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ABSTRACT 

The paper addresses kinematic and geometrical aspects of the Orthoglide, a three-DOF parallel 

mechanism. This machine consists of three fixed linear joints, which are mounted orthogonally, three 

identical legs and a mobile platform, which moves in the Cartesian x-y-z space with fixed orientation. 

New solutions to solve inverse/direct kinematics are proposed and we perform a detailed workspace and 

singularity analysis, taking into account specific joint limit constraints. 

KEYWORDS: Parallel manipulators; Workspace isotropy; Inverse and direct kinematics; Singularity. 

 

1. INTRODUCTION 

For two decades, parallel manipulators attract the attention of more and more researchers who 

consider them as valuable alternative design for robotic mechanisms1-3. As stated by a number of 

authors4, conventional serial kinematic machines have already reached their dynamic performance 

limits, which are bounded by high stiffness of the machine components required to support sequential 

joints, links and actuators. Thus, while having good operating characteristics (large workspace, high 

flexibility and manoeuvrability), serial manipulators have disadvantages of low precision, low stiffness 

and low power. Also, they are generally operated at low speed to avoid excessive vibration and 

deflection. 
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Conversely, parallel kinematic machines offer essential advantages over their serial counterparts 

(lower moving masses, higher rigidity and payload-to-weight ratio, higher natural frequencies, better 

accuracy, simpler modular mechanical construction, possibility to locate actuators on the fixed base) that 

obviously should lead to higher dynamic capabilities. However, most existing parallel manipulators have 

limited and complicated workspace with singularities, and highly non-isotropic input/output relations5. 

Hence, the performances may significantly vary over the workspace and depend on the direction of the 

motion, which is a serious disadvantage for machining applications. 

Research in the field of parallel manipulators began with the Stewart-platform used in flight 

simulators6. Many such structures have been investigated since then, which are composed of six linearly 

actuated legs with different combinations of link-to-platform connections7. In recent years, several new 

kinematic structures have been proposed that possess higher isotropy. In particular, a 3-dof translational 

mechanism with gliding foot points was found in three separate works to be fully isotropic throughout 

the Cartesian workspace8-9-10. It consists of a mobile platform, which is connected to three orthogonal 

linear drives through three identical planar 3-revolute jointed serial chains. Although this manipulator 

behaves like a conventional Cartesian machine, bulky legs are required to assure stiffness because these 

legs are subject to bending.  

In this paper, the Orthoglide manipulator proposed by Wenger and Chablat11-13 is studied. As 

follows from previous research, this manipulator has good kinetostatic performances and some 

technological advantages, such as (i) symmetrical design consisting of similar 1-d.o.f. joints; (ii) regular 

workspace shape properties with bounded velocity amplification factor; and (iii) low inertia effects. This 

paper analyses the kinematics and the workspace of the Orthoglide. Section 2 describes the Orthoglide 

geometry. Section 3 proposes new solutions for its inverse and direct kinematics. Sections 4,5 present a 

detailed analysis of the workspace and jointspace respectively. Section 6 contains exhaustive singularity 

study. And, finally, Section 7 summarises the main contributions of the paper. 
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2. MANIPULATOR GEOMETRY 

The kinematic architecture of the Orthoglide is shown in Fig. 1. It consists of three identical 

kinematic chains that are formally described as PRPaR, where P, R and Pa denote the prismatic, revolute, 

and parallelogram joints respectively. The mechanism input is made up by three actuated orthogonal 

prismatic joints. The output body (with a tool mounting flange) is connected to the prismatic joints 

through a set of three kinematic chains. Inside each chain, one parallelogram is used and oriented in a 

manner that the output body is restricted to translational movements only. The arrangement of the joints 

in the PRPaR chains has been defined to eliminate any constraint singularity12 in the Cartesian 

workspace. 

To get the Orthoglide kinematic equations, let us locate the reference frame at the intersection of the 

prismatic joint axes and align the coordinate axis with them (Fig. 2), following the “right-hand” rule. Let 

us also denote the input vector of the prismatic joints variables as ( ), ,x y zρ ρ ρ=ρ  and the output 

position vector of the tool centre point as ( ), ,x y zp p p=p . Taking into account obvious properties of the 

parallelograms, the Orthoglide geometrical model can be presented in a simplified form, which consists 

of three bar links connected by spherical joints to the tool centre point at one side and to the 

corresponding prismatic joints at another side. Using this notation, the kinematic equations of the 

Orthoglide can be written as follows 

 

( )

( )
( )

2 2 2 2

22 2 2

22 2 2

x x y z

x y y z

x y z z

p p p L

p p p L

p p p L

ρ

ρ

ρ

− + + =

+ − + =

+ + − =

 (1) 

where L is the length of the parallelogram principal links and the “zero” position ( )0 0, 0, 0=p  

corresponds to the joints variables ( ), ,L L L=0ρ , see Fig. 3a. 

