1       Toward  a  Science  of  Autonomy  for  Physical  Systems:  Paths     Pieter  Abbeel   pabbeel@cs.berkeley.edu   University  of  California,  Berkeley   Ken  Goldberg   goldberg@berkeley.edu   University  of  California,  Berkeley     Gregory  Hager   hager@cs.jhu.edu   Johns  Hopkins  University   Julie  Shah   julie_a_shah@csail.mit.edu   Massachusetts  Institute  of  Technology       Computing  Community  Consortium   Version  1:    June  30,  20151     1  Introduction     An  Autonomous  Physical  System  (APS)  will  be  expected  to  reliably  and  independently   evaluate,  execute,  and  achieve  goals  while  respecting  surrounding  rules,  laws,  or   conventions.  In  doing  so,  an  APS  must  rely  on  a  broad  spectrum  of  dynamic,  complex,  and   often  imprecise  information  about  its  surroundings,  the  task  it  is  to  perform,  and  its  own   sensors  and  actuators.  For  example,  cleaning  in  a  home  or  commercial  setting  requires  the   ability  to  perceive,  grasp,  and  manipulate  many  physical  objects,  the  ability  to  reliably   perform  a  variety  of  subtasks  such  as  washing,  folding,  and  stacking,  and  knowledge  about   local  conventions  such  as  how  objects  are  classified  and  where  they  should  be  stored.  The   information  required  for  reliable  autonomous  operation  may  come  from  external  sources   and  from  the  robot’s  own  sensor  observations  or  in  the  form  of  direct  instruction  by  a   trainer.     Similar  considerations  apply  across  many  domains  –  construction,  manufacturing,  in-­‐home   assistance,  and  healthcare.  For  example,  surgeons  spend  many  years  learning  about   physiology  and  anatomy  before  they  touch  a  patient.  They  then  perform  roughly  1000   surgeries  under  the  tutelage  of  an  expert  surgeon,  and  they  practice  basic  maneuvers  such  as   suture  tying  thousands  of  times  outside  the  operating  room.  All  of  these  elements  come   together  to  achieve  expertise  at  this  task.  Endowing  a  system  with  robust  autonomy  by   traditional  programming  methods  has  thus  far  had  limited  success.  Several  promising  new   paths  to  acquiring  and  processing  such  data  are  emerging.  This  white  paper  outlines  three   promising  research  directions  for  enabling  an  APS  to  learn  the  physical  and  information  skills   necessary  to  perform  tasks  with  independence  and  flexibility:  Deep  Reinforcement  Learning,   Human-­‐Robot  Interaction,  and  Cloud  Robotics.                                                                                                                             1  Contact:  Ann  Drobnis,  Director,  Computing  Community  Consortium  (202-­‐266-­‐2936,   adrobnis@cra.org).       For  the  most  recent  version  of  this  essay,  as  well  as  related  essays,  please  visit:   cra.org/ccc/resources/ccc-­‐led-­‐white-­‐papers     2   2  Deep  Reinforcement  Learning     As  more  and  more  data  is  being  produced,  and  more  and  more  computational  power   continues  to  become  available,  the  opportunity  to  harness  data  towards  autonomy  continues   to  grow.  In  recent  years  computer  vision  and  speech  recognition  have  not  only  made   significant  leaps  forward,  but  also  rapidly  increased  their  rate  of  progress,  largely  thanks  to   developments  in  deep  learning.[19]  While  deep  learning  isn’t  necessarily  the  only  way  to   harness  the  ever-­‐growing  amounts  of  data,  it  has  demonstrated  the  ability  to  continue  to   improve  performance  on  real  world  problems  as  more  data  and  more  compute  cycles  are   being  made  available  —  in  contrast  to  more  traditional  approaches,  which  have  tended  to   saturate  at  some  level  of  performance.  The  amount  of  data  these  deep  neural  nets  are  trained   with  is  very  large.  For  example,  the  landmark  Krizhevsky  et  al.  2012  paper  [18],  which  was   the  first  to  demonstrate  deep  learning  outperform  (and  significantly  so)  more  traditional   approaches  to  computer  vision  on  the  widely  referenced  ImageNet  benchmark,  processed   200  billion  images  during  training  (obtained  by  shifting  and  re-­‐coloring  from  an  original   labeled  data-­‐set  of  1.2  million  images).     