Pfeiffer et al. in [9], [10].

Based on this data, an object clustering is carried out.
Subsequently, this information is used to compute a time-to-
contact measure that allows to decide whether a safe entrance
into the roundabout is possible.

The remaining paper is organized as follows: Section 2
gives a detailed overview about the addressed challenges
at roundabout scenarios. The algorithms used to obtain the
input data are sketched in Section 3. This also includes a brief



Fig. 3: Images of a spherical 360◦ camera showing typical urban roundabouts that are used for our field of view analysis.
The painted horizontal lines represent the viewing direction of the ego-vehicle. For the core application of tracking other
vehicles in roundabouts, we focus on the field of view from -90 ◦ to -20 ◦ relative to the ego-vehicle (red lines).

overview of the Stixel scene representation. Then, Section 4
describes the clustering of Stixels to objects and the time-to-
contact computation is presented in Section 5. Finally, results
are given in Section 6. We show different tracking results
in roundabouts and compare the decision of our situation
analysis with the decision of test persons. As it turns out,
our system mimics a careful and defensive driver.

II. PROBLEM STATEMENT

A typical roundabout scenario in an urban environment is
shown in Fig. 2. While the ego-vehicle E is waiting for a
riskless entrance, vehicle B is driving inside the roundabout.
At the same time, vehicle A is about to enter the circle as
well. Altogether, this is a challenging situation, because it
allows to evolve in many very different ways.

In a preliminary investigation we recorded traffic situations
at about 50 different roundabouts. In the lab, the sequences
were shown to different test persons who were asked to
decide if they would enter the inner circle.

The time that another vehicle needs until it is in front of
the ego-vehicle is called time-to-contact (TTC). According
to the behavior of the test persons, a realistic TTC is in the
range of 2-2.5s. Usually, they considered other vehicles as
relevant obstacles if they were in the lower left quarter of
the circle.

A short calculation reveals the reason for this insight: on
roundabouts with diameters of about 20m people drive with
6-7 m

s . Accelerating up to this speed from a complete stop at
the entrance takes about 2-3s. Therefore, it is typically safe
to enter the roundabout as long as no car is driving with that
speed in the mentioned area.

However, there is one exception we have to take into
account: vehicle B might have higher speed when it enters
the roundabout. This forces us to extend the area we have
to check for oncoming traffic for about the length of a car.
Depending on the used sensor, one has to add a few more
meters for reliably estimating the motion state of cars in the
roundabout by tracking.

That means, if we want to track oncoming traffic partici-
pants until they pass in front of us or make a right turn, we
require a field of view of at least 70◦. This is in accordance
with the evaluation of the image data that we took with a
spherical 360 ◦ camera system (see Fig. 3).

As can be seen in Fig. 4, about 95% of all potentially
relevant objects are located between -20 ◦ and -90 ◦ with

Fig. 4: Distribution of the viewing directions at approaching
vehicles with respect to the heading direction of the ego-
vehicle. It is shown that about 95% of all observed vehicles
move in the field of view from -20 ◦ to -90 ◦.

respect to the horizontal viewing direction of the ego-vehicle.
Based on this data, we decided to work with 80 ◦ lenses
looking at -50 ◦ to the left. The base line of our stereo camera
system is 35cm. It is worth mentioning that this set-up also
allows surveillance at standard intersections.

III. THE DYNAMIC STIXEL WORLD

Detecting vehicles passing through roundabouts is
achieved by relying on the Stixel representation proposed
by Pfeiffer et al. [9] , [10].

A single Stixel is defined as a vertically oriented rectangle
with a fixed width in the image (e.g. 5px) and a variable
height. Every object within the image is approximated by
a set of adjacent Stixels. This way, Stixels allow for an
enormous reduction of the raw input data, e.g. approximately
400,000 disparity measurements from a 1024×440px stereo
image pair are reduced to a few hundred Stixels only. At
the same time, Stixels give easy access to the most task-
relevant information such as free space and obstacles and
thus effectively bridge the gap between low-level (pixel-
based) and high-level (object-based) vision.

