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Abstract 

An easily implementable path solution algorithm for 2D spatial problems, based on 

excitable/programmable characteristics of a specific cellular nonlinear network (CNN) model 

is presented and numerically investigated. The network is a single layer bioinspired model 

which was also implemented in CMOS technology. It exhibits excitable characteristics with 

regionally bistable cells. The related response realizes propagations of trigger autowaves, 

where the excitable mode can be globally preset and reset. It is shown that, obstacle 

distributions in 2D space can also be directly mapped onto the coupled cell array in the 

network. Combining these two features, the network model can serve as the main block in a 

2D path computing processor. The related algorithm and configurations are numerically 

experimented with circuit level parameters and performance estimations are also presented. 

The simplicity of the model also allows alternative technology and device level 

implementation, which may become critical in autonomous processor design of related micro 

or nanoscale robotic applications.  

 

1  Introduction 

The CNN theory can be applied to various collective system dynamics in nature. An 

interesting example is the realization of excitable dynamics, such as reaction-diffusion system 

dynamics via autonomous CNNs [1], [2]. Several application examples of such systems 

include artificial locomotion [3]-[6], image processing [7] and shortest path solution [8]. The 

spatiotemporal phenomena in existing CNN-UM implementations were also reported recently 

[9]. Herein we consider a much simpler excitable model, which is a CNN layer inspired by the 

excitation dynamics in distributed FitzHugh-Nagumo (FHN) neuroelectric model [10]. The 

distributed (or diffused) variants of FHN model are well-known and have been surveyed in the 

literature such as in [11], including top-down CMOS implementation such as in [12]. The 

excitable network considered here preserves the essential functionality required for 2D path 

computation with autowaves, while remaining as a single layer model. The resistively coupled 

cells in the network exhibit a cubic polynomial I-V response as the reaction function (Fig. 1). 

The related cell states correspond to the voltage state of each cell node, where the response is 

in general bistable. At a critically biased level in the phase space, this network model is 



capable of high state propagation as trigger autowaves across the single layer 2D cell array. 

The corresponding excitable characteristic was implemented by custom analog circuit design, 

which was confirmed with circuit level numerical studies [13] and more recently through 

CMOS implementation [14]. 

An additional applied feature regards a 2D spatial configuration of resistive cell coupling 

in the model. This configurability is analogous to arrangement of a symmetric template of 

state coupling in CNN terminology. With such arrangements in the 2D cell array, spatial 

obstacle data can be directly programmed onto the network area. A combination of this feature 

with the excitable state characteristic, results in a single layer CNN capable of path solutions 

in 2D space with arbitrary obstacles. Due to this single layer architecture, it is possible to 

obtain high resolutions in on-chip implementations for such applications. 

The presented work focuses on a CMOS design parameters, due to the conventional 

availability of this technology. However, because of the familiar reaction function behavior, 

the same model can also be realized at the device level and through emerging technology 

methods, such as by utilizing resonant tunnel diodes (RTD) or self-assembled nanodevice 

structures [15]. The characteristic responses of such devices are especially suitable for 

implementation of the particular reaction function. These additional possibilities also render 

the model as appealing, especially if one considers the adaptation potential to nanoscale 

robotic applications where autonomous path optimization is required. The related application 

of the model is therefore investigated numerically, with path solution examples employing 

CMOS circuit parameters and a typical array size achievable in this technology. The overall 

performance estimations, with solution times for the given examples are also presented. 

2  Excitable Network 

The resistive-coupled single layer CNN model in Fig. 1 can serve as an excitable wave 

propagating network. For each cell ij in the 2D array, the cell state equation is expressed as  

 
I

ijijB
ijjijijiji

I
ij C

vJI
vvvvv

C
Gv

)(
)4( 1,1,,1,1

−
+−+++= +−−+&  (1) 

Here, node voltage vij corresponds to the cell voltage state,   is a common bias current for 

each cell, and  is the nonlinear current response of the cell ij. The capacitance  can 
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either represent an external capacitance or an approximation to the internal cell circuit 

capacitance. 

The linear coupling of the cell states  in equation (1) form a discrete space Laplacian. 

Therefore, the diffusion dynamics is already inherent. Several functions can be candidate 

reaction terms, as classified for reaction-diffusion models such as in [16]. Herein we consider 

a bistable variant in parallel with the case of FHN model. In the related excitation dynamics, 

the nonlinear reaction function is cubic (polynomial) in characteristic, as a function of the 

state variable. Therefore, provided that 

ijv

)( ijijB vJI −  realizes a similar reaction term in (1), this 

equation will exhibit an essential part of the reaction-diffusion dynamics in the FHN model, 

providing an excitable wave propagating response. 