Thus  far  the  impact  of  deep  learning  has  largely  been  in  so-­‐called  supervised  learning,  of   which  image  recognition  and  speech  recognition  are  examples.  In  supervised  learning  one   receives  example  inputs  (e.g.,  images)  and  corresponding  labels  (e.g.,  ’cat’,  ’dog’,  etc.   depending  on  what’s  in  the  image).  The  system  is  supposed  to  learn  to  then  make  correct   label  predictions  on  future  inputs.     Supervised  learning,  however,  isn’t  the  right  fit  for  most  APS’s.  They  aren’t  simply  presented   with  a  set  of  inputs  for  which  they  need  to  predict  a  label.  Rather  predictions  are  used  to  take   actions  which  in  turn  will  affect  the  next  inputs  encountered  and  so  forth.  This  learning   setting  is  called  reinforcement  learning.  Preliminary  results  on  deep  reinforcement  learning   for  Atari  games  at  human  level  [24],  and  deep  reinforcement  learning  visuomotor  control   policies  [20]  suggest  high  potential  for  deep  reinforcement  learning.  However,  to  enable   advances  in  autonomy  for  physical  systems  that  are  as  transformative  as  what  has  happened   over  the  past  5-­‐10  years  in  deep  supervised  learning  for  computer  vision  and  speech,  major   challenges  will  have  to  be  addressed.     A  first  challenge  is  the  amount  of  training  data  necessary  for  deep  learning  to  succeed.  Such   data  might  be  collected  from  passive  sources  such  as  YouTube  videos,  but  largely  will  also   have  to  encompass  the  APS’s  own  experiences.  As  a  single  APS  is  unlikely  to  collect  sufficient   experience,  learned  deep  representations  will  need  to  be  able  to  leverage  experience  from   external  sources,  other  APS’s  and  simulation,  all  well  beyond  what  is  currently  possible.  A   second  challenge  is  how  APS’s  could  efficiently  and  safely  explore  the  vast  perception-­‐action   spaces  they  are  operating  in.  A  third  challenge  is  how  deep  learning  for  APS’s  can  go  beyond   mapping  from  current  percepts  to  actions,  but  also  incorporate  estimation,  memory,  and  goal   setting,  critical  for  almost  all  practical  tasks.  A  fourth  major  challenge  is  how  to  incorporate   teaching  and  training  (to  be  discussed  in  great  detail  in  its  own  right  in  the  next  section)  into   deep  reinforcement  learning.   3   3  Human-­‐Robot  Interactions  for  Teaching  and  Training     APS’s  have  traditionally  been  designed  and  deployed  to  work  remotely  from  people.  We  now   increasingly  desire  to  integrate  these  systems  into  human  environments  –  for  example  into   factories,  hospitals,  disaster  response  deployments,  military  field  operations,  and  in  homes.   The  difficulty  of  incorporating  a  robot  into  existing  work  practices  poses  a  significant  barrier   to  the  wider  adoption  of  robot  technology  in  these  domains.     One  key  challenge  is  that  many  of  these  tasks  involve  skills  that  rely  on  implicit  knowledge  or   convention  that  may  be  evident  to  people,  but  is  difficult  and  time-­‐consuming  to  explicitly   capture  and  translate  for  an  APS.  For  example,  in  aircraft  carrier  flight  deck  operations,   veteran  operators  outperformed  an  autonomous  system  in  generating  efficient  aircraft   routes  by  using  rules-­‐of-­‐thumb  learned  through  training.  These  rules,  or  heuristics,  captured   important  but  implicit  requirements  of  the  domain  that  the  autonomous  system  might  in  the   future  learn  through  observation  and  interaction.  This  opportunity  exists  in  many  other   settings.  An  in-­‐home  APS  for  senior  citizens  can  exponentially  increase  its  utility  by  learning   about  the  layout  of  their  patron’s  home,  their  habits  and  preferences,  and  how  they  like  their   environment  to  be  arranged.  (This  is,  after  all,  what  would  be  expected  from  an  effective   human  in-­‐home  assistant.)  