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Abstract This paper addresses the workspace analysis of the orthoglide, a 3-DOF
parallel mechanism designed for machining applications. This machine
features three fixed parallel linear joints which are mounted orthogonally
and a mobile platform which moves in the Cartesian x-y-z space with
fixed orientation. The workspace analysis is conducted on the bases of
prescribed kinetostatic performances. The interesting features of the or-
thoglide are a regular Cartesian workspace shape, uniform performances
in all directions and good compactness. Interval analysis based methods
for computing the dextrous workspace and the largest cube enclosed in
this workspace are presented.
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1. Introduction

Parallel kinematic machines (PKM) are commonly claimed to offer
several advantages over their serial counterparts, like high structural
rigidity, high dynamic capacities and high accuracy (Treib and Zirn,
1998; Wenger et al., 1999). Thus, PKM are interesting alternative de-
signs for high-speed machining applications.

This is why parallel kinematic machine-tools attract the interest of
more and more researchers and companies. Since the first prototype
presented in 1994 during the IMTS in Chicago by Gidding&Lewis (the
Variax), many other prototypes have appeared.

However, the existing PKM suffer from two major drawbacks, namely,
a complex Cartesian workspace and highly non linear input/output rela-
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tions. For most PKM, the Jacobian matrix which relates the joint rates
to the output velocities is not constant and not isotropic. Consequently,
the performances (e.g. maximum speeds, forces accuracy and rigidity)
vary considerably for different points in the Cartesian workspace and for
different directions at one given point. This is a serious drawback for
machining applications (Kim et al., 1997; Treib and Zirn, 1998; Wenger
et al., 2001). To be of interest for machining applications, a PKM should
preserve good workspace properties, that is, regular shape and accept-
able kinetostatic performances throughout. In milling applications, the
machining conditions must remain constant along the whole tool path (
Rehsteiner et al., 1999; Rehsteiner et al., 1999). In many research papers,
this criterion is not taking into account in the algorithmic methods used
for the optimization of the workspace volume (Luh et al., 1996; Merlet,
1999; Ottaviano, (1991)).

The orthoglide is a 3-axis PKM with the advantages a classical serial
PPP machine tool but not its drawbacks. It is an optimized version of
the Delta mechanism defined by Clavel, (1990). Most industrial 3-axis
machine-tool have a serial PPP kinematic architecture with orthogonal
linear joint axes along the x, y and z directions. Thus, the motion of the
tool in any of these directions is linearly related to the motion of one
of the three actuated axes. Also, the performances are constant in the
most part of the Cartesian workspace, which is a parallelepiped. The
main drawback is inherent to the serial arrangement of the links, namely,
poor dynamic performances.

The orthoglide is a PKM with three fixed linear joints mounted or-
thogonally. The mobile platform is connected to the linear joints by
three articulated parallelograms and moves in the Cartesian x-y-z space
with fixed orientation. Its workspace shape is close to a cube whose
sides are parallel to the planes xy, yz and xz respectively. The interval
analysis is conducted on the basis of prescribed bounded velocity and
force transmission factors. Interval analysis based method is used to
compute dextrous workspace as well as the largest cube enclosed in this
workspace (Merlet, 2000).

2. Description of the Orthoglide

Most existing PKM can be classified into two main families. The
PKM of the first family have fixed foot points and variable length struts
and are generally called “hexapods”. The second family of PKM has
been more recently investigated and have variable foot points and fixed
length struts. PKMs of the second family are more interesting because
the actuators are fixed and thus the moving masses are lower than in
the hexapods and tripods.



The orthoglide studied in this article is a 3-axis translational parallel
kinematic machine and is belongs to the second family. Figure 1 shows
the general kinematic architecture of the orthoglide. The orthoglide has
three parallel PRPaR identical chains (where P , R and Pa stands for
Prismatic, Revolute and Parallelogram joint, respectively). The actu-
ated joints are the three orthogonal linear joints. These joints can be
actuated by means of linear motors or by conventional rotary motors
with ball screws. The output body is connected to the linear joints
through a set of three parallelograms of equal lengths L = BiCi, so
that it can move only in translation. The first linear joint axis is parallel
to the x-axis, the second one is parallel to the y-axis and the third one
is parallel to the z-axis. In figure 1, the base points A1, A2 and A3 are
fixed on the ith linear axis such that A1A2 = A1A3 = A2A3, Bi is at
the intersection of the first revolute axis ii and the second revolute axis
ji of the i