Stixels are extracted from a stereo image pair in two steps:
the stereo computation, e.g. using Semi-Global Matching
stereo (SGM) [7], [8], and the actual Stixel computation.
According to [10], the three-dimensional scene is segmented
into two different class types, namely ground and object.
Both are expected as planar surfaces. The difference lies



(a) SGM stereo input (b) Static Stixel representation

(c) KLT-feature tracks (d) Stixels with motion state

Fig. 5: An exemplary roundabout is shown. The given images denote the different steps when computing Stixels for the
current scenario. Fig. (a) shows the dense stereo input obtained from using SGM, Fig. (b) shows the corresponding static
Stixel representation. Fig. (c) shows the optical flow input used for tracking Stixels over time and Fig. (d) shows the final
Stixel result with motion estimates.

in their orientation: ground is expected as horizontal while
object is assumed as vertical with a constant depth. The
segmentation is regularized by a set of physically motivated
world model priors, such as gravity and ordering constraints.
This way, the segmentation task leads to a typical maximum
a posteriori (MAP) estimation problem. Solving for the most
likely and thus optimum segmentation is achieved through
the use of dynamic programming. The SGM result and the
Stixel result are depicted in Fig. 5a and 5b.

Up to this point, the Stixel representation only describes
the current three-dimensional world geometry (in both the
image and in 3D). However, deciding whether a roundabout
is occupied by other moving vehicles or not also requires
additional velocity information.

For this purpose, the Stixel based tracking scheme pro-
posed in [9] is chosen. Besides using stereo data, this scheme
additionally requires optical flow information (see Fig. 5c)
as well as the own vehicle’s odometry. To this end, the
first is computed by using the well-known feature-based
KLT-tracker [11] and the latter is extracted by using visual
odometry [1].

For estimating the motion properties of other objects, the
obtained input data has to be combined properly. This is
achieved by following the 6D-Vision principle suggested by
Franke et al. [5]. This scheme uses Kalman filtering [13] to
estimate both the position and velocity of three-dimensional
point feature. The result is combined in a rich 6-dimensional
state vector. However, since in our considered scenarios all
relevant objects are expected to move earthbound, this state
vector allows to be reduced to 4D, namely the longitudinal
and lateral state components, such that X = (X ,Z, Ẋ , Ż)T .

As a result, precise motion information is available for
every Stixels independently. Stixels enriched with motion
information are defined as dynamic Stixels. The Stixel-based
tracking result for the exemplary scenario is depicted in
Fig. 5d.

IV. CLUSTERING PROCESS

The goal of the following steps is to reliably estimate the
position and velocity of relevant vehicles in roundabouts. For
this purpose, independent Stixels si ∈ {1, .., I} are grouped
to only a small number of clusters ck with k ∈ {1, ..,K} and
K << I.

A successful clustering is based on well-considered geo-
metrical and physical conditions. To this end, the following
assumptions are made:

• minimum number of Stixels: due to their horizontal
expansion, objects are represented by a minimum num-
ber of Stixels minStix.

• geometrical characteristics: the euclidean distance be-
tween two Stixels si and s j is a relevant criterion for
the spatial separation.

• physical characteristics: Stixels representing the same
object have a uniform velocity and driving direction.

We applied a real-time clustering procedure which is based
on the DBSCAN algorithm [4]. The key idea is that an
arbitrary Stixel si of a cluster ck has at least a minimum
number of Stixel neighbors minNeigh within a given neigh-
borhood threshold ε . In our approach we assume that the
Stixel density within a cluster is considerably higher than
outside of a cluster. Thus, clusters with minStix < minNeigh
are flagged as noise (Fig. 6, left).

