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Robust and Precise 3D-Modeling of Traffic Scenes
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Abstract: Dense stereo vision is a key technology for natural scene understanding. Recent
progress in real-time dense stereo provides high quality depth information for (almost) every
pixel of an image. Based on this information the traffic environment can be modeled precisely
and competely. This includes a vertical modeling of the driving corridor, the determination
of the free space in front of the car and the representation of all vertical obstacles delimiting
that freespace. We propose so called “stixels” to represent the 3D scene efficiently. Distance
and height of each stixel are determined by the parts of the obstacle it aproximates. The
stixel representation is designed to act as the common basis for the scene understanding tasks
of driver assistance and autonomous systems. We show that the inherent spatial integration
delivers depth information with an unprecedented accuracy.

Keywords: Computer Vision, Driver Assistance, Scene Modeling, Dense Stereo Vision, Vehicle Track-
ing, Vehicle Pose and Maneuver Estimation, Collision Detection and Prevention

1 Introduction

Future driver assistance systems for usage in complex urban scenarios demand a complete
awareness of the situation, including all moving and stationary objects that determine the
drivable free space. We are convinced that stereo vision will play an essential role for an
extensive scene understanding. It incorporates information about position, size, and shape
of arbitrary objects and thus allows for their detection and recognition independently
of their specific appearance. Tracking these objects or even parts of them allows for
estimating their motion, helping at the same time to distinguish between stationary and
moving obstacles.

Stereo disparity estimation methods commonly rely on a correlation scheme. ASIC as
well as FPGA stereo solutions have been developed for automotive applications. Recently,
the dense stereo algorithm “Semi-Global Matching” (SGM) has been proposed, which of-
fers accurate object boundaries and smooth surfaces under the constraint of real-time
capability [1]. Due to the computational complexity, in particular the required mem-
ory bandwidth, the SGM algorithm is still too demanding for a general purpose CPU.
However, FPGA implementations of the SGM algorithm exist that allow for realtime ap-
plicability [2]. Fig. 1(a) shows the result of the SGM method applied to a standard urban
traffic situation.



(a) Dense disparity image (SGM result) (b) Stixel representation

Figure 1: (a) Dense stereo results overlaid on the image of an urban traffic situation.
The colors encode the distance, red means close, green represents far. Note that SGM
delivers measurements even for most pixels on the road.
(b) Stixel representation for this situation. The freespace (not explicitly shown) in front
of the car is limited by the stixels, the colors encode the distance.

Recent improvements in disparity estimation yield a sub-pixel accuracy in the range
of 0.2 pixel. This information is the basis for our precise modeling of the scene. First, we
estimate the vertical shape of the road in front. Secondly, we determine the freespace, i.e.
the area in front of the car containing no obstacles. Thirdly, we model the 3D-situation
by a set of rectangular sticks named “stixels” as shown in Fig. 1(b). Each stixel is defined
by its 3D position relative to the camera and stands vertically on the ground, having
a certain height and a fixed width. The totality of all stixels limits the freespace and
approximates the objects boundaries. If the width of the stixels is set to 5 pixels, a scene
shown in a VGA image can be represented by 640/5=128 stixels only.

Section 2 sketches the used dense stereo vision algorithm. Section 3 describes the
analysis of the freespace incorporating a vertical road estimation. The freespace is utilized
to build the stixel-world as described in Section 4. We present a direct application of
our proposed representation in Section 5 where stixels are utilized in an object tracking
process. Section 6 concludes the paper.

2 Modern Dense Stereo Vision

Most real-time stereo algorithms based on local optimization techniques (e.g. correlation)
yield sparse disparity data. In contrast, SGM aims to find a dense disparity image close to
the global optimum by minimizing a two-dimensional energy in a dynamic-programming
fashion on multiple (8 or 16) 1D paths across each pixel. The energy consists of three
parts: a data term enforcing photo-consistency, a term to penalize minor depth changes
and a larger penalty to prevent undesired depth discontinuities.

The implementation of this stereo algorithm on an FPGA allows for running this
method in real-time in our demonstrator vehicle for daily use. Fig. 1(a) shows that SGM
is able to model object boundaries precisely. In addition, the smoothness constraint used



Figure 2: Shows a 3D point cloud representing derived stereo disparities using SGM
and a 640×480 image as input. All 3D measurements on the road surface have been
suppressed in order to highlight the quality of the derived stereo information. Obviously
no measurements can be obtained for occluded areas.

in the algorithm leads to smooth estimations in low contrast regions, exemplarily seen on
the street and the untextured parts of the vehicles and buildings. A 3D visualization is
given in Fig. 2.