An approximate view of the single cell phase space can be given as in Fig. 1, which also 

analytically holds if one decouples the neighbor cell contribution in (1) approximated as an 

independent function  
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The real cell coupling is bidirectional however, this assumption shows the main state 

dynamics in the phase space, since one can write (1) as  
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Therefore, if a cubic I-V response  from the cells and an offset bias current  are 

established, a bistable condition in the phase space can be achieved (Fig. 1). The specific 

reaction function is of particular interest, since it provides this bistable condition and the cubic 

characteristic is already available, through the device level implementation options. 
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3  Stable Cell States 

The stable cell states can easily be expressed in the network regions where all the cells assume 

identical stable states, as low state  or high state . Since the states are identical, the 

discrete Laplacian in (1) vanishes in those regions. A state equilibrium then requires 

. Therefore, one has  
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where  and  correspond to the low and high state values depending on the cubic 

function. Given an analytical model for this function, one can determine the regional stable 

states  and . For instance, a related result was in [14] for the particular CMOS design. 
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The phase space in Fig. 1 also depicts that an increase in the common bias current shifts 

the stable states and moves the state curve in positive  direction for each cell. In addition, 

for  close to the peak current of the I-V response, the low stable point  is about to 

become a saddle node. At this critical stage, the network is in an excitable mode. The 

propagating state transitions can be introduced by an initial excitation of any cell state. After a 

saddle node transition, the only stable state for the excited cell is . This transition causes a 

domino effect leading to successive coupled cell transitions and establishing a high state 

propagation across the network as a trigger wave. This propagation is different from a merely 

diffusion based response, and the waves are non-dissipative. On the other hand, without the 

initial excitation, all the cell states still remain at excitable low stable states . 
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4  Representation of Obstacle Data 

The resistive coupling of the network cells correspond to a symmetric CNN template 

describing the neighbor cell state interactions in CNN theory. If these couplings are arranged 

with particular spatial distributions, the autowave propagation in the specified regions of the 

network area can be prevented. Therefore, the resistive coupling of cells provides direct means 

to represent the spatial distribution of obstacles. It is possible to store data of such 2D 

navigational constraints, with direct mapping of the obstacles to cell coupling strength. The 

mapping of these obstacles can also be updated dynamically, as the navigation occurs. 

Therefore, both static and dynamical obstacle distribution problems can be addressed. 

By the characteristic of discrete propagation dynamics, if the coupling conductances are 

decreased, this weakened state coupling becomes insufficient for the saddle node transitions 

triggered by the neighbor cells. Therefore, the propagation fails along specified regions. As a 

result, trigger waves can be guided across the network area, avoiding regions identified as 



obstacles. Thus, we set these “forbidden" regions with arrangements of the resistive coupling 

distribution, representing the obstacle boundaries in a particular path solution problem. 

For the related configurations, two static 2D obstacle distribution problems are considered 

as a room with relatively scarce obstacles and a maze, both as mapped directly to resistive cell 

coupling of a 2D cell array. For the programming of related coupling for numerical purpose, 

an efficient configuration method was previously introduced as the template image method 

[17]. In this method, one defines the coupling of cells based on the pixel intensity information 

of grey-scale template images. According to particular update rule employed, the coupling 

resistance between two adjacent cells was assumed as proportional to the absolute value of 

related pixel intensity difference in the template image. Fig. 2 shows the used template images 

for the particular simulated examples. 

Regarding a hardware implementation approach of this method, in the past row/column 

addressing was used to program initial conditions to the network cells [14]. This design 

employed pass transistors operating in resistive mode, which effectively approximate the 

constant coupling conductance G in (1). However, a more efficient optical sensor based cell 

coupling can be realized for fast programming of obstacle data. Such an integration can 

provide the related input data in real-time, as a bird’s eye view of the navigated area. A similar 

sensor integration for state programming of the cells was already implemented [18]. 