th parallelogram, and Ci is at the intersection of the last two
revolute joints of the ith parallelogram. When each BiCi is aligned with
the linear joint axis AiBi , the orthoglide is in an isotropic configuration
and the tool center point P is located at the intersection of the three
linear joint axes. In this configuration, the base points A1, A2 and A3

are equally distant from P . The symmetric design and the simplicity of
the kinematic chains (all joints have only one degree of freedom, fig. 2)
should contribute to lower the manufacturing cost of the orthoglide. The
orthoglide is free of singularities and self-collisions. The workspace has a
regular, quasi-cubic shape. The input/output equations are simple and
the velocity transmission factors are equal to one along the x, y and z
direction at the isotropic configuration, like in a serial PPP machine (
Wenger and Chablat, 2001).

3. Kinematic Equations and Singularity Analysis

We recall briefly here the kinematics of the Orthoglide (See Wenger
and Chablat, 2001 for more details).

3.1 Kinematic Equations

Let θi and βi denote the joint angles of the parallelogram about the
axes ii and ji, respectively (fig. 2). Let ρ1, ρ2, ρ3 denote the linear joint
variables, ρi = AiBi and L denote the length of the tree legs, BiCi.
The position vector p of the tool center point P is defined in a reference
frame (O, x, y, z) centered at the intersection of the three linear joint
axes (note that the reference frame has been translated in Fig. 1 for
more legibility).



Let ρ̇ be referred to as the vector of actuated joint rates and ṗ as the
velocity vector of point P :

ρ̇ = [ρ̇1 ρ̇2 ρ̇3]
T , ṗ = [ẋ ẏ ż]T

ṗ can be written in three different ways by traversing the three chains
AiBiCiP :

ṗ = n1ρ̇1 + (θ̇1i1 + β̇1j1)× (c1 − b1) (1a)

ṗ = n2ρ̇1 + (θ̇2i2 + β̇2j2)× (c2 − b2) (1b)

ṗ = n3ρ̇3 + (θ̇3i3 + β̇3j3)× (c3 − b3) (1c)

where bi and ci are the position vectors of the points Bi and Ci, respec-
tively, and ni is the direction vector of the linear joints, for i = 1, 2,3.
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Figure 1. Orthoglide kinematic architecture
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Figure 2. Leg kinematics

3.2 Singular configurations

We want to eliminate the two idle joint rates θ̇i and β̇i from Eqs. (1a–
c), which we do upon dot-multiplying Eqs. (1a–c) by ci − bi:

(c1 − b1)
T ṗ = (c1 − b1)

Tn1ρ̇1 (2a)

(c2 − b2)
T ṗ = (c2 − b2)

Tn2ρ̇2 (2b)

(c3 − b3)
T ṗ = (c3 − b3)

Tn3ρ̇3 (2c)

Equations (2a–c) can now be cast in vector form, namely

Aṗ = Bρ̇

where A and B are the parallel and serial Jacobian matrices, respec-
tively:

A =







(c1 − b1)
T

(c2 − b2)
T

(c3 − b3)
T






and B =





η1 0 0
0 η2 0
0 0 η3



 (3)



with ηi = (ci − bi)
Tni for i = 1, 2, 3.

Parallel singularities (Chablat and Wenger, 1998) occur when the de-
terminant of the matrix A vanishes, i.e. when det(A) = 0. In such
configurations, it is possible to move locally the mobile platform whereas
the actuated joints are locked. These singularities are particularly un-
desirable because the structure cannot resist any force. Eq. (3a) shows
that the parallel singularities occur when:

(c1 − b1) = α(c2 − b2) + λ(c3 − b3)

that is when the points B1, C1, B2, C2, B3 and C3 are coplanar. A
particular case occurs when the links BiCi are parallel:

(c1−b1)//(c2−b2) and (c2−b2)//(c3−b3) and (c3−b3)//(c1−b1)

Serial singularities arise when the serial Jacobian matrix B is no longer
invertible i.e. when det(B) = 0. At a serial singularity a direction exists
along which any cartesian velocity cannot be produced. Eq. (3b) shows
that det(B) = 0 when for one leg i, (bi − ai) ⊥ (ci − bi).