It should be stressed that the Orthoglide geometry and relevant manufacturing technology impose 

the following constraints on the joint variables 

 0 2 ; 0 2 ; 0 2x y zL L Lρ ρ ρ< ≤ < ≤ < ≤ , (2) 
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which essentially influence on the workspace shape. While the upper bound ( 2Lρ ≤ ) is implicit and 

obvious, the lower one ( 0ρ > ) is caused by practical reasons, since safe mechanical design encourages 

avoiding risk of simultaneous location of prismatic joints in the same point of the Cartesian workspace 

(here and in the following sections, while referring to symmetrical constraints are subscript omitted, i.e. 

{ }, ,x y zρ ρ ρ ρ∈ ).  

3. ORTHOGLIDE KINEMATICS 

3.1.Inverse kinematics 

For the inverse kinematics, the position of the end-point (px, py, pz) is treated as known and the goal 

is to find the joint variables (ρx, ρy, ρz) that yield the given location of the tool. Since in the general case 

the inverse kinematics can produce several solutions corresponding to the same tool location, the 

solutions must be distinguished with respect to the algorithm “branch”. For instance, if the aim is to 

generate a sequence of points to move the tool along an arc, care must be taken to avoid branch 

switching during motion, which may cause inefficient (or even impossible) manipulator motions. 

Moreover, leg singularities may occur at which the manipulator loses degrees of freedom and the joint 

variables become linearly dependent. Hence, the complete investigation of the Orthoglide kinematics 

must cover all the above-mentioned topics.  

From the Orthoglide geometrical model (1), the inverse kinematic equations can be derived in a 

straightforward way as: 

 2 2 2
x x x y zp s L p pρ = + − −   

 2 2 2
y y y x zp s L p pρ = + − −  (3) 

 2 2 2
z z z x yp s L p pρ = + − −   

where sx, sy, sz are the branch (or configuration) indices that are equal to ±1. It is obvious that (3) yields 

eight different branches of the inverse kinematic algorithm, which will be further referred to as PPP, 
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MPP…MMM following the sign of the corresponding index (i.e. the notation MPP corresponds to the 

indices 1; 1; 1x y zs s s= − = + = +  ).  

The geometrical meaning of these indices is illustrated by Fig. 2, where θx, θy, θz are the angles 

between the bar links and the corresponding prismatic joint axes. It can be proved that 1s =  if 

o o(90 ,180 )θ ∈  and 1s = −  if o o(0 ,90 )θ ∈ . That the branch transition ( o90θ = ) corresponds to the serial 

singularity (where the leg is orthogonal to the relevant translational axis and the input joint motion does 

not produce the end-point displacement). 

It is obvious that if the inverse kinematic solution exists, then the target point (px, py, pz) belongs to a 

volume bounded by the intersection of three cylinders  

 { }2 2 2 2 2 2 2 2 2; ;L x y x z y zC p p L p p L p p L= + ≤ + ≤ + ≤p  (4)  

that guarantees non-negative values under the square roots in (3). However, it is not sufficient, since the 

lower joint limits (2) impose the following additional constraints 

 2 2 2
x x y zp s L p p> − − − ;  

 2 2 2
y y x zp s L p p> − − − ; (5)  

 2 2 2
z z x yp s L p p> − − − ,  

which reduce a potential solution set. For example, it can be easily computed that for the “zero” 

workspace point ( )0 0, 0, 0=p , the inverse kinematic equations (3) give eight solutions 

( ), ,L L L= ± ± ±ρ  but only one of them is feasible, as shown in Fig. 3.  

To analyse in details the influence of the joint constraints impact, let us start from separate a study of 

the inequalities (5) and then summarise results for all possible combinations of the three configuration 

indices. If 1xs = , then consideration of two cases, 0xp >  and 0xp ≤ , yields the following workspace 

set satisfying the constraint 0xρ >   

 { } { }2 2 2 2| 0 | 0;x
L L x L x x y zW C p C p p p p L+ = ∈ > ∈ ≤ + + <p pU , (6)  
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which consists of two fractions (½ of the cylinder intersection denoted LC  and ½ of the sphere whose 

geometric center is (0,0,0) and radius is L). If 1xs = − , then the second case 0xp <  does not give any 

solution and the joint constraint 0xρ >  is expressed in the workspace as 

 { }2 2 2 2| 0;x
L L x x y zW C p p p p L− = ∈ ≥ + + >p . (7)  

The latter defines a solid bounded by three cylindrical surfaces and the sphere. The remaining constrains 

0yρ >  and 0zρ >  can be derived similarly, which differ from (6), (7) by subscripts only.  