5  Path Solution Algorithm 

Based on an absolute coordinate mapping of 2D spatial data for a given problem, a simple 

path solution algorithm can be applied via the combination of excitable and programmable 

network characteristics: An estimated direction or an exact target coordinate (TC) is specified 

as the source of autowaves via related cell coordinate addressing and an additional current 

excitation of this cell during excitable mode. This temporary excitation starts an autowave 

originating from the target cell, propagating around the programmed obstacle regions, as the 

wave propagation fails across obstacle boundaries due to cell decoupling. In addition, a 

reference point can be defined in order to indicate the current coordinates of the robotic 

vehicle, which is to be updated according to the autowave propagations. In general, there is 

more than one available path from target to a given reference coordinate, however the constant 



speed wavefront travelling the shortest path will first arrive at a neighbor cell of the reference 

cell coordinate, thus triggering its state change. Here we use the term shortest path strictly for 

the 4-neighborhood connectivity model. Since a diagonal neighborhood is not defined, the 

physical shortest path in 2D discrete space is not computed. In accordance with above, the 

first detected state transition among the neighbor cells signals the correct direction towards the 

target. Then, the reference cell coordinate (RC) for the next iteration is set to this winner cell 

coordinate. The network biasing  is removed to eliminate further propagations, which also 

resets the cell states to  for the next iteration cycle. After the update of the reference cell 

coordinate, another wave is propagated from the target coordinate and neighbor cells of the 

new reference cell are scanned for state transitions. The iterations continue until the target cell 

coordinates may be reached. The successively stored winner cells upon iterations provide a 

path solution to the 2D problem mapped onto the network. In the case there are no available 

paths between the reference and target coordinates, the autowave will not reach any neighbor 

cells of the reference cell. Therefore, a no solution case can also be determined in a single 

iteration cycle and through related timeout criteria. The above steps are summarized as a 

solution algorithm in Fig 3. In general, this solution algorithm will remain valid without 

obstacle or target related requirements, such as their shapes, change or motion. This argument 

can hold as long as a sufficient array resolution is available for the given problem and the 

autowave speed is faster compared to the rate of change in obstacle related spatial data. For 

problems involving dynamical changes, cell coupling has to be updated before each new 

iteration, introducing the current locations of obstacles. Also, the wave propagation is then 

triggered from the most recent target coordinates. 
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The computational performance is governed by the network size (spatial resolution), 

complexity of the obstacle data and system parameters determining the propagation speed of 

trigger waves. A related important effect regards the common bias current . Within the 

bistable range in the phase space, a high value of  leads to accelerated saddle node 

transitions, resulting in faster wave propagation. However, this bias current should not exceed 

the peak current value of the cubic function, where these transitions will take place without 

excitation. Therefore, the optimized performance depends on how accurately the bias current 

is controlled in a practical design, also by overcoming noise and device variations. On the 
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other hand, due to the simple architecture, the peripheral access and control tasks can be kept 

to a minimum. The essential cell access task involves a periodic row/column addressed 

scanning of four neighbor cell states around the current reference cell, which is to be updated 

upon the winner cell detection. The generated autowave or each cell in the array need not be 

monitored, therefore for large arrays, the winner cell detection and reference cell update times 

are short, compared to the autowave propagation time in each iteration. As the most 

significant component of the computational performance becomes the autowave propagation 

speed, a related analytical approach is very desirable for design. In the described network 

model however, an analytical solution of propagation speed is not straightforward. The state 

equation (1) describing the dynamics is a nonlinear differential-difference equation. There are 

studies for similar excitable dynamics with simplified activating functions in literature, in 

continuous space such as [19] or discrete space as in [20], [21]. The analytical methods in 

general allow simplified reaction functions mostly providing implicit relations for the 

propagation speed. As this nonlinear function form is very definitive, its first order 

representation can lead to considerable deviations in analytical estimations. Hence, we limit 

the current analysis with numerical results, which incorporate the previously implemented 

circuit parameters in order to provide implementation based performance estimations. 

6  Numerical Experiments 

The network dynamics and path solution algorithm are experimented numerically, in order to 

validate the proposed functionality and performance based on the circuit parameters of a 

previous hardware implementation. For this purpose, a dedicated analysis tool is used where 

the described algorithm is also incorporated. The circuit model and a piecewise nonlinear 

approximation of the I-V response from a previously implemented MOS cell circuit is 

employed in the simulations [14], as shown in Fig. 4. Here  denotes the peak current from 

this response. The used parameter values in the examples are 

PJ
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coupled), . These values result in fFCI 500= VVH 75.1= and VVL 97.0= as regional stable 

states of the excitable network. In accordance with this range, the voltage range 0-1.8 V is 

linearly mapped to grey-scale pixel intensity for visualization of the voltage state changes and 

overall system dynamics. The template images (Fig. 2) are utilized to configure the 2D cell 



array within the numerical tool. The contrasting adjacent pixel regions are therefore 

effectively decoupled, which also identify the obstacle regions. The rest of the coupling 

conductances are constant throughout the network. As a result, the excited autowaves fail 

along the spatial boundaries of these obstacles. The simulated circuit level dynamical response 

for the room example is shown in Fig. 5 and for the maze example in Fig. 6. 

