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Abstract 
 

Robotic hardware designs are becoming more complex as 
the variety and number of on-board sensors increase and 
as greater computational power is provided in ever-
smaller packages on-board robots.   These advances in 
hardware, however, do not automatically translate into 
better software for controlling complex robots.  Evolu-
tionary techniques hold the potential to solve many diffi-
cult problems in robotics which defy simple conventional 
approaches, but present many challenges as well.  Nu-
merous disciplines including artificial life, cognitive sci-
ence and neural networks, rule-based systems, behavior-
based control, genetic algorithms and other forms of evo-
lutionary computation have contributed to shaping the 
current state of evolutionary robotics.   This paper pro-
vides an overview of developments in the emerging field of 
evolutionary robotics, and discusses some of the opportu-
nities and challenges which currently face practitioners in 
the field.  
 
1.  Introduction 
 
The field of evolutionary robotics has emerged in recent 
years as the application of artificial evolution to the de-
velopment of robotic systems.  While most of the work in 
evolutionary robotics has focused on the development of 
control systems for autonomous mobile robots, some re-
searchers have used the techniques to evolve robotic 
hardware configurations and even robot body parts along 
with the controllers.  
 
Evolutionary robotics (ER) has its origins in several dis-
ciplines including artificial life [1], cognitive science and 
neural networks [2,3,4], behavior-based control [5], ge-
netic programming [6] and genetic algorithms [7].   Cur-
rent practitioners of ER incorporate techniques from a 
variety of disciplines to achieve the desired result, often a 
robotic control system for an autonomous mobile robot 
(or other autonomous system) which exhibits a set of de-
sired behaviors, and for which those behaviors were ac-
quired “automatically” (i.e. without custom programming 
of each individual behavior). 
 

The need for ER arises from the fact that as robotic sys-
tems and the environments into which they are placed 
increase in complexity, the difficulty of programming 
their control systems to respond appropriately increases to 
the point where it becomes impracticable to foresee every 
possible state of the robot in its environment.  Evolution-
ary algorithms are used to generate control algorithms 
using the Darwinian principle of survival-of-the-fittest. A 
population of controllers is maintained and evolved by 
evaluating individual control systems based on a measure 
of how well they achieve desired characteristics such as 
executing appropriate behaviors at appropriate times. 
Only the fitter members of the population survive and 
pass the characteristics that made them successful on to 
future generations.  The ultimate goal is to produce the 
best possible controller given some design criteria. As 
discussed in the following sections, this approach has 
proven very successful in a wide variety of challenging 
robotics domains. 
 
The remainder of this paper will provide a sampling of 
recent development efforts in evolutionary robotics re-
search with the goal of showing both the opportunities 
presented by the use of evolutionary techniques for solv-
ing difficult problems in robotics, but also in showing 
some of the challenges of applying these techniques.   
 
2.  Evolved Controllers for Autonomous  
     Mobile Robots 
 
A key objective in evolutionary robotics is to evolve be-
havior-based controllers for autonomous mobile robots 
[8,9].  Autonomous mobile robots often incorporate both 
reactive and longer-term planning components in order to 
accommodate goal-driven behaviors.  The reactive por-
tion of the controller may be encoded in a variety of 
forms.  Common choices include stimulus-response rules, 
neural networks, and state-machines.  The planning stage 
may be represented as a series of goal states.  Behavior-
based controllers are thus driven by a combination of cur-
rent state, as determined by current sensor readings and 
possibly short-term memory, and goal(s).  The controller 
attempts to match its current state readings and goal, 
which together comprise the stimulus part, and then to 
produce the appropriate output, or response. 



 

2.1. Evolved Rule-Based Control 
 
Work by Grefenstette and Schultz [10] resulted in the 
application of the SAMUEL learning system to evolve 
stimulus-response rules to produce a reactive control sys-
tem for autonomous mobile robots.  Behaviors achieved 
using this system include tracking, navigation, and obsta-
cle avoidance.  SAMUEL maintains a population of can-
didate behaviors which are evaluated in a simulated ro-
botic environment.  The population is scored, mutation 
and crossover operators applied, and the population is 
adjusted to remove the lesser scoring rule sets.  The proc-
ess is run for a number of generations until a stopping 
criteria is met, at which point the best evolved controller 
is uploaded to the robot hardware for validation and test-
ing.  This technique proved successful for evolving reac-
tive controllers for autonomous mobile robots.  Schultz et 
al. [12] demonstrated the evolution of rule-based control-
lers for learning complex robotic behaviors by evolving 
the behavior for a shepherd robot to coerce a sheep robot 
into a corral.  This technique and was extended to evolv-
ing controllers for simulated autonomous aircraft and 
autonomous underwater vehicles [7,11]. 
 
