Computer Science & Engineering: An International Journal (CSEIJ), Vol. 4, No. 1, February 2014 DOI : 10.5121/cseij.2014.4103 27 UAV ROUTE PLANNING FOR MAXIMUM TARGET COVERAGE Murat Karakaya 1 1Department of Computer Engineering, Atilim University, Ankara, Turkey ABSTRACT Utilization of Unmanned Aerial Vehicles (UAVs) in military and civil operations is getting popular. One of the challenges in effectively tasking these expensive vehicles is planning the flight routes to monitor the targets. In this work, we aim to develop an algorithm which produces routing plans for a limited number of UAVs to cover maximum number of targets considering their flight range. The proposed solution for this practical optimization problem is designed by modifying the Max-Min Ant System (MMAS) algorithm. To evaluate the success of the proposed method, an alternative approach, based on the Nearest Neighbour (NN) heuristic, has been developed as well. The results showed the success of the proposed MMAS method by increasing the number of covered targets compared to the solution based on the NN heuristic. KEYWORDS Unmanned Aerial Vehicles (UAVs), routing, target coverage, Max-Min Ant Colony Optimization 1. INTRODUCTION This document describes, and is written to conform to, author guidelines for the journals of AIRCC series. It is prepared in Microsoft Word as a .doc document. Although other means of preparation are acceptable, final, camera-ready versions must conform to this layout. Microsoft Word terminology is used where appropriate in this document. Although formatting instructions may often appear daunting, the simplest approach is to use this template and insert headings and text into it as appropriate. The importance and the impact of using Unmanned Aerial Vehicles (UAVs) in military and civil operations are increasing [3,4,5]. One of the issues faced for efficient usage of UAVs is planning the flight routes to monitor all or the maximum number of the given targets. This problem is related with the Multiple Travelling Salesman Problem (mTSP) [1] and the Vehicle Routing Problem (VRP) [6]. In these well-defined problems, it is mostly assumed that travelling salesmen or vehicles should visit all the targets and the target function is defined as to find a minimum-distant route. Even, in the constraint versions of the mTSP and VRP, some other restrictions (visiting time windows, number of depots, etc.) are included; it is still assumed that there exists enough number of travelling salesmen or vehicles to cover all the given locations. However, in reality the number and flight range of UAVs might be insufficient to cover all the targets. As a result, the maximization of the number of targets covered by the limited number of UAVs can be defined as a new problem. Thus, this article presents a solution for this practical optimization problem by modifying the Max-Min Ant System (MMAS) algorithm [2] accordingly. Computer Science & Engineering: An International Journal (CSEIJ), Vol. 4, No. 1, February 2014 28 In the proposed solution, each ant constructs routes for the given number of UAVs using pheromone and heuristic information. After each iteration, the solution which covers more targets with less route distance is selected as the iteration-best solution and the pheromone values of the edges on that route are increased. According to the termination condition, the algorithm stops and outputs the best route found so far as the result. To evaluate the success of the proposed method, another approach, based on the Nearest Neighbour (NN) heuristic, is designed as well. In this solution, an UAV always select the nearest target to move on until its remaining flight range urges the UAV to return the base. Both solutions are implemented using MASON simulation library [7] and compared by extensive experiments with different parameters and standard TSP data files [9]. The results showed the success of the proposed MMAS method by increasing the number of covered targets up to 10% compared to the solution based on the NN heuristic. 2. PROBLEM DEFINITION We assume that we are given the location of each target along with the base location, the number, and flight range of the UAVs. The problem is to create routes for each UAV such that any target is visited by only one UAV and once, every UAV’s route distance has to be equal or less than the flight range, and the number of total targets visited by the all UAVs is maximized. Thus the target function is to maximize the number of targets to be visited by the all UAVs. The constraints are the flight range and the number of UAVs. 3. MAX-MIN ANT SYSTEM Stützle and Hoos proposed the Max-Min Ant Colony System (MMAS) as a successful alternative to Ant System (AS) [8]. In the referenced work, they show the relative success. The basic difference between the MMAS and AS is the setting up limits on the maximum and minimum values of the pheromone values that can be compiled on an edge. We apply MMAS to find a route planning to cover most of the targets as explained below. 