A  hospital  APS  will  need  to  learn  the  conventions  of  the  hospital   they  are  in,  how  specific  tasks  are  performed,  and  how  they  should  interact  with  patients  and   staff.  A  cleaning  APS  needs  to  know  where  supplies  are  stored,  how  the  patron  likes  the  beds   to  be  made,  or  when  the  children  are  napping  and  shouldn’t  be  disturbed.  A  manufacturing   APS  for  a  small  enterprise  will  need  to  know  how  to  operate  the  tools  and  manipulate  the   stock  or  parts  unique  to  that  enterprise.     A  second  challenge  arises  when  an  APS  acquires  knowledge  on  its  own  through  a  data-­‐driven   learning  process  -­‐  it  often  lacks  a  ready  mechanism  for  representing  this  information  in  a   human-­‐  interpretable  manner.  As  a  result,  we  have  limited  opportunity  to  understand  what   an  APS  understands,  and  why  it  makes  certain  decisions.  Without  a  common  language  or   knowledge  representation,  we  cannot  rely  on  an  APS  to  convey  the  necessary  information  to   improve  our  interactions.  This  contributes  to  a  lack  of  trust  in  the  system.  These  challenges   represent  primary  barriers  towards  wider  utilization  of  APS’s.     Today,  we  devote  substantial  resources  to  programming  or  teaching  the  APS  to  perform  very   limited  skills.  This  is  not  a  problem  in  and  of  itself  -­‐  people  often  require  substantial  training   to  understand  how  context  affects  their  actions,  and  to  develop  the  skills  and  strategies  to   perform  well  under  novel  circumstances.  Substantial  benefits  can  be  achieved  in  robot   capability  through  new  research  directions  that  rethink  how  we  teach  and  train  robots.  As   tasks  become  increasingly  complex,  training  helps  a  person  or  a  team  to  establish  a  common   understanding  of  the  task  expectations.  The  science  of  effective  human  training  can  possibly   be  translated  to  design  APS’s  that  learn  to  do  useful  work  in  human  environments  through   the  same  techniques  we  use  to  train  people.  Training  involves  interactive  observation,  trial   and  error,  and  coaching  and  mentoring.  What  are  the  possible  analogs  for  training  machines?   How  would  an  APS  interact  with  a  mentor  or  teacher?  How  can  it  transfer  or  generalize   information  from  prior  experience  to  new  experiences?  How  will  these  data  and  models  be   incorporated  into  the  APS’s  underlying  task  and  motion  planning  capabilities?     4   A  related  challenge  we  face  is  that  an  APS  cannot  readily  make  use  of  the  well-­‐honed   procedures  and  processes  we  use  to  teach  other  people.  One  path  to  wider  utilization  of  the   APS,  is  to  explore  how  the  APS  may  learn  using  some  of  the  same  experiences  and  techniques   that  people  use  to  gain  proficiency  in  their  work.  For  example,  a  teacher  or  mentor  conveys   knowledge  through  demonstration,  explanation,  coaching,  and  correction.  Will  teaching  a   physical  system  require  all  of  the  same  elements?  Will  teaching  require  language?  How  will   demonstration  be  used?  Some  of  teaching  is  developing,  for  the  student,  a  theory  of  causality   around  specific  physical  phenomena  –  e.g.  you  hold  a  suturing  needle  in  this  way  in  order  to   drive  it  effectively  in  this  direction.     In  the  situation  where  a  person  and  APS  work  cooperatively,  it  is  just  as  important  that  the   person  is  able  to  develop  an  effective  mental  model  for  how  the  APS  will  behave,  as  it  is  that   the  APS  performs  well  in  its  role.  How  will  the  APS  train  to  work  alongside  people?  What   insights  can  we  translate  from  decades  of  study  in  human  team  training  to  develop  new  types   of  cooperative  human-­‐APS  training  procedures?  Does  the  APS  need  models  of  its  human   counterparts  to  perform  effectively,  and  if  so,  how  can  it  learn  these  through  interaction  and   training?     Finally,  we  note  that  mistakes  and  errors  are  the  path  toward  knowledge.  We  expect  students   to  make  mistakes.  