When A and B are not singular, we obtain the relations,

ṗ = Jρ̇ with J = A−1B (4)

3.3 Velocity transmission factors

For joint rates belonging to a unit ball, namely, ||ρ̇|| ≤ 1, the Cartesian
velocities belong to an ellipsoid such that:

ṗ
T (JJT )ṗ ≤ 1

The eigenvectors of matrix JJT define the direction of its principal axes
of this ellipsoid and the square roots ψ1, ψ2 and ψ3 of the eigenvalues
σ1, σ2 and σ3 of JJT , i.e. the lengths of the aforementioned principal
axes are the velocity transmission factors in the directions. To limit the
variations of this factor in the Cartesian workspace, we set

ψmin ≤ ψi ≤ ψmax (5)

throughout the workspace. To simplify the problem, we set ψmin =
1/ψmax where the value of ψmax depends on the performance require-
ments.

4. Determination of the dextrous workspace

The dextrous workspace W is here defined as the loci of the points for
which all the eigenvalues of the matrix JJT , i.e. the velocity transmis-
sion factors, lie within a predefined range [σmin, σmax]. These eigenvalues



are determined by solving the third degree characteristic polynomial of
the matrix which is defined only for the points within the intersection I
of the three cylinders defined by

x2 + y2 ≤ L x2 + z2 ≤ L y2 + z2 ≤ L (6)

To solve numerically the above equations, the length of the legs is nor-
malized, i.e. we set L = 1.

Our purpose in this section is to determine an approximation of W as
a set of 3D Cartesian boxes for any point of which we are sure that the
constraints on the eigenvalues are satisfied. The width of all the boxes
in the list will be greater than a given threshold and the value of this
threshold will define the quality of the approximation.

4.1 Box verification

A basic tool of the algorithm is a module M(B) that takes as input
a box B belonging to I and whose output is:

either that for any point in the box the eigenvalues lie in the range
[σmin, σmax]

or that for any point in the box one of the eigenvalues is either
lower than σmin or larger than σmax

or that the two previous conditions does not hold for all the points
of the box i.e. that for some points the eigenvalues lie in the range
[σmin, σmax] while this is not true for some other points

The first step of this module consists in considering an arbitrary point
of the box (e.g. its center) and to compute the eigenvalues at this point:
either all of them lie in the range [σmin, σmax] or at least one of them lie
outside this range.

In the first case if we are able to check that there is no point in B such
that the eigenvalue at this point may be equal to σmin or σmax, then
we may guarantee that for any point of B the eigenvalues will be in the
range [σmin, σmax]. Indeed assume that at a given point of B the lowest
eigenvalue is lower than σmin: this implies that somewhere along the
line joining this point to the center of the box the lowest eigenvalue will
be exactly σmin. To perform this check we substitute in the polynomial
λ successively by σmin and σmax to get a polynomial in x, y, z only. We
have now to verify if there is at least one value for these three variables
that cancel the polynomial, being understood that these values have to
define a point belonging to B: this is done by using an interval analysis
algorithm from the ALIAS library (Merlet, 2000).



Assume now that at the center of the box the largest eigenvalue is
greater than σmax. If we are to determine that there is no point of B
such that one of the eigenvalue is equal to σmax, then we may guarantee
that for any point of B the largest eigenvalue will always be greater than
σmax. This check is performed by using the same method than in the
previous case. Hence the M module will return:

1: if for all points of B the eigenvalues lie in [σmin, σmax] (hence
B is in the dextrous workspace)

-1: if for all points of B either the largest eigenvalue is always
greater than σmax or the lowest eigenvalue is lower than σmin

(hence B is outside the dextrous workspace).

0: in the other cases i.e. parts of B may be either outside or inside
the dextrous workspace

4.2 Algorithm for the determination of the
dextrous workspace

The principle of the algorithm is pretty simple: we will maintain a
list L of boxes, indexed by i, which is is initialized with the box [-1,1],
[-1,1], [-1,1]. A minimal width ǫ for the ranges in a box is defined and
the operator W(Bi) will return the largest width of the ranges in Bi.
An error index E will be computed as the total volume of the boxes that
are not in the approximation but may contain points that are inside the
dextrous workspace. We then apply M(Bi):

if M(Bi)=1: we store Bi as part of the dextrous workspace and
consider the next box in L

if M(Bi)=-1: we consider the next box in L

if M(Bi)=0:

– if W(Bi) ≥ ǫ: we create 2 new boxes from Bi by bisecting the
range of Bi with the largest width. The two new boxes are
put at the end of L

– otherwise we add the volume of Bi to E

The algorithm stops when all the boxes in L have been processed. Note
that this basic algorithm has to be modified in order to consider only
boxes that belongs to I but this can be done using the same principle.
The algorithm returns a description of the dextrous workspace as a list
of boxes and the comparison between the volume of the approximation
and E allows to determine the quality of the approximation. Note that



E is very conservative as part of this volume consists in points that do
not belong to I or to the dextrous workspace.