The euclidean distance d is frequently used as a neighbor-
hood criterion, but the DBSCAN [4] allows any kind of cost
functions.

For our application it is not sufficient to use the euclidean
distance d = dis(si,s j) as the only neighborhood constraint.
This is because back-to-back driving cars with different
driving directions tend to be merge to one object.

To this end, a second neighborhood criterion is defined
which is the angle φ between the two motion vectors ui =



Fig. 6: Illustration of the DBSCAN. Left: the green and blue
points represent two different clusters. The red points are
considered as outliers. Right: the clustering results of the
scene in Fig. 5d is shown. The black boxes represent the
cluster positions and the green arrows describe their driving
directions.

(Ẋ , Ż)T
i and u j = (Ẋ , Ż)T

j of the Stixels si and s j:

φ = arccos
(
< ui,u j >

‖ui‖ ‖u j‖

)
(1)

A drawback of the DBSCAN algorithm is its quadratic
complexity O(n2), where in our case n equals the number
of Stixels I. To reduce this burden, we use the modified l-
DBSCAN [12] which is a hybrid clustering method with a
runtime complexity of O(n). Its key idea is to start with a
coarser clustering of the complete data set. Each cluster is
represented by its leader point l. Then, a fine clustering is
carried out for which only those leader points are considered.
Finally, after the grouping process, each cluster is represented
by its mean position Xk, Zk and its mean velocity Ẋ and Ż.

For a better understanding, the clustering result of the
scene depicted in Fig. 5d is given in Fig. 6.

V. THE TIME-TO-CONTACT-COMPUTATION

In the following, the estimation of the TTCk is extracted
which is performed at each time-step and for each detected
cluster k. The goal is to predict whether a safe entrance into
the roundabout is possible or not.

With the help of the mean points of each cluster and a
nearest neighbor criterion the driven trajectories are esti-
mated. The motion trajectory of the incoming vehicle is ap-
proximately represented by a circular shape. For this purpose,
a circle is fitted to the driven mean positions [Xk,Zk]t as soon
as a cluster ckt is steadily observed over time t ∈ {1, ...,T}.

The method of [3] is used for the circle estimation which
is based on a least square fit. Hereby, the sum of the squares

F =
T

∑
t=1

vt
2 (2)

is minimized where vt is the error distance function defined
as:

vt =
√

(Xkt −ak)2 + (Zkt −bk)2−Rk , (3)

with the circle radius Rk and the circle center [a,b]k. For a
robust estimation the circle radius Rk is constrained. There-
fore it is assumed that digital maps (e.g. navigation systems)

Fig. 7: The circle fit with and without the radius constraint
after 10 frames of tracking. At the unconstrained solution the
collision time takes too much time which is not consistent
with the real situation. The black rectangle represent the ego
position. The black dots are the predicted positions of the
incoming vehicles. The red cross is the calculated collision
point.

will provide this geometrical information. An example for
the circle estimation is shown in Fig. 7.

Furthermore the length of the circular arc cak which a
vehicle will drive to a possible collision point is defined by
the circle angle α . This angle α is calculated from the current
vehicle position, the circle center and the position of the ego-
vehicle. The estimation of cak is straightforward:

cak = π Rk
α

180◦
. (4)

Finally, the TTCk is determined by the estimated velocity
vk =

√
(Ẋ2

k + Ż2
k ) and the cak:

TTCk =
cak

vk
. (5)

If TTCk is below a given TTCk threshold the system advises
not to enter the roundabout. The TTCk is updated at each
time step which is exemplary shown in Fig. 9.

VI. RESULTS

For our experiments we evaluate video material of typical
roundabout scenarios recorded at rush-hour traffic. The used
stereo camera system has 1400×1024px image sensors with
80◦ FOV lenses and a focal length of 740px. The images
are cropped to 1400×400px to focus on the relevant scene
content. The dynamic Stixel algorithm, the clustering process
and the TTC computation run on the CPU in real-time.