Challenges with evolving rule-based controllers include 
determining how to map continuous inputs and outputs to 
discrete state variables, establishing appropriate interme-
diate and goal states, determining how many production 
rules are required, and performing conflict resolution.   
 
2.2. Evolved Neural Network Based Control 
 
An alternative representation used by many researchers in 
evolutionary robotics is artificial neural networks, which 
have a number of characteristics that are desirable from 
an evolutionary robotics perspective.  Neural networks are 
relatively insensitive to noise in the environment since the 
output of each node is typically a function of the input 
from a variety of sources. This characteristic also pro-
duces a smooth search space with a well-behaved map-
ping between changes to the network and changes in the 
resultant network behavior. Neural networks also natu-
rally handle continuous input and can produce either con-
tinuous or discrete output as desired [9].   
 
A key advantage of using evolutionary algorithms for 
producing robotic neural network based controllers is that 
the evolutionary techniques may be used equally well 
with feed-forward or recurrent networks [13].  Recurrent 
networks offer many advantages for dynamic control sys-
tems because they allow recent state information to be 
combined with current state information in the decision-
making process.  In effect, the recurrent connections pro-
vide a kind of short-term memory capability for the neural 
network so that decisions may include not only the input 
state information but also the prior state(s) of the network 
itself.  Recurrent networks, however, are notoriously dif-
ficult to train using standard gradient-descent learning 

techniques [14].  Evolutionary algorithms have proven 
quite successful in training recurrent neural network-
based controllers for autonomous mobile robots [9]. 
 
Potter et al. [15] demonstrated the evolution of neural 
network controllers for multiple robots engaged in shep-
herding a sheep robot.  The goal of this work was to ex-
amine the effects of evolving a single homogeneous con-
troller for a group of autonomous mobile robots perform-
ing a collective herding task, versus coevolving separate 
heterogeneous controllers, and to determine if the com-
plexity of the task favored homogeneous or heterogene-
ous control. The heterogeneous controllers were produced 
using a cooperative coevolutionary architecture [16] in 
which the controller for each robot is evolved in a sepa-
rate genetically-isolated species.  It was found that het-
erogeneous controllers are indeed advantageous when the 
task can be decomposed into subtasks that can be solved 
by robots specializing in substantially different skill sets. 
Otherwise homogeneous controllers have an advantage 
due to their generality.  
 
Quinn et al. [17] described another experiment in which 
neural network controllers were evolved for a team of real 
robots.  The objective was to study the capability of the 
robots to learn formation forming behaviors starting from 
random positions and using a minimal sensor set consist-
ing of 4 IR sensors on each robot.   
 
3.  Hyper-Redundant Robot Control 
 
One of the greatest challenges in robotics is the design of 
control systems for robots with high degrees of freedom, 
particularly if many of the degrees of freedom are cou-
pled.  A key example of this is a highly segmented ser-
pentine or snake-like robotic arm (Fig. 1).  This is an ex-
ample of a hyper-redundant robot, where there are many 
possible kinematic solutions to achieve the same end-
effector position or trajectory.   
 

 
Figure 1.  Hyper-redundant robotic manipulator 

 
Sofge [18] used evolutionary algorithms to generate the 
inverse kinematics for the hyper-redundant robotic ma-
nipulator. The continuous work space of the robot was 
discretized into a grid of regularly spaced points.  A popu-
lation of genomes was created such that each genome 
represented the joint-space configuration of the robot as a 
real-valued vector.  The system then used an evolutionary 
strategy to coevolve solutions for each grid position 
within the workspace such that the distance in joint space 



 

between any two neighboring points was minimized.  The 
fitness function which was minimized included the joint 
space distance between neighboring configurations, as 
well as penalty functions for nearing joint angle limits, 
exceeding the boundaries of the work space, or putting the 
manipulator into otherwise undesirable positions.   

 
The resulting coevolved kinematics achieved a position 
error of less than one inch over a simulated 50 ft. manipu-
lator while maintaining smooth end-point trajectory con-
trol from any point to any other point within the work 
space. 

 
4.  Evolvable Hardware 
 
Evolvable Hardware (EHW) is an emerging field that 
applies evolution to automate the design of physically 
reconfigurable structures such as electronic systems, mi-
cro-electromechanical systems (MEMS), and robots.  
Since EHW techniques enable self-reconfigurability and 
adaptability of the systems with embedded programmable 
devices, they have potential to significantly increase the 
functionality, robustness, and reliability of deployable 
hardware systems.  The benefits of self-reconfiguration 
and adaptation are evident for space exploration, defense, 
and other applications that need systems to perform with 
optimal functionality for extended periods of time in un-
known, hostile, and/or changing environments.  In 
autonomous robotics this is especially true. 
 
