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Pixels, Stixels, and Objects

David Pfeiffer, Friedrich Erbs, and Uwe Franke

Daimler AG, Research & Development, Sindelfingen, Germany

Abstract. Dense stereo vision has evolved into a powerful foundation
for the next generation of intelligent vehicles. The high spatial and tem-
poral resolution allows for robust obstacle detection in complex inner
city scenarios, including pedestrian recognition and detection of partially
hidden moving objects. Aiming at a vision architecture for efficiently
solving an increasing number of vision tasks, the medium-level represen-
tation named Stixel World has been developed. This paper shows how
this representation forms the foundation for a very efficient, robust and
comprehensive understanding of traffic scenes. A recently proposed Stixel
computation scheme allows the extraction of multiple objects per image
column and generates a segmentation of the input data. The motion of
the Stixels is obtained by applying the 6D-Vision principle to track Stix-
els over time. Subsequently, this allows for an optimal Stixel grouping
such that all dynamic objects can be detected easily. Pose and motion of
moving Stixel groups are used to initialize more specific object trackers.
Moreover, appearance-based object recognition highly benefits from the
attention control offered by the Stixel World, both in performance and
efficiency.

Fig. 1. Dense disparity image and the corresponding Stixel World representing
the three-dimensional environment in front of the vehicle. The colors encode the
distances, with red = close, green = far away, and gray = freespace. The arrows
show the motion vector of the tracked objects. This medium-level representation
achieves a reduction of the input data from hundreds of thousands of single depth
measurements to a few hundred Stixels only.
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1 Introduction

Driver assistance in complex urban environments is a challenging task requiring
comprehensive perception of static and moving objects. There is no doubt that
stereo vision will play a dominant role in in this context. However, there are two
main challenges:

First, the growing number of necessary recognition tasks and their com-
plexity ask for a proper vision architecture that replaces today’s independent
application-specific modules. This paper proposes such an architecture that
bridges the gap between pixels, objects, and the complete representation of the
dynamic scene.

Secondly, adverse weather and difficult lightning conditions ask for algorithms
of extreme robustness. This can be achieved best if the information contained
in the image sequence is optimally exploited. This means that research has to
look for algorithms that maximize the probability to find the best solution. The
algorithms presented in this paper are a step towards that goal.

Semi-global matching (SGM) [14] outperforms all known local disparity esti-
mation schemes [26]. In [13], Gehrig showed how to run this powerful scheme on
energy-efficient FPGA hardware allowing to compute dense high quality depth
maps in real-time. On the downside, this high density leads to a large computa-
tional burden when the resulting data has to be processed and evaluated by a
constantly increasing number of subsequent vision tasks.

In order to minimize the required bandwidth and the computational burden
of subsequent vision tasks, we introduced the so called “Stixel World” [2,25], a
versatile and extremely compact three-dimensional medium-level representation.
As shown in Figure 1, the three-dimensional information is represented by a few
hundreds of small rectangular sticks of certain width, height and velocity.

The paper is organized as follows: Section 2 summarizes related work, before
the optimization scheme used to compute the (multi-layered) Stixel World is
described in Section 3. Section 4 deals with the Stixel tracking for estimating
the motion state of individual Stixels. In Section 5, the optimal segmentation
of the Stixel World into stationary and moving objects is discussed, before we
show in Section 6 that the Stixel World can act as a highly efficient attention
control for object classification.

2 Related Work

The most popular method in robotics and driver assistance for representing
3D environments is to project depth information to occupancy grids [7,20] or
digital elevation maps (DEM) [17,18]. These maps model the likelihood of the
environment to be occupied. They are used to extract scene attributes such
as freespace [1] and obstacle information [23], the location of curbs and side-
walks [22,27], and various other scene and application-relevant features.

However, in the light of the quality of today’s stereo schemes, even a DEM
only represents parts of the information contained in the disparity image. In
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order to represent 3D environments more accurately, we introduced the Stixel
World that utilizes the fact that most man-made objects can be approximated by
planar surfaces with approximately vertical orientation [2]. Position and height
of Stixels limiting the free space are computed in a cascade of different algo-
rithms (occupancy grid, freespace, height segmentation) using dynamic program-
ming (DP) [4]. A related procedure has been recently adopted by [5].

By design, these schemes are limited to just extracting the first row of obsta-
cles, this way forbidding the proper handling of partial occlusion, a quite central
challenge in driver assistance. Besides that, given the vulnerability of such a
cascade of independent processing steps, we have decided to rework the Stixel
computation from scratch [25].