A. Results of the vehicle tracking and the TTC computation

Fig. 10 shows different tracking samples of a 80s sequence
of the two lane roundabout from Fig. 1. The incoming cars
are recognized at an average distance of approximately 25m.
It is visible from the processed data that vehicles which
passed us nearly drove a circular arc. Vehicles that turned
off typically had an approximately linear driving path.

Due to side-by-side driving, in some cases, tracks of
covered vehicles were lost and a new cluster re-initialization
had to occur. Scattered outliers are observed at distances
of approximately 20-25m which, however, have shown no
negative influence on the TTC computation.



Fig. 8: The estimated stop and go phases (red and green) of our algorithm compared to the behavior of test persons for a 90s
sequence of a typical urban roundabout. In 13 of 19 independent traffic situations (1, 4-6, 9, 11-13, and 15-19) the algorithm
decision closely corresponded to the human behavior. In two cases (situation 8 and 14), the algorithm only matched to five
or less participants. Again, in four situations (3, 5, 9, and 15) the algorithm switched to red for a few frames while some
of the participants decided otherwise. In these cases, the test persons recognized that the vehicles turned off.

Fig. 9: A sequence set of a typical scene with an incoming vehicle at a roundabout. The images are illustrated together
with the corresponding dynamic Stixel representation. On the right side the results of the clustering process and the TTC
computation is shown for each scene.



Fig. 10: The estimated trajectories of our tracking algorithm
for a sample 80s sequence. Roughly, 50 percent of all
incoming vehicles drove a circular arc and passed the ego-
vehicle (black rectangle). All other vehicles were leaving the
roundabout.

Fig. 9 shows the dynamic Stixel representation with the
TTC computation of a typical roundabout scene where an
incoming car passed the ego-vehicle. The color value of
the Stixels and the drawn arrows represent the direction
the Stixel moves with respect to our ego-vehicle. The color
saturation encodes the speed as well. In the third scene the
estimated TTC is below the given threshold of 2.5s. For this
reason, the advise is not to enter the roundabout, as indicated
by the red light.

B. Evaluation with test persons

For an evaluation of our TTC algorithm estimated stop
and go phases have been compared with the driving behavior
of test persons. They were shown recorded scenes and had
to mark those time windows where they would enter the
roundabout.

Fig. 8 compares the results of each test person with our
algorithm for a 90s sequence with 19 independent traffic
situations. Note that this is just an extract of our evaluation
with about 50 independent roundabout scenarios.

Generally, the red-green-phases of the algorithm corre-
sponds to the phases of the test persons. Thereby, the
geometrical assumptions of the driving behavior and the
TTC threshold of 2.5s are confirmed. In contrast to the test
persons the TTC computation can not "recognize" turning
off vehicles, such as shown in scene five (about 0:35s) and
scene seven (about 0:40s). Apparently, our decision strategy
shows the most defensive but also safest driving behavior.

VII. CONCLUSION

For the first time, a stereo-based time-to-contact computa-
tion for right of way situations at roundabouts was presented.
For this purpose, urban roundabouts were observed to con-
figure an optimal stereo camera setup.

Dense disparity images are used to compute the dynamic
Stixel World which is a compact three-dimensional environ-
ment representation for urban traffic situations. This work
proves the power of the dynamic Stixels which support our
processing steps perfectly.

A well known clustering method was used to group
independent dynamic Stixels representing the same object.
This procedure allows reliable tracking of incoming vehicles
at urban roundabouts. In order to handle such complex
situations properly, we assume that all tracked vehicles drive
on a circular arc. This has proven a defensive but safe
assumption.

For a reliable time-to-contact computation a robust circle
fit method was used which is supported by additional geo-
metric constraints.

The system’s estimated stop and go phases have been
compared to the driving behavior of 10 different test persons.
According to these tests, it has performed no misjudgment
of the current right-of-way situations.
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