Evolutionary algorithms have been applied to the design 
and post-fabrication adaptation of reconfigurable hard-
ware in order to improve the design or performance.  The 
new generation of reconfigurable hardware will also en-
able the continuous and embedded evolution of robot con-
trollers [19] and vehicle or sensor morphology.   
 
5.  Coevolution of Robot Bodies and Brains 
  
In nature, both the morphology and the behavior of an 
organism are evolved in lockstep. In an effort to explore 
this more natural form of evolution in ER, a number of 
researchers have begun work coevolving robot hardware 
designs with software for controlling the robot.  Bugajska 
and Schultz [20,21] demonstrate the coevolution of both 
rule-based and neural network-based controllers and sen-
sor configurations for autonomous micro-air vehicles 
(MAVs).  The task presented for the simulated MAV is to 
fly through a forested area to reach a target without hitting 
any obstacles such as trees.  Range sensors with adjust-
able beam width and maximum range settings are placed 
at various locations on the.  The SAMUEL system was 
used for evolving the rule-based controllers and sensor 
configurations on the same chromosome, while the coop-
erative coevolution architecture [16,22] was used for 
evolving the neural network controllers and sensor con-
figurations in two separate species. Successes were dem-
onstrated for each method, but more research is needed to 

better understand the benefits of the use of the coopera-
tive coevolution approach over standard evolutionary 
algorithms, and to determine if the rule-based or neural 
network-based representation is better for the controller. 
 
Karl Sims [23] demonstrated the evolution of fantastical 
simulated creatures in an artificial reality environment by 
coevolving the creatures’ minds and bodies. The crea-
tures’ bodies consisted of 3D rectangular blocks, while 
their minds were evolved neural network controllers.  The 
fitness functions were crafted such that the members of 
the population that could successfully move across the 
landscape or track a moving target were more likely to 
survive and reproduce.  After coevolution the creatures 
exhibited a variety of interesting behaviors resembling 
walking, hopping, slithering and swimming.   
 
Hornby and Pollack [24,25] studied the coevolution of 
bodies and brains in simulated robots using L-systems as 
a generative encoding mechanism.  The fitness objective 
was, as with the Sims work, to evolve for locomotion 
across a simulated landscape.  The result of this effort was 
to demonstrate that the evolved L-system individuals 
moved faster than those using standard representations, 
expressed more modularity of design and exhibited a far 
greater complexity than their simpler brethren.  
 
In the GOLEM project (Genetically Organized Lifelike 
Electro Mechanics) Lipson and Pollack [26] coevolved 
simple neural network controllers and robot body parts as 
a first step towards creating artificial life-forms.  The goal 
of evolution was to learn locomotion behavior.  The crea-
tures were evolved in simulation, and the body parts were 
automatically constructed using thermoplastic fabrication 
equipment.  The evolved neural network controller was 
then uploaded to the artificial neural network hardware.  
Motors, controller, and body parts were hand-assembled 
by a human assistant. When the creatures were connected 
to a power source they demonstrated a crude ability to 
move across a flat surface such as a table or stage.   
 
6.  Embodied Evolution 
 
Embodied Evolution (EE) is based upon the notion that a 
group of autonomous robots or agents is situated within 
an environment trying to perform a task.  These robots are 
allowed to interact with one another, mate, and reproduce 
control programs which then are transferred to other 
members of the population [27,28].  The key aspects of 
this paradigm are that the interactions such as mating, 
cooperation, and so on are based upon contact between 
the actual robots in the environment, and the entire popu-
lation is evaluated in parallel.  This inherent parallelism in 
EE is a major advantage over the more traditional evolu-
tionary approach because as the population size increases, 
the computational requirements for each robot do not.  
Thus the evolutionary computation scales well, which is 



 

particularly important if it is to be performed on real ro-
bots in real time. 
 
Watson et al. [28] describe an early experiment with EE 
to produce a phototaxis (light-seeking) behavior.  Each 
mobile robot was equipped with two light sensors, two 
motor control outputs, and infrared diodes to provide 
omni-directional communications capabilities.  The con-
trol architecture was a simple neural network model, with 
inputs from each sensor and outputs to the motors.  The 
evolutionary algorithm used was an adaptation of a 
steady-state EA model referred to as the probabilistic 
gene transfer algorithm.  
 
Some of the challenges of getting this system to work 
were in providing a sufficient number of mobile robots to 
overcome the stochastic effects of a small population, 
providing a consistent source of power to the mobile ro-
bots, and providing an on-board fitness measure for each 
robot so that the evolution can be truly distributed.  The 
experiment resulted in a number of solutions comparable 
to hand-designed behaviors, and a novel looping behavior 
for reaching the light.  
 