Together with the coupling configurations, the described algorithm is also incorporated 

with the analysis tool. Therefore, together with the dynamical response, a winner cell is 

evaluated upon each wave propagation, implementing the solution algorithm. The winner cell 

criteria is applied as the first neighbor cell achieving the state level , upon each 

iteration. A more general criteria can be the definition of a winner threshold voltage , 

around . This level during state transitions is more accurately detectable, 

due to the almost linear time response from the cell dynamics. The solution examples reaching 

to the target (wave source) from different start points with number of steps required (or the 

path length) are given in Fig. 7 and Fig. 8 for the room and maze examples respectively. The 

simulated examples specify an initial reference (or start) point (R.pt.), the fixed target point to 

be reached (T.pt.) and arrows indicating the direction of solution steps. The paths shown are 

constructed by combination of the winner cells upon wave propagation in each iteration. The 

simulated state transitions in time domain as a trigger wave are also presented in Fig. 9. Here, 

the time interval between transitions is defined by , with respect to voltage level . The 

numerical result obtained via used parameters was 

VVW 2.1=
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nstP 92.16= . Accordingly, the 

propagation speed becomes scellstc Pp µ/1.59/1 == . Thus without obstacles, the 

completion of trigger wave propagation is expected around 2 µs for the particular array size 

and parameters. The propagation speed variations with changing bias current  are also 

experimented and Table 1 depicts the related numerical results. A significant variation is 

observed within a narrow range of  values, where all other parameters are kept as fixed. 

Although higher speed is achievable for large (< ) values, preserving the bistable 

condition simultaneously will require a precise control of this current, as very close to . 

Thus, a related optimization is critical in designs for this particular application. 
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Comparing the number of solution steps in Fig. 7 and Fig. 8, the spatial coverage duration 

of a constant speed wave also depends on complexity of the obstacle distributions, hence the 

particular path problem. This for instance, renders the iterative steps longer for the maze 

example. Herein, we present a simple analysis which can estimate the time performance of the 

model for large arrays. Especially for such high resolution applications, the winner cell 

detection, update and storage times are expected to be an order of magnitude lower compared 

to autowave travel durations across the network area. Therefore essentially, the autowave 

travel time upon each iteration can be considered as the most significant contributor. For a 

fixed point target example, the total solution time can be deduced easily. Let P indicate the 

path length as number of cells (or steps) in the solution path, excluding the reference cell. 

Starting from the target cell and by above definition, there are (P-1) state transitions in time, 

until a neighbor cell of the reference cell is reached and related state transition can be 

detected. After the first iteration and update of the reference cell, there remains (P-2) and so 

on. Hence, neglecting the related detection and update times, total time required for a solution 

with P steps follows from a series summation as  
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Based on this result, the longest durations of solutions are given as for instance, 

sTS µ63.164= (140 steps) for the room problem, and sTS µ21.465=  (235 steps) for the maze 

problem, also by referring to Fig. 7 and Fig. 8 respectively. It should be noted that, these 

solution steps can be computed on-the-run as well. Hence, these total durations do not 

correspond to the response time of a robotic vehicle. However as (5) dependency implies, one 

of the main issues in performance regards a reduction of solution steps P, hence the array 

resolution reserved for the definition of a given problem, whenever possible. 

A worst case assumption can also follow if a maximum path length of 2/)(max MNP ×≈  

is considered for an N×M 2D array size. This is a reasonable upper limit for the solution path 

length, which may still allow autowave propagation between two distant points in the 2D 

array. Substituting this into (5) gives a maximum solution time as  maxP
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According to the worst case scenario, the particular 80×80 array size and used circuit 

parameters will require  to complete such a solution. If one considers the 

complexity of general problems, this can amount to a significant real-time performance, as the 

processor provides the solution steps on the run. In addition, note that  is a direct function of 

the cell capacitance  in the model. In a previous hardware implementation, an external 

capacitor (500 fF) was maintained for analog storage of initial voltage states for the cells, 

regarding various other applications. The same order of magnitude is employed in the 

presented numerical experiments as a conservative estimation. Nevertheless, a high 

capacitance is not required for this particular application, therefore up to a certain level, the 

given propagation speeds can be improved by design as well. This is especially valid for 

possible alternative technology design of the same model. 

