The Numerical Control Design for a Pair of Dubin’s Vehicles Heru Tjahjana 1 , Iwan Pranoto2 , Hari Muhammad 3 , J. Naiborhu 4 , and Miswanto 5 1,2,4,5 Mathematics Institut Teknologi Bandung, Indonesia 1 Permanent address: Mathematics Diponegoro University, Indonesia e-mail: 1 heru_tjahjana@students.itb.ac.id 2 pranoto@math.itb.ac.id 4 janson@math.itb.ac.id 5 miswanto@students.itb.ac.id 3 Aeronautics and Astronautics Institut Teknologi Bandung, Bandung, Indonesia e-mail: harmad@ae.itb.ac.id Abstract In this paper, a model of a pair of Dubin’s vehicles is considered. The vehicles move from an initial position and orientation to final position and orientation. A long the motion, the two vehicles are not allowed to collide however the two vehicles cann’t to far each other. The optimal control of the vehicle is found using the Pontryagin’s Maximum Principle (PMP). This PMP leads to a Hamiltonian system consisting of a system of differential equation and its adjoint. The originally differential equation has initial and final condition but the adjoint system doesn't have one. The classical difficulty is solved numerically by the greatest gradient descent method. Some simulation results are presented in this paper. 1 Introduction The swarm behavior in nature is interesting by itself, but in this current paper modeling the multi-vehicle systems together with their designed optimal control is considered. Multi-agent system and swarm phenomena have been studied extensively. Many studies regarding these two topics have been done and published, but all of them focus on the local swarm behavior or something very far from transportation situations[6]-[9]. They cannot be applied to the problems such as aircraft or ship convoy. In this paper, the optimal control of a pair of Dubin’s vehicles is designed. The previous research about swarm modeling through optimal control can be found in [1]-[5]. The previous paper which expos Dubin’s vehicles can be found in [10]-[12]. 2 A Pair of Dubin’s Vehicles Model Consider a pair of Dubin’s vehicles model. The model of first vehicles is given as follows 1 3 1 2 3 1 3 2 (sin ) (cos ) x x u x x u x u = = =    (1) And the second vehicle is given as 1 3 1 2 3 1 3 2 (sin ) (cos ) y y v y y v y v = = =    (2) Figure 1: Model of Dubin’s Vehicle The functional cost that must be minimized is ( ) ( ) 2 2 2 2 1 2 1 2 0 2 2 2 2 1 2 1 2 2 2 1 1 2 2 1 2 + ( ) ( ) + T J u u v v x x y y dt x y x y δ δ δ δ β α ρ = + + + + + + − + − ∫ (3) The Hamiltonian function is ICIUS 2007 Oct 24-25, 2007 Bali, Indonesia ICIUS2007-C003 ISBN 978-979-16955-0-3 335 © 2007 ICIUS ( ) ( ) ( ) ( ) ( ) ( ) 1 1 3 2 1 3 3 2 4 1 3 5 1 3 6 2 2 2 2 0 1 0 2 0 1 2 2 2 0 2 0 1 0 2 2 2 0 1 0 2 0 2 2 1 1 2 2 sin cos + sin cos 1 1 1 2 2 2 1 1 1 2 2 2 1 1 2 2 1 2 H p u x p u x p u p v y p v y p v p u p u p v p v p x p x p y p y p x y x y δ δ δ δ β β α α ρ = + + + + + + + + + + + + + + − + − (4) The Hamiltonian system can be expressed as ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 3 1 1 2 3 1 2 3 2 3 0 1 1 1 0 1 2 2 1 1 1 2 2 0 2 2 2 0 2 2 2 2 1 1 2 2 3 1 1 3 2 1 3 3 1 3 2 3 0 1 1 3 2 sin cos 2 2 1 2 2 2 1 2 cos sin 0 sin cos 0 H x x u p H x x u p H x u p p x y H p p x x x y x y p x y H p p x x x y x y H p p u x p u x x H p x p x p u u H P u ρ β ρ β δ ∂ = = ∂ ∂ = = ∂ ∂ = = ∂ − ∂ = − = − ∂ − + − − ∂ = − = − ∂ − + − ∂ = − = − ∂ ∂ = = + + ∂ ∂ = = + ∂       ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 2 1 3 1 4 2 3 1 5 3 2 6 0 1 1 4 0 1 2 2 1 1 1 2 2 0 2 2 5 0 2 2 2 2 1 1 2 2 6 4 1 3 5 1 3 3 4 3 5 3 0 1 1 sin cos 2 2 1 2 2 2 1 2 cos sin 0 sin cos p u H y y v p H y y v p H y v p p x y H p p y y x y x y p x y H p p y y x y x y H p p v y p v y y H p y p y p u v H u δ ρ α ρ α δ ∂ = = ∂ ∂ = = ∂ ∂ = = ∂ − + ∂ = − = − ∂ − + − − + ∂ = − = − ∂ − + − ∂ = − = − ∂ ∂ = = + + ∂ ∂ ∂       6 0 2 2 0 P p v δ = = + (5) Consider the Hamiltonian system (5), the adjoint variables or co-state variables i p appear in the system. The original state variables are companied by the co-state