We  also  expect  them  to,  over  time,  to  adjust  their  performance  to   eventually  produce  fewer  mistakes,  and  more  effective  performance.  Is  a  PAS  allowed  to   make  mistakes?  What  kind  of  mistakes?  How  are  they  identified,  and  how  do  they  lead  to   improved  performance?     4  Cloud-­‐Based  Robotics  and  Autonomy     The  Cloud  infrastructure  and  its  extensive  set  of  Internet-­‐accessible  resources  has  potential   to  enhance  Autonomous  Physical  Systems  by  using  data  or  code  from  a  network  to  support   operation,  i.e.,  not  all  sensing,  computation,  and  memory  is  integrated  into  a  standalone   system.  Three  potential  benefits  of  the  Cloud  are:  1)  Big  Data:  access  to  libraries  of  images,   maps,  trajectories,  and  descriptive  data,  2)  Cloud  Computing:  access  to  parallel  grid   computing  on  demand  for  statistical  analysis,  learning,  and  motion  planning,  3)  Collective   Robot  Learning:  robots  sharing  trajectories,  control  policies,  and  outcomes.    The  Cloud  can   also  provide  access  to  a)  datasets,  publications,  models,  benchmarks,  and  simulation  tools,  b)   open  competitions  for  designs  and  systems,  and  c)  open-­‐source  software.    A  survey  of   research  in  this  area  is  available  [4].    Below  we  summarize  three  potential  benefits  of  the   Cloud  for  autonomous  physical  systems.         Below  we  summarize  three  potential  benefits  of  the  Cloud  for  autonomous  physical  systems.     Big  Data:  The  Cloud  can  provide  APS’s  with  access  to  vast  resources  of  data  that  are  not   possible  to  maintain  in  onboard  memory  such  as  images,  videos,  trajectories,  3d  models,   maps,  and  updated  data  such  as  changes  in  sensor  properties,  traffic,  weather,  and  floor   conditions.     For  example,  grasping  is  a  persistent  challenge  in  robotics.  Prior  work  has  shown  that  cloud   resources  can  facilitate  incremental  learning  of  grasp  strategies  [10,  26]  by  matching  sensor   5   data  against  3D  CAD  models  in  an  online  database.  Google  Goggles  [2],  a  free  image   recognition  service  for  mobile  devices,  was  incorporated  in  a  prototype  Cloud-­‐based  system   for  robot  grasping  [15].  Large  datasets  are  needed  to  facilitate  machine  learning,  as  recently   demonstrated  in  the  context  of  computer  vision.  Large-­‐scale  image  datasets  such  as   ImageNet  [11],  PASCAL  visual  object  classes  dataset  [13],  and  others  [37,  40]  have  been  used   for  object  and  scene  recognition.     One  research  challenge  is  defining  cross-­‐platform  formats  for  representing  data.  While   sensor  data  such  as  images  and  point  clouds  have  a  small  number  of  widely  used  formats,   even  relatively  simple  data  such  as  trajectories  have  no  common  standards  yet  but  research   is  ongoing  [38,  39,  29].  Another  challenge  is  working  with  sparse  representations  for  efficient   transmission  of  data,  e.g.,  algorithms  for  sparse  motion  planning  for  robotic  and  automation   systems  [12,  21].  Also,  large  datasets  collected  from  distributed  sources  are  often  “dirty”  with   erroneous,  duplicated,  or  corrupted  data  [1,  42],  such  as  3D  position  data  collected  during   robot  calibration  [23].  New  approaches  are  required  that  are  robust  to  dirty  data.     Cloud  Computing:  Uncertainty  in  sensing,  models,  and  control  is  a  central  issue  for   autonomous  systems  and  can  be  modeled  with  numerical  perturbations  in  position,   orientation,  shape,  and  control.  Cloud  Computing  is  ideal  for  sample-­‐based  Monte-­‐Carlo   analysis.  For  example,  parallel  Cloud  Computing  can  be  used  to  compute  the  outcomes  of  the   cross  product  of  many  possible  perturbations  in  object  and  environment  pose,  shape,  and   robot  response  to  sensors  and  commands  [41].  To  facilitate  sample-­‐based  methods,   massively  parallel  computation  on  demand  is  now  widely  available  from  commercial  sources   such  as  Amazon,  Google,  Microsoft,  and  Cisco.     