Then, there can be found intersection of the obtained sets for different combinations of the 

configuration indices. It can be easily proved that the case “PPP” yields 

 { } { }2 2 2 2| , , 0 |PPP
L L x y z L x y zW C p p p C p p p L= ∈ > ∈ + + <p pU  (8)  

while the remaining cases give 

 { } { }2 2 2 2... | , , 0 |MPP MMM
L L L x y z L x y zW W C p p p C p p p L= = = ∈ > ∈ + + >p pI  (9)  

These conclusions can be illustrated by a 2D example presented in Figs. 4 and 5, which show feasible 

workspace regions for both separate and simultaneous consideration of the constraints on two joint 

variables ,x yρ ρ . 

Expressions (8) and (9) can be put in the form  

    ; ...PPP MPP MMM
L L L L L LW S G W W G= ∪ = = =  (10)  

where  

{ }2 2 2 2
L L x y zS C p p p L= ∈ + + <p ;   { }2 2 2 2| , , 0;L L x y z x y zG C p p p p p p L= ∈ > + + >p ;   L LS G = ∅I . 

Therefore, for the considered positive joint limits (2), the existence of the inverse kinematic 

solutions may be summarised as follows: 

• Inside the sphere SL there exist exactly one inverse kinematic solution PPP with positive 

configuration indices sx, sy, sz; 
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• Outside the sphere SL , but within the positive part of the cylinder intersection CL, there exist 8 

solutions of the inverse kinematics (PPP, MPP, … MMM) corresponding to all possible 

combinations of the configuration indices sx, sy, sz . 

These conclusions may be illustrated by the following numerical examples related to the “unit” 

manipulator (L=1). If the target point p=(-0.5, 0.4, 0.3) is within the sphere SL, then the joint coordinates 

must be taken from the sets { }0.37,-1.37xρ ∈ , { }1.21,  -0.41  xρ ∈ , { }1.07,-0.47xρ ∈ , which allow 

only one positive combination. In contrast, for the target point p=(0.7, 0.7, 0.7), which is outside the 

sphere, the inverse kinematics yields solutions with two positive values { }, , 0.84, 0.56x y zρ ρ ρ ∈  that 

allow 8 positive combinations of the joint variables. An interesting feature is that intermediate cases 

(with 2 or 4 feasible solutions) are not possible. 

3.2.Direct kinematics 

For the direct kinematics, the values of the joint variables (ρx, ρy, ρz) are known and the goal is to 

find the tool centre point location (px, py, pz) that corresponds to the given joint positions. While, in 

general, the inverse kinematics of parallel mechanisms is straightforward, the direct kinematics is 

usually very complex. The Orthoglide has the advantage leave an analytical direct kinematics. Like for 

the previous section, the solutions must be distinguished with respect to the algorithm “branch” that 

should be also defined both geometrically and algebraically, via a configuration index. 

To solve the system (1) for px, py, pz, first, let us derive linear relations between the unknowns. By 

subtracting three possible pairs of the equations (1), we leave 

 

2 2

2 2

2 2

2 2

2 2

2 2

x x y y x y

x x z z x z

y y z z y z

p p

p p

p p

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

− = −

− = −

− = −

 (11)  

As follows from these expressions, the relation between px, py, pz may be presented as  

 ; ;
2 2 2

yx z
x y z

x y z

t t tp p p
ρρ ρ

ρ ρ ρ
= + = + = + , (12)  
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where t is an auxiliary scalar parameter. From a geometrical point of view, the expression (12) defines 

the set of equidistant points for the prismatic joint centres (Fig. 6). Also, it can be easily proved that the 

full set of equidistant points is the line perpendicular to Π  and passing through ( , ,x y zρ ρ ρ )/2, where.  

 { }| 1yx z

x y z

pp p
ρ ρ ρ

Π = + + =p  (13)  

After substituting (12) into any of the equations (1), the direct kinematic problem is reduced to the 

solution of a quadratic equation in the auxiliary variable t, 

 2 0At Bt C+ + = , (14)  

where ( ) ( ) ( )2 22
x y x z y zA ρ ρ ρ ρ ρ ρ= + +  ; ( )2

x y zB ρ ρ ρ= ; ( )( )22 2 2 24 4 4x y z x y zC Lρ ρ ρ ρ ρ ρ= + + − . 

The quadratic formula yields two solutions 

 
2 4 ; 1

2
B m B ACt m

A
− + −

= = ±  (15)  

that geometrically correspond to different locations of the target point P (see Fig. 6) with respect to the 

plane passing through the prismatic joint centres (it should be noted that the intersection point of the 

plane and the set of equidistant point corresponds to ( )0 2t B A= −  ). Hence, the Orthoglide direct 

kinematics is solved analytically, via the quadratic formula (14) for the auxiliary variable t and its 

substitution into expressions (12). 