msTS 60.86max =
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The numerical results also verify that although a diagonal path length optimization is not 

possible, a close approximating response is achieved. Such a response is expected from a 4-

neighborhood connectivity model and its related implementations as well. If diagonal cell 

coupling is incorporated, a closer path length optimization can be realized. However in that 

case, the implementation complexity is increased. It is also worthwhile to note that compared 

to trigger waves, front waves available from various multilayer excitable CNN dynamics can 

significantly reduce the solution times. Then the solution algorithm can be performed between 

the successive wavefronts with a sufficiently large “wavelength" in discrete cell space, to 

allow completion of winner cell evaluation process. Such a multilayer approach on the other 

hand, again comes with compounded layout area overhead in implementation. Hence, 

especially when compact functionality is of primary importance, this single layer CNN model 

can provide a better alternative in related processor design. 

7  Conclusion 

2D path solutions which follow from the excitable dynamics of a single layer CNN model are 

numerically investigated, with example results of the employed solution algorithm. The 

method can be applied to general navigation problems as defined in 2D space via direct 

mapping of obstacle distributions to resistive cell coupling in the 2D cell array. The numerical 

experiments are based on circuit parameters of a previous CMOS implementation. The results 



indicate that the network dynamics can indeed perform path solutions along arbitrary obstacle 

distributions. In addition, the generated solutions give close approximations to optimum path 

lengths. The propagation speed is the key element of related computational performance. 

Accordingly, certain computational performance estimations are presented. The results point 

to a significant propagation speed achievable with rather conservative parameters. They also 

indicate that a precisely controlled large bias current in the related design will be very 

significant for the autowave speeds. Another important parameter is the cell capacitance in the 

model. These two contributions especially need to be addressed in order to optimize the wave 

speed. The main advantage of the excitable model comes from its single layer simple 

architecture. If employed as the core section of a path solver processor, the model can allow 

layout flexibility for various design and interfacing techniques, such as different sensor 

integration methods, as well as emerging technology and device level implementations. These 

alternatives can become particularly important in processor designs for micro and nanoscale 

robotic applications. A higher spatial resolution is also feasible via a single layer CNN, 

compared to a multilayer excitable model. A typical array size of 100×100 cells is estimated 

via conventional submicron CMOS process, which is larger than the array size used in the 

presented numerical examples. 
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Table 1:  Numerical results regarding propagation speed variation with bias current IB. 

IB(µA) 18 19 20 21 22 23 

tp(ns) 36.06 27.02 21.19 16.92 13.43 10.22 

cp(cells/µs) 27.7 37.0 47.2 59.1 74.4 97.8 

  



 

 

ijvG

ijJ IC

BI

CNN model

ji ,1− ji ,1+

1, −ji

1, +ji

ijv&

ijv

HVLV

IB CItg /)( +

Approximate phase space

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  An excitable single layer CNN model with approximate phase space for each cell ij. 



 

Room Maze
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Figure 2:  Template images (80×80) employed in numerical analysis for configuration of 

resistive cell coupling, for two examples of 2D obstacle data 



 

 

1. Set/update the target coordinate (TC) 

2. Set/update reference coordinate (RC) 
(RC = last winner cell coordinate) 

3. If TC = RC target is reached, end iterations

4. Map the current obstacle data to cell coupling 

5. Bias the network to excitable state mode

6. Stimulate autowave propagation from TC

7. Detect/store the winner cell coordinate

8. Reset all cell states to low

9. Go to step 1

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:  Iterative steps of the path solution algorithm 
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Figure 4:  Piecewise nonlinear approximation of the measured I-V response from a previously 

implemented MOS cell circuit, employed in large cell array numerical analysis 
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Figure 5:  Room example: Trigger wave propagation of voltage states from 80×80 array circuit 

level simulation 
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Figure 6:  Maze example: Trigger wave propagation of voltage states from 80×80 array circuit 

level simulation 
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Figure 7:  Various solutions and their number of iterations across the room from different 

initial reference points (R.pt.) towards the same target point (T.pt.) 
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Figure 8:  Various solutions and their number of iterations through the maze from different 

initial reference points (R.pt.) towards the same target point (T.pt.) 
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Figure 9:  Successive triggered state transitions from a section of the 2D cell array, 

propagating as a trigger wave 
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