3 Free Space Computation

The stereo disparities are used to build a stochastic occupancy grid. An occupancy grid
is a two-dimensional array which models occupancy evidence of the environment and thus
approximates the real world. Occupancy grids are computed in real-time using the method
presented in [3] which allows to propagate the uncertainty of the stereo disparities onto
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Figure 3: Occupancy grids: Fig. (a) and (b) show the occupancy grid obtained from
the disparity image shown in Fig. 1(a) in cartesian and polar representation respectively
(brightness encode the likelihood of occupancy). Fig. (c) shows the resulting freespace
within the image.



Figure 4: A vertical road estimate computed from a Kalman filtered B-Spline model.

the grid. Only those 3D measurements lying above the road are registered as potential
obstacles in the occupancy grid. Fig. 3(a) shows an example of a cartesian occupancy
grid obtained from the disparity image shown in Fig. 1(a).

To obtain information on the road height, we estimate its pose by fitting a B-Spline
surface to the 3D data as proposed in [4]. Fig. 4 shows a road with a sinusoidal shape in
its vertical direction. The overlay displays the estimated course.

From the occupancy grid the free space is computed as described in [5]. Instead of
using a threshold operation for every column independently, dynamic programming is used
to find the optimal path cutting the polar grid from left to right minimizing an energy
functional. This avoids heuristics and allows to favor temporal and spatial smoothness
of the solution. For details see the mentioned paper. Fig. 3(c) displays the obtained
freespace after a backprojection into the original image.

4 Building the Stixel-World

A polygonal approximation yields a very compact representation of the freespace. In order
to obtain a representation of all objects above ground, which is robust, compact as well
as complete at the same time, we suggest to build a medium level representation named
the stixel world. It assumes that objects reside on the ground and have approximately
vertical surfaces. A stixel representation of a common urban traffic situation is shown in
Fig. 1(b). The height and distance are determined as follows:

Initially the distance of the stixel is taken from the freespace boundary. Subsequently
the height is estimated within an optimization step that separates foreground (object)
disparies from background disparities. In [5] it is shown that this task can be solved
optimally by dynamic programming as well.

Given the base-point and height, the determination of the highly accurate stixel dis-
tance is straightforward. A histogram analysis and spatial integration of the disparities
measured at a stixel allows for a significant gain in depth accuracy. An average stixel
covers hundreds of disparity values.

The obtained stixel measurements are depicted in Fig. 5. Despite the high quality
of SGM one can observe that the raw stereo information is spread over a large scale
along the depth axis, especially at horizontal object boundaries. However, planar object
surfaces are accurately reconstructed by neighboring stixels, although their final position



Figure 5: Visualization of the derived stixels in the image as well as within the 3D clouds
derived from the dense stereo algorithm. For the sake of clarity road points have not been
visualized. Please note the accuracy and concision by which the stixel measurements
reside in the wide spreading stereo clouds.

is determined independently. This is noteworthy and a result of spatial integration.
Yet another advantage of the stixels is that arbitrarily shaped objects can be approx-

imated with any desired accuracy by simply varying the width of the stixels. In our
experiments we use a fixed width of 5 pixels as a good compromise between compactness
and precision.

(a) Highway (b) Construction site (c) Construction site 2

(d) Rural road (e) Urban traffic (f) Urban traffic 2

Figure 6: Evaluation of stixels in different real world road scenarios showing a highway, a
construction site, a rural road and an urban environment. The color encodes the lateral
distance to the estimated driving corridor.



5 Applications

The stixel representation proves itself usefull for different traffic scenarios, e.g. urban
areas, rural roads as well as highways. A set of typical examples for crowded traffic
situations is depicted in Fig. 6.

Intersections are of particular interest since they turn out to be a hotspot for traffic
accidents. In order to be able to recognize potentially dangerous situations one has to
detect and to track other traffic participants reliably. This implies the estimation of their
shape and pose as well as the determination of their complete motion state.