Cloud  Computing  has  potential  to  speed  up  many  computationally-­‐intensive  robotics  and   automation  systems  applications  such  as  robot  navigation  by  performing  SLAM  in  the  Cloud   [32,  33]  and  next-­‐view  planning  for  object  recognition  [28].  Cloud-­‐based  sampling  can  be   used  to  compute  robust  grasps  in  the  presence  of  shape  uncertainty  [16,  17].  The  Cloud  also   facilitates  video  and  image  analysis  [35,  27],  and  mapping  [25,  34].  Bekris  et  al.  [7]  propose   an  architecture  for  efficiently  planning  the  motion  of  new  robot  manipulators  designed  for   flexible  manufacturing  floors  in  which  the  computation  is  split  between  the  robot  and  the   Cloud.     It  is  important  to  acknowledge  that  the  Cloud  is  prone  to  varying  network  latency  and  quality   of  service.  Some  applications  are  not  time  sensitive,  such  as  decluttering  a  room  or  pre-­‐ computing  grasp  strategies  or  offline  optimization  of  machine  scheduling,  but  many   applications  have  real-­‐time  demands.     Collective  Robot  Learning:  As  noted  in  the  previous  section,  the  Cloud  can  support  robot   learning  by  collecting  data  from  many  instances  of  physical  trials  and  environments.  For   example  robots  and  automation  systems  can  share  initial  and  desired  conditions,  associated   control  policies  and  trajectories,  and  importantly:  data  on  the  resulting  performance  and   outcomes.  Sharing  data  through  Collective  Robot  Learning  can  also  improve  the  capabilities   of  robots  with  limited  computational  resources  [14].  The  RoboEarth  and  RoboBrain   databases  are  designed  to  be  updated  with  new  information  from  connected  robots.  The   MyRobots  project  [3]  from  RobotShop  proposes  a  “social  network”  for  robots:  “In  the  same   6   way  humans  benefit  from  socializing,  collaborating  and  sharing,  robots  can  benefit  from   those  interactions  too  by  sharing  their  sensor  information  giving  insight  on  their  perspective   of  their  current  state”  [5].     5  Challenges  and  Future  Directions     Taken  together,  new  learning  methods,  the  data  computation  offered  by  the  cloud,  the   possibility  of  direct  learning  from  human  instruction  create  new  and  synergistic   opportunities  that  have  never  before  existed.  They  both  excite  and  challenge  us  to  think  in   new  ways,  and  to  invent  new  approaches  unimaginable  only  a  few  years  ago.     These  new  paths  to  autonomy  also  introduce  many  challenges  that  will  require  broad   participation  from  the  computing  research  community.  Here  we  list  a  few:     The  Challenges  of  Connectivity:  It  seems  clear  that  future  APS’s  will  rely  heavily  on   the  Cloud.  New  algorithms  and  methods  are  needed  to  cope  with  time-­‐  varying   network  latency  and  Quality  of  Service.  Faster  data  connections,  both  wired  internet   connections  and  wireless  standards  such  as  LTE  [6],  are  reducing  latency,  but   algorithms  must  be  designed  to  degrade  gracefully  when  the  Cloud  resources  are  very   slow,  noisy,  or  unavailable  [8].  For  example,  “anytime”  load  balancing  algorithms  for   speech  recognition  on  smart  phones  send  the  speech  signal  to  the  Cloud  for  analysis   and  simultaneously  process  it  internally  and  then  use  the  best  results  available  after  a   reasonable  delay  [9].     The  Challenges  of  Real-­‐world,  Real-­‐time  Data  Processing:  New  algorithms  are  also   needed  that  scale  to  the  size  of  Big  Data,  which  often  contain  dirty  data  that  requires   new  approaches  to  clean  or  sample  effectively  [1,  42].  When  the  Cloud  is  used  for   parallel  processing,  it  is  vital  that  algorithms  oversample  to  take  into  account  that   some  remote  processors  may  fail  or  experience  long  delays  in  returning  results.     The  Challenges  of  Mutual  Trust:  Working  in  and  around  an  APS  will  rapidly  become   commonplace–  just  as  we  trust  the  cruise  control  on  our  car,  we’ll  come  to  trust  its   autonomous  driving  system.  However,  trust  will  quickly  be  lost  if  or  when  a  human  in   inadvertently  injured  by  an  APS.  