The key motivation for this was the work of Gallup et al. [12]. Their objective
is to create 3D volumetric object models. Multiple depth maps from different
LIDAR scans are accumulated in a single Cartesian histogram-based elevation
map. Thereafter, each cell is split into alternating either “empty” or “occupied”
box volumes. By relying on DP, the authors yield the optimal segmentation for
every cell of the grid which we consider the major benefit of this procedure.

Felzenszwalb et al. have presented an inspiring scheme [10] as well. They use
appearance cues to assign semantic information to image regions. Monocular
images are segmented using a continuous upper and lower bound with ordering
constraints. The resulting upper part is called “background” , the middle region
is assigned to ”object” (e.g. for infrastructure) and the bottom region to “floor”.
Again, the authors rely on DP and thus guarantee to find the optimum segmen-
tation. However, their approach is limited to a single object per column only.

Further, Liu et al. [19] use appearance cues to assign semantic information
to images using a five parts model (top, left, right, bottom, and center, e.g. for
segmenting rooms). Their model constraints are very strict and thus inflexible.
They rely on a graph cut [6,16] based approach that approximates a 2D optimum.

In [15], Hoiem et al. presented a scheme to assign the labels of type planar
(“ground”), vertical (“object”), and sky to super-pixels. For this purpose, the
authors rely on a greedy algorithm while exploiting pairwise patch affinities.
They use an appearance-based boosted decision-tree classifier on a trained data
set to infer the probabilities for the class affiliation.

3 The Stixel World

Our man-made environments are dominated by either horizontal or vertical pla-
nar surfaces. While horizontal surfaces typically correspond to the ground, the
vertical ones relate to objects, such as solid infrastructure, pedestrians, or cars.

This perception model is the basic idea of the Stixel World. In the sense of a
super-pixel, each Stixel approximates a certain part of an upright oriented object
together with its distance and height. In [25], we have presented a probabilistic
approach to compute the Stixel World for a stereo image pair in a single global
optimization scheme. The problem of Stixel extraction is derived as a classical
maximum a-posteriori estimation problem, this way ensuring to obtain the best
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segmentation result for the current stereo disparity input. An example result for
our method is shown in Figure 1.

Given the left camera image I of a stereo image pair and the corresponding
disparity image D (all of size w × h ∈ N2), a multi-layered Stixel World corre-
sponds to a column-wise segmentation L ∈ L of I into the classes C = {o, g}
(”object” and ”ground/road”) of the following form

L = {Lu} , with 0 ≤ u < w

Lu = {sn} , with 1 ≤ n ≤ Nu ≤ h
sn =

{
vbn, v

t
n, cn, fn(v)

}
, with 0 ≤ vbn ≤ vtn < h , cn ∈ C (1)

The total number of segments sn for each column u is given by Nu, the image
row coordinates vbn (base point) and vtn (top point) mark the beginning and end
of each segment. The term fn(v) is an arbitrary function providing the depth of
that segment at row position v (with vbn ≤ v ≤ vtn). All segments sn−1 and sn
are adjacent. This implicitly guarantees that every image point is assigned to
exactly one label.

Modeling all segments as piecewise planar surfaces reduces the function set fn
to a set of linear functions. Object segments are assumed to have a constant
disparity while ground segments follow the disparity gradient of the ground
surface. The idea of relying on such basic functions is illustrated in Figure 2.
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Fig. 2. Data model visualization. The blue line across the image marks the
column for segmentation. Red and green denote the ideal segmentation into
object and ground. The dashed line is the expected ground profile. The actual
disparity measurement vector for the particular scenario is marked using purple.

The computation of the Stixel World is addressed as a MAP estimation
problem. Consequently, we seek for the most probable labeling L∗, such that

L∗ = argmax
L∈L

P (L | D) . (2)

Applying Bayes’ theorem allows to rewrite the posterior probability P (L | D) as
P (L | D) ∼ P (D | L) ·P (L). This way, we obtain the product of the conditional
probability density of D given L and the prior probability density P (L).
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Here, P (D | L) rates the probability of the input D given a certain labeling L
and thus represents the data term for the optimization. The second term P (L)
embodies the overall probability for each individual labeling L and is the lever to
incorporate our world model. In related work, this term is also referred to as the
smoothness term. Hence, it allows to support the segmentation with a certain
set of physically motivated world assumptions. For example, this includes the
following:

– Bayesian information criterion: The number of objects captured along every
column is small. Dispensable cuts should be avoided.

– Gravity constraint: Flying objects are unlikely. The ground-adjacent object
segment usually stands on the ground surface.