variables. Here, the problem is the co-state variable don‘t have initial value or initial condition. This fundamental difficulty can be solved by greatest gradient descent method or sometime is called as shooting method. Through Pontryagin Maximum Principle, the optimal control of two vehicles can be found. If the optimal control of two vehicles substitute to the Hamiltonian system, then the differential equation system (5) equivalent with ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 1 3 1 3 2 3 3 2 2 3 1 3 2 3 3 3 3 1 1 1 1 2 2 1 1 2 2 2 2 2 2 2 2 1 1 2 2 3 1 3 1 3 2 3 1 sin ( sin sin cos ) 1 cos ( sin sin cos ) 2 2 1 2 2 2 1 2 1 cos ( sin cos ) x x p x p x x x x p x p x x P x x y p x x y x y x y p x x y x y p p x p x p x δ δ δ ρ β ρ β δ   = +       = +     = − − = − + − + − − − = − + − + −   − = + −           ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 3 1 3 2 3 2 1 3 4 3 5 3 3 2 2 3 1 3 2 3 3 6 3 1 1 4 1 2 2 1 1 2 2 2 2 5 2 2 2 1 1 2 2 6 4 1 sin ( sin cos ) 1 sin ( sin sin cos ) 1 cos ( sin sin cos ) 2 2 1 2 2 2 1 2 cos p x p x p x y x p x p y y y x p x p x x P y x y p y x y x y x y p y x y x y p p y δ δ δ δ ρ α ρ α   +       = +       = +     = − + − = − + − + − − + − = − + − + − − =       ( ) ( ) 3 4 3 5 3 5 3 4 3 5 3 1 ( sin cos ) 1 sin ( sin cos ) p y p y p x p y p y δ δ   + −       +     (6) If the initial condition for vehicle 1 and vehicle 2 are (5.5,0,0) and (15.5,0,0) respectively and the terminal condition are given (0,0.2,0) and (9.8,0,0) respectively, then the simulation result as follows ICIUS 2007 Oct 24-25, 2007 Bali, Indonesia ICIUS2007-C003 ISBN 978-979-16955-0-3 336 © 2007 ICIUS Figure 2: Optimal Trajectory of Dubin’s Vehicles 3 Conclusions The greatest gradient descent method can be used to solve the problem that the originally differential equation has initial and final condition but the adjoint system doesn't have one. Through this method, the optimal control and optimal trajectory of a pair of Dubin’s vehicles can be found. References [1] Pranoto, I., Tjahjana, H., dan Muhammad, H., Simulation of Swarm Modeling Through Bilinear Optimal Control, Proceeding of International Conference on Mathematics and Statistics , pp. 443- 450, 2006. [2] Pranoto, I., Tjahjana, H., dan Muhammad, H., Simulation of Swarm Modeling Through Optimal Control, Proceeding of Asian Control Conference, pp. 800-803, 2006. [3] Tjahjana, H., Pranoto, I., dan Muhamad, H., Pemodelan perilaku swarm melalui kontrol optimum dengan penalti fungsi eksponensial, Prosiding Koferensi Nasional Matematika XIII, pp. 779-784, 2006 [4] Tjahjana, H., Pranoto, I., Muhammad, H. dan Naiborhu, J., Swarm with Triangle Formation, Proceeding of International Conference on Mathematics and Natural Sciences , pp. 778-780, 2006. [5] Tjahjana, H., Pranoto, I., Muhammad, H. dan Naiborhu, J., Perancangan Kontrol Sistem Multi Agen Dengan formasi segitiga, Submitted to JMS., 2007 [6] Breder, C., Equation Descriptive of Fish Schools and Other Animal Aggregation, Ecology 35(3), pp. 361- 370, 1954. [7] Warburton, K., and Lazarus, J., Tendency-Distance Models of Social Cohesion In Animal Groups, J. Theoretical Biology 150, pp.473-488, 1991. [8] Gazi, V. dan Passino, K.M., Stability Analysis of Swarms, IEEE Transaction on Automatic Control , Vol. 48, No. 4, 2003. [9] Chu, T., Wang, L., and Chen, T., Self-Organized Motion In Anisotropic Swarm , J. Control Theory And Application Vol. 1 No.1, pp. 77-81, 2003. [10] A. Balluchi, A. Bicchi, A. Balestrino, and G. Casalino, Path Tracking Control for Dubin's Car, P roceedings of the 1996 IEEE International Conference on Robotics and Automation , Minneapolis, MN, April 1996, pp.3123-3128, 1996. [11] A. Kelly dan B. Nagy, Reactive Nonholonomic Trajectory Generation via Parametric Optimal Control, The International Journal of Robotics Research , July–August 2003, pp.583-600, 2003. [12] K.H. Johannson, Hybrid system , Lecture note, UC Berkeley, Spring 2002 . ICIUS 2007 Oct 24-25, 2007 Bali, Indonesia ICIUS2007-C003 ISBN 978-979-16955-0-3 337 © 2007 ICIUS