4. APPLYING MMAS TO TARGET COVERAGE PROBLEM Below, we first explain the MMAS basics and then provide the algorithm to generate a solution to cover maximum number of targets. 2.1. Selecting Next Target In MMAS, each artificial ant tries to create a route planning for all the UAVs by visiting targets considering the given problem constraints. Beginning from the base, each ant calculates the probability of movement from the current location to the all unvisited targets as in the following formula: ∑ ∉ = k M j i ij ij ij ij ij p , ) )( ( ) )( (       , k M j i ∉ , (1) In Eq (1), i is the current location, j is the possible next location, τij is the pheromone value between two locations, ηij is the heuristic value between two locations, β is the coefficient for the Computer Science & Engineering: An International Journal (CSEIJ), Vol. 4, No. 1, February 2014 29 heuristic parameter, and Mk is the memory for storing list of the targets which either are already visited by the ant k or cannot be accessible with the remaining flight range. Thus, Pij is the normalized probability of ant k to move from target i to target j. After calculating the movement probability for all the targets, a random number between 0 and 1 is generated to select the next target according to total probabilities of all the possible targets. If all the targets’ probability is 0, it means that either all the targets are visited or the flight range is not enough to visit any targets any more. Then, ant returns to the base. Thus, a route for a UAV is completed. The ant begins a new route for the next UAV with a refreshed flight range. When all the routes are prepared for all the UAVs an iteration of the ants has been finished. Each ant builds its own route planning simultaneously by exploiting the experiences of other ants by sensing the pheromone values in the formula. 4.2. Assigning Initial Pheromone Values The initial pheromone values (τ0) between all target in the set (H) are initiated to the selected maximum value (τmax). We calculated the τmax as in Eq.(4). max 0  = (2) 0  = ij , i,j ∈H (3) init c p* 1 max =  (4) In Eq. (4), p is the evaporation parameter and cinit is the cost of the initial solution. Cost of a solution is calculated as follows: all visited T T c − =1 (5) Thus, if a routing plan can lead to visit all the targets, its cost will be zero. The initial solution is constructed using Nearest Neighbors heuristic. The minimum pheromone value is defined as max 10 min * ) 1(   iteration p − = (6) As a result of Eq. (6), any edge would have pheromone at least ten times evaporated value of the maximum pheromone value. Thus, we do not allow unvisited edges get very low pheromone values which otherwise would decrease their probability. 4.3. Updating Pheromone Values After completing a tour, each ant calculates the tour cost as given in Eq. (5). Before applying any pheromone update on the targets, first evaporation should take place. Thus, all the pheromone Computer Science & Engineering: An International Journal (CSEIJ), Vol. 4, No. 1, February 2014 30 values between all the targets are decreased using the evaporation parameter value (p) as in the following formula: ij ij p   ) 1( − = , i,j ∈H (7) Then, all targets on the route constructed by the ant (Rk) receive an update depending on the cost of the tour (c): ) 1 (c ij ij + =  , i,j ∈Rk (8) Eq. (8) dictates that the solutions with less cost, that is covering more targets, leave more pheromone on the paths to provide positive feedback for the other ants. 4.4. Calculating Heuristic Value The heuristic value (ηij) between two locations is defined as ij ij d 1 =  , where ij d is the distance between the locations. 4.5. Algorithm Using the steps defined above an implementation of the MMAS is given in Table 1. We input the target list (H), the distances between the targets (dij), the flight range (FR), and the number of UAVs (UAV) to the algorithm. The algorithm first calculates an initial solution by applying the NN heuristic. By using the cost of the initial solution, minimum and maximum pheromone values are set. Then, using the distance matrix, the heuristic values are calculated. After creating a number of ants (m), each ant builds its solution and updates the pheromone values according to the cost of the solution. When, a pre-defined number of iterations has been executed algorithm terminates by outputting the best solution found so far. Computer Science & Engineering: An International Journal (CSEIJ), Vol. 4, No. 1, February 2014 31 Table 1. Pseudocode for the proposed algorithm. MaxTarget (H, dij , FR, UAV) { UAV_used = 0; remaining_Range = FR; RNN= NN(H, Mij , FR ); init_Pheromone_Values(); init_Heuristic(Mij); create_Ants(m, base); while (!end_condition_satisfied) { for each ant { while (UAV_used