The direct kinematic solution exists if and only if the joint variables satisfy the inequality 

2 4B AC≥ , which defines a closed region in the joint variable space  

 ( )( ){ }2 2 2 2 2 2 2| 4 1L x y z x y zLρ ρ ρ ρ ρ ρ− − −ℜ = + + − + + ≤ρ  (16)  

Taking into account the joint limits (2), the feasible joint space may be presented as 

 { }| , , 0L L x y zρ ρ ρ+ℜ = ∈ℜ >ρ  (17)  

Therefore, for the considered positive joint limits (2), the existence of the direct kinematic solutions may 

be summarised as follows: 
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• Inside the region L
+ℜ , there exist exactly two direct kinematic solutions, which differ by the 

target point location relative to the plane Π (Fig. 7a); 

• On the border of the region L
+ℜ  located inside the first octant, there exist a single direct 

kinematic solution, which corresponds to the “flat” manipulator configuration, where both the 

target point and prismatic joint centres belong to the plane Π (Fig. 7b). 

These conclusions may be illustrated by the following numerical examples (for the “unit” 

manipulator, L=1). Since the joint variables 0.3x y zρ ρ ρ= = =  are within L
+ℜ , then the end-point 

coordinates are either 0.46x y zp p p= = = −  or 0.66x y zp p p= = = − . In contrast, for the joint variables 

1.5x y zρ ρ ρ= = = , which are exactly on the surface L
+ℜ , the direct kinematics yields a single solution 

1 6x y zp p p= = =  corresponding to the “flat” configuration (see Fig. 7b). 

3.3.Configuration indices 

As follows from the previous sub-sections, both the inverse and direct kinematics of the Orthoglide 

may produce several solutions. The problem is how to define numerically the configuration indices, 

which allow choosing among the corresponding algorithm branches. 

For the inverse kinematics, when the configuration is defined by the angle between the leg and the 

corresponding prismatic joint axis, the decision equations for the configuration indices are trivial: 

 ( ) ( ) ( )sgn ; sgn ; sgn ;x x x y y y z z zs p s p s pρ ρ ρ= − = − = −  (18)  

Geometrically, 0s >  means that 3, ,
2 2x y z
π πθ θ θ ⎤ ⎡∈ ⎥ ⎢⎦ ⎣

(see Fig. 2). 

For the direct kinematics, the configuration is defined by the end-point location relative to the plane 

that passes through the prismatic joint centres (see Figs. 6-7). Hence, the decision equation may be 

derived by analysing the dot-product of the plane normal vector ( )1 1 1, ,x y zρ ρ ρ− − −  and the vector directed 

along any of the bar links (for instance, ( ), ,x x y zp p pρ−  for the first link): 
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 sgn 1yx z

x y z

pp pm
ρ ρ ρ

⎛ ⎞
= + + −⎜ ⎟⎜ ⎟

⎝ ⎠
 (19)  

which for the positive joint limits is equivalent to 

 ( )sgn x y z x y z x y z x y zm p p pρ ρ ρ ρ ρ ρ ρ ρ ρ= + + −  (20)  

It should be stressed that the feasible solutions for the inverse/direct kinematics, located in the 

neighbourhood of the “zero” point, have the following configuration indices: 1x y zs s s= = = +  and 1m =− . 

4. WORKSPACE ANALYSIS 

The robot workspace is an important criterion in evaluating manipulator performance.  

As follows from the equation (10), the Orthoglide workspace WL is composed of two fractions 

(Fig. 8): (i) the sphere SL of radius L and centre point (0, 0, 0), and (ii) the thin non-convex solid GL, 

which is located in the first octant and bounded by the surfaces of the sphere SL and the cylinder 

intersection CL. These surfaces can be generated by applying the following algorithm based on the 

expressions from Sub-Section 3.2: 

Algorithm 1. Orthoglide Workspace (3D Mesh) 
 Input: , θϕΔ Δ  (grid steps direction of angles ϕ, θ) 
 Output: X, Y, Z (2D arrays of 3D Face nodes) 
 for 0ϕ =  to 2π  step ϕΔ  
  for 2θ π= −  to 2π  step θΔ  
   cos cosxe ϕ θ= ; cos sinye ϕ θ= ; sinze ϕ=  

   if  (ex<0) or (ey<0) or (ez<0) 
    1k = ; 
   else 

    { }2 2 2 2 2 2max ; ;x y x z y zk e e e e e e= + + +  

   end if 
   ( ), xX e L kϕ θ = ; ( ), yY e L kϕ θ = ; ( ), zZ e L kϕ θ = ; 

  next θ 
 next ϕ 
 

where (ex, ey, ez ) are the components of a unit direction vector, which are expressed via two angles 

,ϕ θ . 
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It can be proved that the volume of CL, SL and WL is defined by the expressions 

 ( ) 3 3( ) 8 2 2 4.686LVol C L L= − ≈  (21a)  

 3 3( ) 2 2 0.062
6LVol G L Lπ⎛ ⎞= − − ≈⎜ ⎟

⎝ ⎠
 (21b) 

 3 37( ) 2 2 4.251
6LVol W L Lπ⎛ ⎞= + − ≈⎜ ⎟

⎝ ⎠
 (21c) 

As follows from (21), the Orthoglide with the joint limits (2) uses about 53% of the workspace PPPV  of 

its serial counterpart (a Cartesian PPP machine with 2 2 2L L L× ×  workspace). Also, the volume of GL 

( 30.062 L ) is insignificant in comparison with the volume of the sphere SL ( 34.189 L ), which is equal to 

52% of PPPV . On the other hand, releasing the lower joint limit ( 0ρ > ) leads to an increases the 

workspace volume of up to 59% of PPPV  only, since the volume of the workspace is, then, equal to LC . 