7.  Simulation vs. Reality 
 
The most natural and direct application of evolutionary 
computation to robotics is to perform control-system 
evaluations on real robot hardware in the actual task envi-
ronment. However, if evolution is done in this way a 
number of issues become problematic. Evolution is a rela-
tively long time-scale process that may require many con-
trol-system evaluations to achieve satisfactory results, 
leading to unacceptable runtimes. This problem is exacer-
bated by unreliable hardware and poor battery perform-
ance. The robot may also enter into dangerous states in 
which its hardware could be damaged or bystanders in-
jured, especially in the early stages of evolution. These 
issues have led most researchers to evolve control systems 
in simulation where fitness can be evaluated at faster than 
real-time speed in a safe off-line environment. 
 
Evolution in simulation is not without its own problems. 
A control system that works well in simulation may not 
perform satisfactorily on a real robot with noisy sensor 
readings and imprecise motor control while operating a 
complex environment that is computationally impractical 
to model with a high degree of fidelity. Grefenstette et al. 
[29], in an early attempt to overcome the limitations of 
evolving control systems in simulation, experimented 
with adding noise to the sensor models. It was found that 
given the inevitable mismatch between simulation and 
reality, it was better to have too much rather than too little 
noise in the simulation because this encourages more gen-
eral solutions to emerge. However, a later study by Jakobi 
et al. [30] showed that unreasonably high levels of noise 
can also be harmful because solutions may evolve that 
rely on the excessive noise.  By carefully designing a 

simulation that differentiates between environmental fea-
tures that are critical to the task at hand and those that are 
irrelevant, the noise can be tailored as appropriate, thus 
creating control solutions that ignore the irrelevant fea-
tures and are robust with respect to the critical ones [31]. 
 
Another approach explored by Grefenstette and Ramsey 
[32] is to combine simulation and reality. In their archi-
tecture for anytime learning (also called continuous and 
embedded learning [33]) control systems are evolved on a 
simulator that runs continuously on a real robot. Over 
time, the parameters of the embedded simulation are ad-
justed to more closely match reality.  As new control rules 
are evolved that have a high likelihood of improving the 
robot’s performance, the active robot control system is 
updated. This process enables the robot to adapt to mis-
matches between simulation and reality due to modeling 
errors, a dynamically changing environment, and changes 
in the performance characteristics of the robot’s sensors 
and effectors. 
 
8.  Conclusions  
 
The field of evolutionary robotics is growing rapidly.  
Robots themselves are quickly becoming more complex 
as the variety and number of on-board sensors increases, 
and as Moore’s Law results in greater on-board computa-
tional power available in ever-smaller packages.  Ad-
vances in hardware, however, do not automatically trans-
late into better software for controlling complex robots.  
With an increased emphasis on more capable and more 
autonomous robots, evolutionary techniques hold the po-
tential to solve many difficult problems in robotics which 
defy simple conventional approaches.  
 
Behaviorism has become the predominant paradigm for 
control of autonomous robots.  Artificial evolution pro-
vides a means to achieve desired behaviors.  Evolutionary 
techniques also hold the promise of having the robots 
learn new behaviors automatically in order to adjust to 
changes in their environments, changes in themselves due 
to sensor drift or malfunction for example, and to acquire 
skills for performing new tasks or improving on old tasks.  
 
As we develop ever more capable robots which assist 
humans in performing tasks, it is becoming clear that we 
must also improve the interfaces and means of interacting 
with these robots.  One approach we are pursuing at the 
Naval Research Laboratory is known as embodied cogni-
tion [34]. In embodied cognition we develop cognitive 
models of human performance to augment a robot’s rea-
soning capabilities. Embodied cognition is based on the 
premise that use of cognitive models on the robot facili-
tates human-robot interaction by making it easier for hu-
mans to predict and understand the robot’s behavior and 
to interact with the robot. This embodied cognition will sit 
on top of evolved reactive behaviors and will allow future 
systems to have higher-level cognitive abilities. 



 

 
For ER to achieve the vision of supplanting the hand-
coding and hand-design of complex robotic systems,  as 
pointed out by Mataric [35] it must be shown to reduce 
the overall effort of its programmers and designers.  The 
evolved controllers produced by current ER systems are 
often very simple and could be easily bettered by duly 
considered hand-coded solutions.  Representations for 
robot morphologies and controllers do not often exploit 
notions of modularity which we expect in more complex 
creatures.  Better representations and better evolutionary 
algorithms may be necessary to achieve the vision of ER, 
and better techniques for transferring these solutions into 
robot hardware, or evolving them in situ, are needed. 
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