4.3 Implementation and results

The previous algorithms has been implemented in Maple with a sys-
tem call to a C++ program that implements the M module. For an
ǫ of 0.05 we found in about 5 hours that the volume of the dextrous
workspace is 1.468 with an error bound of [0,0.48] with σmin = 0.25 and
σmax = 4, i.e. ψmin = 1/2 and ψmax = 2 (Fig. 3).

5. Determination of the largest cube enclosed in
the dextrous workspace

For usual machine tools, the Cartesian workspace is generally given
as a function of the size of a right-angled parallelepiped. Due to the
symmetrical architecture of the orthoglide, the Cartesian workspace has
a fairly regular shape in which it is possible to include a cube whose
sides are parallel to the planes xy, yz and xz respectively (Fig. 4).

Figure 3. Dextrous workspace
of the Orthoglide mechanism

x

z

y LWorkspace

Figure 4. Cartesian workspace and isotropic
configuration of the Orthoglide mechanism

We will now describe a method for determining a cube that is enclosed
in this workspace whose edge length is 2R such that there is no other
cube enclosed in the workspace with an edge length of 2(R + α), where
α is an accuracy threshold fixed in advance.

The first step is to determine the largest cube enclosed in the workspace
with a center located at (0,0,0). This is done by using the M module
on the box [−A − kα,A + kα], [−A − kα,A + kα], [−A − kα,A + kα]
where k is an integer initialized to 1 and A a number initialized to 0.



Each time the M module returns 1 (which means that the cube with
edge length 2(A + kα) is enclosed in the dextrous workspace) we set A
to A+ kα and we double the value of k. When this module returns -1 if
k is greater than 1 we reset k to 1 and restart the process, otherwise the
process stops and we have determined that the cube with edge length 2A
is enclosed in the workspace while the cube with edge length 2(A + α)
is not: thus A is an initial value for R.

We use then the same algorithm than for the determination of the
workspace with the following modifications:

for each box Bi in L we test if at the 8 corners of the cube cen-
tered at the center of the box and with edge length 2(R + α) the
eigenvalues satisfies the constraints:

– if this not the case let u be the maximal half-width of the
ranges of Bi and assume that u1 = R − u > 0. If for at
least for one corner of the cube C with center of Bi and edge
length u1 the eigenvalues do not satisfy the constraint, then
the center of the largest cube cannot be located in Bi: indeed
any cube with a center in Bi and edge length 2R will include
all the corners of C and thus contain at least a point for which
the eigenvalues do not satisfy the constraints.

– if at the corners the eigenvalues are all valid then we search
for the largest cube centered at the center of the box using
the same method than for the determination of the largest
cube centered at (0,0,0). If we find a cube with a larger edge
length than 2R, then the value of R is updated.

the boxes are bisected only if the largest width of their ranges
is greater than 2α: indeed even if the largest cube has a center
located in such box, then the maximal edge length will be at most
2(R + α).

Using this algorithm with a value of 0.001 for α we found out that the
largest cube has its center located at (0.085938, 0.085938, 0.085938) and
that its edge length was LWorkspace = 0.643950 while we may guarantee
that there is no cube with edge length larger than 0.643952 enclosed in
the workspace

6. Conclusions

The dextrous Cartesian workspace and the largest cube enclosed in
this workspace is computed using interval analysis based method for
the Orthoglide. Unlike most existing PKMs, the dextrous workspace is
fairly regular and the performances are homogeneous in it. Thus, the



entire workspace is really available for tool paths. The bounds of ve-
locity and force transmission factors used in this paper are given as an
example because it depends on the performance requirements for ma-
chining applications. A 1:3-scale prototype of this mechanism is under
construction in our laboratory with these bound contraints.
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