– Ordering constraint: The upper of two adjacent object segments has a greater
depth. Reconstructing otherwise (e.g. for traffic lights, signs or trees) is still
possible if sufficiently supported by the input data.

To manage the complexity of this segmentation task, neighboring column la-
belings Lu are considered individually. Further, we treat all disparity measure-
ments du,v ∈ D as mutually independent which allows to generalize the dispar-
ity input to the vertical disparity vector Du ∈ D. Additionally, the data input
within Du is stated as independent from all column labels Lû with u 6= û. As a
result we obtain

P (L | D) ∼
w−1∏
u=0

P (Du | Lu)︸ ︷︷ ︸
data term

· P (Lu)︸ ︷︷ ︸
prior

. (3)

Finally, dynamic programming [4] is used to infer L∗ in real-time. Further
details about this Stixel extraction scheme are described in [25].

4 Stixel Tracking

To estimate the motion state of Stixels, the so called “6D-Vision” scheme pre-
sented by Franke et al. [11] is used.

In the original form, pixels are tracked over time and image positions as well
as disparities are measured at each time step. Assuming a constant motion of the
tracked features and a known motion of the observer, a Kalman filter uses these
measurements to simultaneously estimate 3D-position and 3D-motion for each
tracked feature1. Figure 3 shows the obtained result if this algorithm is applied
to a turning bicyclist. The arrows point to the expected positions 0.5 sec ahead.

Now, the same principle is applied to precisely estimate the motion state
of Stixels [24]. Then, based on this motion information, it is straightforward to
determine potential collisions with the ego vehicle (cf. [21]).

Given that in our applications objects of interest are expected to move earth-
bound, the estimated state vector can be reduced to 4D which is the position and
1 For more information and illustrative material visit: www.6D-Vision.com

http://www.6D-Vision.com
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Fig. 3. A bicyclist taking a left turn in front of our vehicle. The left side shows
the result when using 6D-Vision point features. The right side shows the corre-
sponding Stixel result.

velocity, i.e. X = (xT , vT )T . The dynamic Stixel results for the bicyclist scenario
are illustrated in Figure 3 on the right side. As a byproduct of this simplifica-
tion, the estimation puts fewer requirements on the ego-motion estimation. In
practice, the vehicle’s inertial sensors are sufficient to compensate for its own
motion state. Interestingly, the motion vectors are highly parallel, although the
estimation is done independently. This shows the low noise the 6D-Vision scheme
achieves thanks to the temporal integration.

5 Stixel Motion Segmentation

Many applications in driver assistance require to know the class type and motion
state of other objects. Therefore, in terms of establishing a well structured ar-
chitecture for modern vision system, gaining this comprehension is an important
part of the subsequent processing steps.

So far, Stixels are a compact representation of the local three-dimensional
environment, but they do not provide any explicit knowledge about which Stixels
belong together and which do not.

With this objective, we have presented an approach that moves towards the
grouping of tracked Stixels into the motion classes “right headed” , “left headed” ,
“with us” and “oncoming” as well as “static background” [9]. This idea is il-
lustrated in Figure 4 showing the motion segmentation result for the scenario
depicted in Figure 1 as well as another exemplary scenario.

Fig. 4. The motion segmentation result obtained using graph cut based opti-
mization. The coloring encodes the individual motion class. Static background
is uncolored. The left side shows the result for the scenario depicted in Figure 1,
the right shows another traffic situation.
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Again, in the style of the described Stixel computation, this task is under-
stood as a MAP estimation problem. Given the dynamic Stixel World, the goal
is to find the particular labeling of Stixels into the previously mentioned motion
classes that conforms best with our prior knowledge about the current local 3D
environment.

Besides assuming rigid motion and striving for spatial smoothness of the
segmentation, we use statistics obtained from annotated training data to express
where in the scene which type of motion is likely to appear. For this purpose,
we model this problem using a conditional Markov random field [6,16] with a
maximum clique size of two, thus considering direct neighbor relationships.
The most probable and therefore best class assignment is found by minimizing

E =

N∑
i=1

Ψ
(
lti | Zt, Lt−1)+ λ

∑
(i,j)∈N2

Φ
(
lti , l

t
j | Zt, Lt−1) . (4)

In this context, Zt = {zti} denotes the Stixel measurement vector at time
step t and Lt = {lti} are the correspondingly assigned labels. The term Ψ incor-
porates the unary terms and Φ considers mutual relations between neighboring
Stixel labels, such that