The mutual location of GL and SL (and their size ratio) may be also evaluated by the intersection 

points of the first octant bisector. In particular, for the sphere SL the bisector intersection point is located 

at distance 1 3 0.58≈  from the origin, while for the solid GL the corresponding distance is 

1 2 0.71≈  (assuming that L=1). Also, GL touches the sphere by its circular edges, which are located on 

the borders of the first octant. 

Therefore, the result of the workspace analysis may be summarised as follows: 

• The Orthoglide workspace WL is composed of two fractions, the sphere SL and the thin non-

convex solid GL;  

• Inside the sphere SL, there exists a single solution of the inverse kinematics, while within the 

solid GL there exist 8 such solutions;  

• The total volume of the workspace is about 4.25 L3 that comprises roughly 53% of the 

workspace of the corresponding serial machine with the same joint limits. 
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5. JOINT SPACE ANALYSIS  

The properties of the feasible jointspace are essential for the Orthoglide control, in order to avoid 

impossible combinations of the prismatic joint variables ρx, ρy, ρz, which are generated by the control 

system and are followed by the actuators. For serial manipulators, this problem does not usually exist 

because the jointspace is bounded by a parallelepiped and mechanical limitations of the joint values may 

be verified easily and independently. For parallel manipulators, however, one needs to check both (i) 

separate input coordinates (to satisfy the joint limits), and (ii) their combinations that must be feasible to 

produce a direct kinematic solution. 

As follows from Sub-Section 3.3, the Orthoglide jointspace L
+ℜ  is located within the first octant and 

is bounded by a surface, which corresponds to a single solution of the direct kinematics. Therefore, the 

jointspace boundary is defined by the relation 2 4B AC= (see equation (14)), which may be rewritten as 

 ( ) ( )2 2 2 2 2 2 24 1x y z x y zLρ ρ ρ ρ ρ ρ− − −+ + − + + =  (22) 

and solved for ρx assuming that ρy, ρz are known: 

 4 2 0x xD DE Eρ ρ+ + =  (23) 

where 2 2
y zD ρ ρ− −= + ; 2 2 24y zE Lρ ρ= + − . 

However, this equation is non-symmetrical with respect to , ,x y zρ ρ ρ  and, therefore, is not 

convenient the real-time control. An alternative way to obtain the jointspace boundary, which is more 

computationally efficient, is based on the conversion from Cartesian to spherical coordinates  

 ; ;x x y y z ze t e t e tρ ρ ρ= = =  (24) 

where t ≥ 0 is the length of the vector ρ, and (ex, ey, ez ) are the components of the unit direction vector, 

which are expressed via two angles ,ϕ θ :  

 cos cos ; cos sin ; sinx y ze e eϕ θ ϕ θ ϕ= = = .  

where ] ], 0, / 2ϕ θ π∈ . 

For such a notation, the original equation (22) is transformed into a linear equation for 2t  
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 ( ) 2 21 4F t L F− = ; 2 2 2
x y zF e e e− − −= + +  (25) 

with an obvious solution  ( )2 1t L F F= − . 

So, the boundary surface for the feasible joint space L
+ℜ  can be generated applying the following 

algorithm, where ε is a small positive number ( 0 2ε π< � ): 

Algorithm 2. Orthoglide Jointspace (3D Mesh)  
 Input: , θϕΔ Δ  (grid steps direction of angles ϕ, θ) 
 Output: xρ , yρ , zρ  (2D arrays of 3D Face nodes)  

 for ϕ ε=  to 2π ε−  step ϕΔ  
  for θ ε=  to 2π ε−  step θΔ  
   cos cosxe ϕ θ= ; cos sinye ϕ θ= ; sinze ϕ=  

   2 2 21 1 1x y zF e e e= + + ; ( )2 1t L F F= −  

   ( ),x xe tρ ϕ θ = ; ( ),y ye tρ ϕ θ = ; ( ),z ze tρ ϕ θ = ; 

  next θ 
 next ϕ 
 

The Orthoglide joint space is presented in Fig. 9. As follows from its analyses, the bounding surface 

is close to the 1/8th of the sphere S2L. At the edges, which are exactly quarters of the circles of the radius 

2L, the surface touches the sphere. However, in the middle, the surface is located out of the sphere. In 

particular, the intersection point of the first octant bisector is located at the distance 3 2 1.22≈  from 

the coordinate system origin for the jointspace border and at the distance 2 3 1.15≈  for the sphere S2L 

(assuming L=1). 