Conversely,  an  APS  will  have  a  model  for  trust  in  a   human  –  in  their  abilities  and  in  their  intentions.  What  if  a  human  intentionally   teaches  an  APS  in  a  way  that  could  lead  to  injury  or  harm?     The  Challenges  of  Privacy:  The  connectivity  inherent  in  the  Cloud  raises  a  range  of   privacy  and  security  concerns  [31,  36].  These  concerns  include  data  generated  by   Cloud-­‐connected  robots  and  sensors,  especially  as  they  may  include  images  or  video   or  data  from  private  homes  or  corporate  trade  secrets  [44,  30].  Use  of  the  Cloud  also   introduces  the  potential  for  an  APS  to  be  attacked  remotely:  a  hacker  could  take  over  a   robot  and  use  it  to  disrupt  functionality  or  cause  damage.  These  concerns  raise  new   regulatory,  accountability  and  legal  issues  related  to  safety,  control,  and  transparency   [30,  22].  The  “We  Robot”  conference  is  an  annual  forum  for  ethics  and  policy  research   [43].     7   The  Challenges  of  Sharing:  A  potential  direction  for  accelerating  progress  on  APS   research  is  to  expand  open  source  software  libraries  such  as  ROS  with  a  model  that   might  be  called  “Robotics  and  Automation  as  a  Service”  (RAaaS).  If  ROS  is  like  Open   Office,  SAaaS  would  be  like  Google  Docs,  where  software  and  data  is  installed  and   maintained  on  remote  servers.  This  can  facilitate  rapid  adoption  and  avoid  problems   with  updates  and  maintenance,  but  introduces  new  challenges  for  security,   consistency,  testing  and  responsiveness.     These  are  but  a  few  of  the  possible  future  research  directions  in  the  science  of  autonomy  for   physical  systems.  As  the  companion  papers  in  this  series  illustrate,  there  are  many  unique   opportunities  and  challenges  that  APS  research  in  specific  domains  brings  to  the  fore.   However,  we  believe  that  with  time  and  experience,  we  will  find  that  there  are  common   fundamental  principles  that  will  form  the  foundation  across  all  domains  for  future   autonomous  systems.   8   References     [1]  For  Big-­‐Data  Scientists,     Janitor  Work  Is  Key  Hurdle  to  Insights.  Available  at:   http://nyti.ms/1Aqif2X.   [2]  Google  Goggles.  Available  at:  http://www.google.com/mobile/goggles/.     [3]  MyRobots.com.  Available  at:  http://myrobots.com.   [4]  A  Survey  of  Research  on  Cloud  Robotics  and  Automation.    Available  at:     http://goldberg.berkeley.edu/cloud-­‐robotics   [5]  What  is  MyRobots?  http://myrobots.com/wiki/About.   [6]  David  Astely,  Erik  Dahlman,  Anders  Furuskar,  Ylva  Jading,  Magnus  Lindstrom,  and  Stefan   Parkvall.  LTE:  The  Evolution  of  Mobile  Broadband.  Comm.  Mag.,  47(4):44–51,  2009.   [7]  Kostas  Bekris,  Rahul  Shome,  Athanasios  Krontiris,  and  Andrew  Dobson.  Cloud   Automation:  Precomputing  Roadmaps  for  Flexible  Manipulation.  IEEE  Robotics  &   Automation  Magazine:  Special  Issue  on  Emerging  Advances  and  Applications  in  Automation,   page  Under  Review,  2014.   [8]  William  Beksi  and  Nikos  Papanikolopoulos.  Point  cloud  culling  for  robot  vision  tasks   under  communication  constraints.  In  International  Conference  on  Intelligent  Robots  and   Systems  (IROS),  2014.   [9]  Dmitry  Berenson,  Pieter  Abbeel,  and  Ken  Goldberg.  A  Robot  Path  Planning  Framework   that  Learns  from  Experience.  In  International  Conference  on  Robotics  and  Automation   (ICRA),  pages  3671–3678,  May  2012.   [10]  Matei  Ciocarlie,  Caroline  Pantofaru,  Kaijen  Hsiao,  Gary  Bradski,  Peter  Brook,  and  Ethan   Dreyfuss.  A  Side  of  Data  With  My  Robot.  IEEE  Robotics  &  Automation  Magazine,  18(2):44–   57,  June  2011.   [11]  Jia  Deng,  Wei  Dong,  Richard  Socher,  Li-­‐Jia  Li,  Kai  Li,  and  Li  Fei-­‐Fei.  Imagenet:  A  Large-­‐   Scale  Hierarchical  Image  Database.  In  IEEE  Conference  on  Computer  Vision  and  Pattern   Recognition,  pages  248–255,  2009.   [12]  Andrew  Dobson,  Athanasios  Krontiris,  and  Kostas  E  Bekris.  Sparse  Roadmap  Spanners.   In  Algorithmic  Foundations  of  Robotics  X,  pages  279–296.  