Ψ
(
lti | Zt, Lt−1) = p

(
zti | lti

)︸ ︷︷ ︸
data term

· p
(
lt−1i | lti

)︸ ︷︷ ︸
temporal expectation

· p
(
lti
)︸ ︷︷ ︸

prior

, and (5)

Φ
(
lti , l

t
j | Zt, Lt−1) = {− log (pequal (∆disp)) , if lti = ltj

− log (1− pequal (∆disp)) otherwise.
(6)

The smoothness term Φ
(
lti , l

t
j | Zt, Lt−1) is modeled as a Potts model. In do-

ing so, we favor neighboring Stixels to belong to the same label type. The best
labeling is extracted using the popular α-expansion graph cut [16]. All control
input and algorithmic parameters (e.g. including the weighting factor λ) have
been optimized using a large manually annotated sequence data base (+30, 000
frames) of urban traffic. Further examples for inner city scenarios are illustrated
in Figure 5 showing both the tracked Stixel World as well as the motion seg-
mentation results.

6 Object Recognition

A major motivation for the development of the Stixel World was to allow for an
efficient attention control of high-level vision tasks. While the easy detection of
moving objects as presented in the last section is one example, the recognition of
cars, pedestrians and bicyclists is another one which is usually solved by means
of classification.

Naturally, the more one knows about the current environment, the less effort
must be spent to extract the objects of interest. Accordingly, Enzweiler et al. [8]
addressed the exemplary task of vehicle classification (cf. Figure 6) using Stixels
and compared this approach against a monocular and a stereo-based attempt.
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Fig. 5. Results of the Stixel computation, the Kalman filter-based motion es-
timation, and the motion segmentation step. Arrows on the base points of the
Stixels denote the estimated motion state. The right side shows the correspond-
ing labeling result obtained by graph cut optimization. Furthermore, the color
scheme encodes the different motion classes (right headed, left headed, with us,
and oncoming). Uncolored regions are detected as static background.

For the monocular approach there are no prior clues about the 3D environ-
ment to exploit. Thus, one is forced to test lots of hypotheses spread across the
image covering all possible scales that the objects of interest might have. To
obtain reasonable results, we used approximately 50, 000 hypotheses per image.

In case of using stereo, the depth data can be easily used to sort out poten-
tially weak hypotheses in advance, e.g. by considering the correlation of depth
and scale. This strategy allowed to reduce the hypotheses set by another order
of magnitude, such that about 5, 000 remaining hypotheses had to be classified.

Now, using Stixels to control the attention made it possible to address this
challenge quite elegantly. Since Stixels inherently encode where in the scene, at
which distance, and at which scale objects are to be found, it is just straight-

Fig. 6. The goal is to classify front and rear views of other vehicles. Usually, this
requires to spread large amounts of hypotheses across the image. Using Stixels
attention classification allows to reduce their amount significantly while, at the
same time, the classification performance increases.
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forward to directly use this prior knowledge for the hypotheses generation step.
This way, we were able to reduce the number of required hypotheses once again
by a whole magnitude, such that we ended up at a total of 500 only.

In retrospect, the key conclusion from our experiments is not just that using
Stixels allows to speed up the classification by almost a factor of 10 (vs. stereo).
It also allows to maintain the detection rate constant, while, at the same time,
the number of false alarms decreases by almost one order of magnitude [8]. The
potential of this proceeding has also been focus of the work of Benenson et al. [5].

7 Summary and Conclusion

This contribution presented a novel vision architecture for understanding com-
plex traffic situations. Each step from pixels over Stixels to objects is based on
global optimization in order to achieve both maximum performance and robust-
ness. In particular, real-time SGM is used to compute dense stereo depth maps
from rectified image pairs.

The Stixel world is computed from stereo also in a semi-global optimal man-
ner, only ignoring the lateral dependencies of Stixel columns in order to achieve
a real-time implementation. The motion estimation is based on the 6D-Vision
principle, taking into account the temporal history of the tracked Stixel.

Finally, in order to extract all moving objects, graph cut based optimization
is used to find the optimum segmentation of the dynamic Stixel World. As a
result we get an extremely robust recognition system with an unprecedented
performance. Practice proves the attempted versatility of the Stixel World. It
has been successfully used for the initialization of object-specific trackers like
the vehicle tracker proposed by Barth [3].

Muffert et al. [21] were able to easily answer the question whether it is safe
to enter a roundabout by analyzing the Stixel World computed for a sideways-
looking camera system. As shown in [8], Enzweiler et al. used Stixels to speed
up their object classifiers by a factor of ten and simultaneously reduced the false
positive rate by nearly one order of magnitude.
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