Hence, the result of the jointspace analysis may be summarised as follows: 

• The Orthoglide jointspace L
+ℜ  is located within the first octant and is bounded by the surface, 

which covers the sphere of radius 2L and is close to it; also, the boundary surface possesses 

circular edges that touch the sphere at the borders of the first octant; 

• Inside the jointspace, there exist two solutions of the direct kinematics, while on its outer 

boundary there is a single solution only.  
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6. ORTHOGLIDE SINGULARITIES 

Singularities of a robotic manipulator are important features that essentially influence its 

capabilities. From an engineering point of view, they are exposed as unusual robot behaviour, when the 

manipulator instantaneously loses or gains degrees of freedom, certain directions of motion are 

unattainable, or non-zero output motions exist while the actuators are locked. Mathematically, a singular 

configuration may be defined as ill-conditioning (or rank deficiency) of the Jacobian describing the 

differential mapping from the jointspace to the workspace  (or vice versa).  

For the Orthoglide, it is more convenient to express analytically the inverse Jacobian, which is 

derived in a straightforward way, by differentiating (3) with respect to px, py, pz :  

 ( )

2 2 2 2 2 2

1

2 2 2 2 2 2

2 2 2 2 2 2

1

1

1

x y x z

y z y z

y x y z

x z x z

z yz x

x y x y

s p s p
L p p L p p

s p s p

L p p L p p
s ps p

L p p L p p

−

⎡ ⎤− −⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥
⎢ ⎥− −

= ⎢ ⎥
− − − −⎢ ⎥

⎢ ⎥−−⎢ ⎥
⎢ ⎥− − − −⎢ ⎥⎣ ⎦

J p  (26)  

Taking into account the relations between the input and the output variables, the inverse Jacobian 

can be also expressed as  

 ( )1

1

, 1

1

y z

x x x x

x z

y y y y

yx

z z z z

p p
p p

p p
p p

pp
p p

ρ ρ

ρ ρ

ρ ρ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

J p ρ  (27)  

that corresponds to the Orthoglide Jacobian presentation proposed by Chablat and Wenger12,13. Using 

(26), the Jacobian determinant may be expressed as 

 ( ) ( )( )( )
1det x y z x y z x y z x y z

x x y y z z

p p p
p p p

ρ ρ ρ ρ ρ ρ ρ ρ ρ
ρ ρ ρ

− + + −
=

− − −
J  (28)  
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To perform the analysis, let us distinguish two cases, det( ) 0=J  and 1det( ) 0− =J , corresponding to 

different types of the singularities. 

If det( ) 0=J  (serial, or inverse kinematic singularity), the mapping from the joint velocity space to 

the tool velocity space is ill-conditioned. It means that certain directions of motion are unattainable and 

the manipulator loses at least one degree of freedom. The corresponding relations between the 

manipulator variables are: 

 ( ) ( ) ( )or orx x y y z zp p pρ ρ ρ= = =  (29)  

 0x y z x y z x y z x y zp p pρ ρ ρ ρ ρ ρ ρ ρ ρ+ + − ≠  (30)  

Geometrically, this type of singularity corresponds to the orthogonal orientation of the parallelogram 

links relative to the relevant prismatic joint axes (i.e. px=ρx, θx=π/2, etc.; see Fig. 2) and the work point P 

is located on the corresponding surface of the cylinder CL. As follows from the workspace analysis, such 

points belong to the external border of the thin non-convex solid GL (Fig. 10, singularity “a”).  

If 1det( ) 0− =J  (parallel, i.e. direct kinematic singularity), the mapping from the tool velocity space 

to the joint velocity space is ill-conditioned. It means that the manipulator loses instantaneously its 

stiffness and certain output motion may exist while the actuators are locked. The corresponding relations 

between the Orthoglide variables are derived from the numerator of (27): 

 0x y z x y z x y z x y zp p pρ ρ ρ ρ ρ ρ ρ ρ ρ+ + − =  (31)  

 ( ) ( ) ( )and andx x y y z zp p pρ ρ ρ≠ ≠ ≠  (32)  

Let us analyse (31) using the direct kinematic solution derived in sub-section 3.2. If the joint variables 

are non-zero ( , , 0x y zρ ρ ρ ≠ ), then substitution of (12) into (31) gives the following equation in the 

auxiliary variable t 

 1 0
2

x y y zx z
x y z

z y x

t
ρ ρ ρ ρρ ρρ ρ ρ

ρ ρ ρ
⎛ ⎞

+ + + =⎜ ⎟⎜ ⎟
⎝ ⎠

, (33)  

with a root  
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( )

( )

2

0 2 2 2 2 2 22
x y z

x y x z y z

t
ρ ρ ρ

ρ ρ ρ ρ ρ ρ
= −

+ +
, (34)  

which exactly corresponds to ( )0 2t B A= − , i.e. to the single solution case of the direct kinematics (see 

Eq. (15) ). In the opposite case, when at least one of the joint variables is equal to zero, there exist a 

number of other singularity points that belong to the sphere SL boundary 0 L− =p p . 