In [6] an approach is presented where pose and motion state estimates are derived
from the movement of a rigid 3D point cloud, representing the object’s shape. Lateral
movements are restricted to circular path motion in a Kalman filter framework based on a
simplified vehicle motion model. This model allows to estimate not only the velocity and
acceleration, but also the yaw rate of an object. Since there is no requirement that the
point cloud completely covers the object, a precise segmentation of the object boundaries
based on the sparse point cloud is not guaranteed. However, accurate knowledge of the
object boundaries is essential for precise collision prediction in future driver assistance
systems.

Fig. 7(a) shows a situation where the gray object box obtained by the mentioned
approach does not precisely match the actual pose and dimensions of the vehicle. This
problem can be overcome by using the stixel representation. As shown in Fig. 7(b), the
stixels fit the silhouette of the car quite good. Obviously, this silhouette constrains the
objects pose and dimension. This is demonstrated by Fig. 7(c). On the left side the red
dotted box represents the estimate of the object, where the bars show the position of the
stixels. The most outer visible cube corners must project onto the image columns ul and
ur of the most outer stixels constraining the lateral object position. At the same time,
the outer stixels define the distance of the visible outer corners (labeled with 1 and 4).
The inner stixels cannot be directly assigned to particular object points. However, they
provide useful information to define additional constraints on the distance to the center
of visible object sides (labeled with 2 and 3).

In the Kalman filter framework this information can be used to enforce the estimation
to fulfill these constraints. On the right hand Fig. 7(c) shows the improved position. The
final result is also shown in Fig. 7(a) by the orange box.

The tracking results of an exemplary sequence are shown in Fig. 8. The box indicates
the current object pose and size, tracked feature points and optical flow vectors are also
superimposed. The carpet on the ground represents the predicted driving path for the
next second (based on the current motion estimate).



(a) Refinement Result (b) Stixel Cluster
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Figure 7: Several constraints on depth and lateral position are derived from a stixel cluster
and assigned to four characteristic object points, that depend on visibility properties of
the pose prior.

(a) (b) (c)

Figure 8: Example tracking results of an intersection scene with the estimated pose and
predicted driving path superimposed.



6 Conclusion

A new primitive called stixel was proposed for modelling 3D traffic scenes. The result-
ing stixel-world turns out to be a robust and very compact representation of the traffic
environment, modeling the freespace as well as static and moving objects.

Stochastic occupancy grids are computed from dense stereo information. The freespace
is computed from a polar representation of the occupancy grid in order to obtain the base-
point of the obstacles. The height of the stixels is obtained by segmenting the disparity
image in foreground and background disparities using dynamic programming. Spatial
integration offers a highly accurate and robust determination of the depth information.

The proposed stixel scheme serves as a well formulated medium-level representation for
traffic scenes without the loss of generality. The stixel representation has been successfully
applied to the task of object tracking and pose refinement, yielding accurate estimates of
object boundaries. This information is essential for precise collision prediction.



References

[1] H. Hirschmüller, “Accurate and efficient stereo processing by semi-global matching
and mutual information,” in CVPR, 2005.

[2] S. Gehrig, F. Eberli, and T. Meyer, “A real-time low-power stereo vision engine using
semi-global matching,” in accepted for publication at ICVS, 2009.

[3] H. Badino, U. Franke, and R. Mester, “Free space computation using stochastic occu-
pancy grids and dynamic programming,” in Workshop on Dynamical Vision, ICCV,
Rio de Janeiro, Brazil, October 2007.

[4] A. Wedel, U. Franke, H. Badino, and D. Cremers, “B-spline modeling of road surfaces
for freespace estimation,” in Intelligent Vehicles Symposium, IEEE, 2008.

[5] H. Badino, U. Franke, and D. Pfeiffer, “The stixel world - a compact medium level
representation of the 3d-world,” in DAGM Symposium, Jena, Germany, September
2009.

[6] A. Barth and U. Franke, “Where will the oncoming vehicle be the next second?” ¡¡¡¡¡¡¡
fas2009V1.bbl in Intelligent Vehicles Symposium, IEEE, 2008.

[7] A. Barth, D. Pfeiffer, and U. Franke, “Vehicle tracking at urban intersections using
dense stereo,” in Submitted, 2009. ======= in Intelligent Vehicles Symposium,
IEEE, 2008. ¿¿¿¿¿¿¿ 1.8

View publication stats

https://www.researchgate.net/publication/228646852