2013.   [13]  Mark  Everingham,  Luc  Van  Gool,  Christopher  KI  Williams,  John  Winn,  and  Andrew  Zis-­‐   serman.  The  PASCAL  Visual  Object  Classes  (VOC)  Challenge.  International  Journal  of   Computer  Vision,  88(2):303–338,  2010.   [14]  Bruno  Gouveia,  David  Portugal,  Daniel  Silva,  and  Lino  Marques.  Computation  Sharing  in   Distributed  Robotic  Systems:  a  Case  Study  on  SLAM.  IEEE  Transactions  on  Automation   Science  and  Engineering  (T-­‐ASE):  Special  Issue  on  Cloud  Robotics  and  Automation,  12(2):To   appear,  April  2015.   [15]  B.  Kehoe,  A.  Matsukawa,  S.  Candido,  J.  Kuffner,  and  K.  Goldberg.  Cloud-­‐Based  Robot   Grasping  with  the  Google  Object  Recognition  Engine.  In  International  Conference  on  Robotics   and  Automation  (ICRA),  2013.   [16]  Ben  Kehoe,  Dmitry  Berenson,  and  Ken  Goldberg.  Toward  Cloud-­‐based  Grasping  with   Uncer-­‐  tainty  in  Shape:  Estimating  Lower  Bounds  on  Achieving  Force  Closure  with  Zero-­‐slip   Push  Grasps.  In  International  Conference  on  Robotics  and  Automation  (ICRA),  May  2012.   [17]  Ben  Kehoe,  Deepak  Warrier,  Sachin  Patil,  and  Ken  Goldberg.  Cloud-­‐Based  Grasp  Planning   for  Toleranced  Parts  Using  Parallelized  Monte  Carlo  Sampling.  IEEE  Transactions  on   Automation  Science  and  Engineering  (T-­‐ASE):  Special  Issue  on  Cloud  Robotics  and   Automation,  12(2):To  appear,  April  2015.     9       [18]  Alex  Krizhevsky,  Ilya  Sutskever,  and  Geoffrey  E  Hinton.  Imagenet  classification  with  deep   convolutional  neural  networks.  In  Advances  in  neural  information  processing  systems,  pages   1097–1105,  2012.   [19]  Yann  LeCun,  Yoshua  Bengio,  and  Geoffrey  Hinton.  Deep  learning.  Nature,   521(7553):436–444,  2015.   [20]  Sergey  Levine,  Chelsea  Finn,  Trevor  Darrell,  and  Pieter  Abbeel.  End-­‐to-­‐end  training  of   deep  visuomotor  policies.  arXiv  preprint  arXiv:1504.00702,  2015.   [21]  Zheng  Li,  Liam  O’Brien,  He  Zhang,  and  Rainbow  Cai.  On  the  Conceptualization  of  Perfor-­‐   mance  Evaluation  of  IaaS  Services.  IEEE  Transactions  on  Services  Computing,  X(X):1–1,   2014.   [22]  Patrick  Lin,  Keith  Abney,  and  George  A.  Bekey.  Robot  Ethics:  The  Ethical  and  Social   Impli-­‐  cations  of  Robotics.  The  MIT  Press,  2011.   [23]  Jeffrey  Mahler,  Sanjay  Krishnan,  Michael  Laskey,  Siddarth  Sen,  Adithyavairavan  Murali,   Ben  Kehoe,  Sachin  Patil,  Jiannan  Wang,  Mike  Franklin,  Pieter  Abbeel,  and  Ken  Goldberg.   Learn-­‐  ing  Accurate  Kinematic  Control  of  Cable-­‐Driven  Surgical  Robots  Using  Data  Cleaning   and  Gaussian  Process  Regression.  In  IEEE  International  Conference  on  Automation  Science   and  Engineering  (CASE),  2014.   [24]  Volodymyr  Mnih,  Koray  Kavukcuoglu,  David  Silver,  Andrei  A  Rusu,  Joel  Veness,  Marc  G   Bellemare,  Alex  Graves,  Martin  Riedmiller,  Andreas  K  Fidjeland,  Georg  Ostrovski,  et  al.   Human-­‐level  control  through  deep  reinforcement  learning.  Nature,  518(7540):529–533,   2015.   [25]  Gajamohan  Mohanarajah,  Vladyslav  Usenko,  Mayank  Singh,  Markus  Waibel,  and   Raffaello  D’Andrea.  Cloud-­‐based  Collaborative  3D  Mapping  in  Real-­‐Time  with  Low-­‐Cost   Robots.  IEEE  Transactions  on  Automation  Science  and  Engineering  (T-­‐ASE):  Special  Issue  on   Cloud  Robotics  and  Automation,  12(2):To  appear,  April  2015.   [26]  M.A.  Moussa  and  M.S.  Kamel.  An  Experimental  Approach  to  Robotic  Grasping  using  a   Connectionist  Architecture  and  Generic  Grasping  Functions.  IEEE  Trans.  on  Systems,  Man  and   Cybernetics,  Part  C,  28(2):239–253,  May  1998.   [27]  D  Nister  and  H  Stewenius.  Scalable  Recognition  with  a  Vocabulary  Tree.  In  IEEE   Conference  on  Computer  Vision  and  Pattern  Recognition  (CVPR),  volume  2,  pages  2161– 2168,  2006.   [28]  Gabriel  Oliveira  and  Volkan  Isler.  View  Planning  For  Cloud-­‐Based  Active  Object   Recognition.   Technical  report,  Department  of  Computer  Science,  University  of  Minnesota,  2013.   [29]  Edson  Prestes,  Joel  Luis  Carbonera,  Sandro  Rama  Fiorini,  Vitor  a.  M.  Jorge,  Mara  Abel,  Raj   Madhavan,  Angela  Locoro,  Paulo  Goncalves,  Marcos  E.  