Geometrically, hence, the direct kinematic singularity may be subdivided into two sub-cases. The 

first of them corresponds to the “flat” manipulator configuration, when the target point and centres of the 

prismatic joints belong to the same plane (Fig 10, singularity “b”). The second one corresponds to the 

“bar” configuration, when all three links are parallel to each other (Fig 10, singularity “c”), i.e. the links 

are aligned for the simplified model used in this paper, or “half-bar” posture, when two of three links are 

aligned. 

Using these results, let us investigate in detail singularities, which occur on the sphere SL boundary, 

positive 1/8 part of which is located inside of the Orthoglide workspace and the remaining 7/8 bounds 

the manipulator workspace (see Fig. 10). Since the corresponding Cartesian coordinates satisfy the 

equation Lppp zyx =++ 222 , the inverse kinematics (3) yields eight solutions, which may be expressed as 

xxx pp ±=ρ ; xxx pp ±=ρ ; xxz pp ±=ρ . These solutions are summarised in Table 1, which also 

contains expressions for the inverse Jacobian determinant derived from (28). It should be noted that the 

solutions 82 ρρ K  are feasible only for the positive workspace octant 0>zyx p,p,p  (otherwise, the 

constraints on the joint variables (2) are violated), while the first (“bar” posture) solution 1ρ  is feasible 

throughout the whole sphere SL boundary. Besides, as follows from the Table 1, some points of the SL 

boundary demonstrate an interesting feature: simultaneous occurrence of the direct and inverse 

singularities. This feature occurs for the quarters of the circles ( )αα= sinL,cosL,0p , 

( )0,sinL,cosL αα=p , ( )αα= sinL,,cosL 0p , [ ]20 π∈α , , where the solutions 765 ρρρ ,,  create 

specific cases of the “flat posture” where one of the links is orthogonal to its joint axis. However, it is 

worth observing that only 1/8 of the SL boundary belongs to the workspace (see Fig. 10). It should be 
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stressed that the analytical expression for the singularity points (px, py, pz) may be derived directly from 

(3), (31) and rewritten as  

 
2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2 x y z x y x y x z x z y z y z

x y x z y z

p p p p p L p p p p L p p p p L p p

L p p L p p L p p

+ − − + − − + − − =

= − − ⋅ − − ⋅ − −
 (35)  

However, it is very tedious and not convenient for practical applications. For this reason, the singularity 

surface (Fig. 11) may be generated numerically, using the following algorithm: 

Algorithm 3. Orthoglide Singularity Surface (3D Mesh)  
 Input: , θϕΔ Δ  (grid steps direction of angles ϕ, θ) 
 Output: X, Y, Z  (2D arrays of 3D Face nodes)  
 for ϕ ε=  to 2π ε−  step ϕΔ  
  for θ ε=  to 2π ε−  step θΔ  
   cos cosxe ϕ θ= ; cos sinye ϕ θ= ; sinze ϕ=  

   2 2 21 1 1x y zF e e e= + + ;  ( )2 1t L F F= −  

   ( ) ( )2 2 2 2 2 2 2
0 2x y z x y x z y zt e e e e e e e e e= − + +  

   ( ) ( )0, 2x xX e t e tϕ θ = + ⋅ ; ( ) ( )0, 2y yY e t e tϕ θ = + ⋅ ; ( ) ( )0, 2z zZ e t e tϕ θ = + ⋅  

  next θ 
 next ϕ 
 

As follows from the analysis, the “flat” singularity surface is located inside the sphere SL and, at the 

edges, which are quarters of the circles of radius L, the surface touches the sphere. In particular, the 

intersection point of the first octant bisector is located at the distance 1 6 0.41≈  from the origin for the 

singularity surface and at the distance 1 3 0.58≈  for the sphere SL (assuming that L=1). For the “bar” 

singularity, it is obvious that the corresponding points are located on the sphere SL. 

For design purposes, it is also useful to evaluate workspace properties along specific directions or 

within specific cutting planes. Such plots are presented in Figs. 12, 13. The first of them (Fig. 12) 

illustrates the location of characteristic points along the bisector line x y zp p p= = , 

 1 2

3 4

1 3 0.58 ; 1 6 0.41 ;

1 3 0.58 ; 1 2 0.71 .