Barreto,  Maki  Habib,  Abdelghani   Chibani,  S´ebastien  G´erard,  Yacine  Amirat,  and  Craig  Schlenoff.  Towards  a  core  ontology  for   robotics  and  automation.  Robotics  and  Autonomous  Systems,  61(11):1193–1204,  2013.   [30]  Andrew  A  Proia,  Drew  Simshaw,  and  Kris  Hauser.  Consumer  Cloud  Robotics  and  the  Fair   Information  Practice  Principles:  Recognizing  the  Challenges  and  Opportunities  Ahead.  Min-­‐   nesota  Journal  of  Law,  Science  &  Technology,  page  to  appear,  2014.   [31]  Kui  Ren,  Cong  Wang,  Qian  Wang,  et  al.  Security  Challenges  for  the  Public  Cloud.  IEEE   Internet  Computing,  16(1):69–73,  2012.   [32]  L  Riazuelo,  Javier  Civera,  and  J  Montiel.  C2TAM:  A  Cloud  Framework  for  Cooperative   Tracking  and  Mapping.  Robotics  and  Autonomous  Systems,  62(4):401–413,  2013.   10   [33]  L.  Riazuelo,  M.  Tenorth,  D.  Di  Marco,  M.  Salas,  L.  Mosenlechner,  L.  Kunze,  M.  Beetz,  J.  D.   Tardos,  L.  Montano,  and  J.  Montiel.  RoboEarth  Web-­‐Enabled  and  Knowledge-­‐Based  Active   Perception.  In  IROS  Workshop  on  AI-­‐based  Robotics,  2013.   [34]  Luis  Riazuelo,  Moritz  Tenorth,  Daniel  Marco,  Marta  Salas,  Dorian  Galvez-­‐Lopez,  Lorenz   Mosenlechner,  Lars  Kunze,  Michael  Beetz,  Juan  Tardos,  Luis  Montano,  and  J.  Montiel.   RoboEarth  Semnatic  Mapping:  A  Cloud  Enabled  Knowledge-­‐Based  Approach.  IEEE  Trans-­‐   actions  on  Automation  Science  and  Engineering  (T-­‐ASE):  Special  Issue  on  Cloud  Robotics  and   Automation,  12(2):To  appear,  April  2015.   [35]  J.  Salmeron-­‐Garcia,  F.  Diaz-­‐del  Rio,  P.  Inigo-­‐Blasco,  and  D.  Cagigas.  A  Trade-­‐off  Analysis  of   a  Cloud-­‐based  Robot  Navigation  Assistant  using  Stereo  Image  Processing.  IEEE  Transac-­‐  tions   on  Automation  Science  and  Engineering  (T-­‐ASE):  Special  Issue  on  Cloud  Robotics  and   Automation,  12(2):To  appear,  April  2015.   [36]  Schmitt,  Charles.  Security  and  Privacy  in  the  Era  of  Big  Data.   [37]  Noah  Snavely,  Steven  M  Seitz,  and  Richard  Szeliski.  Photo  tourism:  exploring  photo   collections  in  3D.  ACM  transactions  on  graphics  (TOG),  25(3):835–846,  2006.   [38]  Moritz  Tenorth  and  Michael  Beetz.  KnowRob:  A  Knowledge  Processing  Infrastructure  for   Cognition-­‐Enabled  Robots.  International  Journal  of  Robotics  Research  (IJRR),  32(5):566–   590,  2013.   [39]  Moritz  Tenorth,  Alexander  Clifford  Perzylo,  Reinhard  Lafrenz,  and  Michael  Beetz.   Representa-­‐  tion  and  Exchange  of  Knowledge  about  Actions,  Objects,  and  Environments  in   the  Roboearth  Framework.  IEEE  Transactions  on  Automation  Science  and  Engineering  (T-­‐ ASE),  10(3):643–651,  2013.   [40]  Antonio  Torralba,  Robert  Fergus,  and  William  T  Freeman.  80  Million  Tiny  Images:  A   Large  Data  Set  for  Nonparametric  Object  and  Scene  Recognition.  IEEE  Transactions  on   Pattern  Analysis  and  Machine  Intelligence,  30(11):1958–1970,  2008.   [41]  Jur  van  den  Berg,  Pieter  Abbeel,  and  Ken  Goldberg.  LQG-­‐MP:  Optimized  path  planning  for   robots  with  motion  uncertainty  and  imperfect  state  information.  International  Journal  of   Robotics  Research  (IJRR),  30(7):895–913,  June  2011.   [42]  Jiannan  Wang,  Sanjay  Krishnan,  Michael  J.  Franklin,  Ken  Goldberg,  Tim  Kraska,  and  Tova   Milo.  A  Sample-­‐and-­‐Clean  Framework  for  Fast  and  Accurate  Query  Processing  on  Dirty  Data.   In  ACM  SIGMOD  International  Conference  on  Management  of  Data,  2014.   [43]  We  Robot.  We  Robot  Conference.   [44]  Rolf  H  Weber.  Internet  of  Things–New  Security  and  Privacy  Challenges.  Computer  Law  &   Security  Review,  26(1):23–30,  2010.     For citation use: Abbeel P., Goldberg K., Hager G., & Shah J. (2015). Toward a Science of Autonomy for Physical Systems: Paths Toward Autonomy: A white paper prepared for the Computing Community Consortium committee of the Computing Research Association. http://cra.org/ccc/resources/ccc-led-whitepapers/ This material is based upon work supported by the National Science Foundation under Grant No. (1136993). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.