= − ≈ − = ≈

= ≈ = ≈

p e e p e e

p e e p e e
 (36)  
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which are expressed via the unit vector ( )1, 1, 1=e . The second illustration (Fig. 13) shows the 

evolution of the Jacobian determinant ( )det J  while the manipulator is moving along this line. As 

follows from the analysis, it is prudent to limit the workspace by the parallel singularity surface (see 

Fig. 11) that extracts a fraction (of about 4.8%) of the sphere SL (Fig. 14), so the total volume reduces up 

to 4.07 L3. This conclusion is also confirmed by Fig. 15, which shows the evolution of the inverse 

condition number14 of the Jacobian ( ) 1cond −J  for the workspace horizontal sections. 

Hence, results for the singularity analysis may be summarised as follows: 

• The Orthoglide workspace includes two types of singular positions that cause degeneration of 

the inverse/direct kinematic relations; they may be identified as ( )det 0=J  and ( )1det 0− =J ; 

• The first type (serial, or inverse kinematic singularity), for which ( )det 0=J , corresponds to the 

orthogonal orientation of the parallelogram links relative to the prismatic joint axes; such 

positions are located on the external border of the set GL; 

• The second type (parallel, or direct kinematic singularity), for which ( )1det 0− =J , may be 

subdivided into 2 sub-cases: 

(i) “flat” manipulator configuration, when the target point and centres of the prismatic joints 

belong to the same plane; such positions are located on the surface, which is located 

inside the sphere SL and touches it at the edges; 

(ii) “bar” manipulator configuration, when all three links are aligned; such positions are 

located on the sphere SL.  

• For practical applications, the workspace should include only singularity-free points, which 

belong to the part of the sphere SL with volume 4.07 L3  that is bounded by the parallel 

singularity surface in the first octant (see Fig. 14); such workspace reduction from 53% to 51% 

of PPPV  also ensures the unique inverse/direct kinematics with the configuration indices  

1x y zs s s= = =  and  1m = −  respectively. 
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7. CONCLUSIONS  

This paper focuses on the kinematics and workspace analysis of the Orthoglide, a 3-DOF parallel 

mechanism with a kinematic behaviour close to the conventional Cartesian machine. In contrast to the 

previous works, the joint variables are assumed to be subject to the specific manufacturing constraints. It 

leads to essential revising of the manipulator workspace structure, which becomes non-symmetric and 

has less inverse kinematics solutions. Also, we have proposed a formal definition of the configuration 

indices and new simple analytical expressions for the Orthoglide inverse/direct kinematics. We have 

provided algorithms to compute the Cartesian workspace, the joint space and the singular configuration 

surface. 

It was proved that, for the considered joint limits, the Orthoglide workspace is composed of two 

fractions, the sphere and a thin non-convex solid in which there are 1 and 8 inverse kinematic solutions, 

respectively. The total workspace volume comprises about 53% of the corresponding serial machine 

workspace, where over 52% belongs to the sphere (for comparison, releasing of the joint limits yields to 

an increase of up to 59% in the workspace volume). It is also showed, that the Orthoglide jointspace is 

bounded by surface with circular edges, which is more convex than the sphere but is rather close to it. 

Within the jointspace, there exist exactly two direct kinematic solutions, while on the boundary surface 

there is only one solution.  

The Orthoglide workspace includes two types of singular positions that cause degeneration of the 

inverse/direct kinematic relations. The first type (serial, or inverse one), corresponds to the orthogonal 

orientation of the parallelogram links relative to the prismatic joint axes; such positions are located on 

the external border of the thin non-convex solid. The second type (parallel, or direct one), may be 

subdivided into 2 sub-cases: (i) the “flat” manipulator configuration, when the end-point and centres of 

the prismatic joints belong to the same plane; and (ii) the “bar” manipulator configuration, when all 

three links are aligned. For the flat configuration, the workspace points are located inside the sphere, 

while for the bar configuration they belong to the sphere surface. For real-life applications, only the 

singularity-free region of the workspace should be used. This volume represents 97.2% of the sphere and 

is bounded by the “flat” singularity surface in the first octant. 
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These results can be further used for the optimisation of the Orthoglide parameters, which is the 

subject of our future work. 
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FIGURES 

 

 

Fig. 1. Orthoglide kinematic architecture. 
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Fig. 2. Orthoglide geometrical model . 
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Fig. 3. Feasible and non-feasible “zero” configurations. 

 

 

 

  

  

Fig. 4. Feasible regions for separate constraints (2D example)  
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Fig. 5. Feasible regions for simultaneous constraints (2D example)  

 

x y

z

L

LL

ρxρy

ρz

(ρx, ρy, ρz)/2

p

Equidistant

Π

 

Fig. 6. Geometrical solution of the direct kinematics. 
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Fig. 7. Double (a) and single (b) solutions of the direct kinematics. 
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Fig 8. Orthoglide workspace. 

 

 

 

Fig 9. Feasible joint space. 

 

 

Fig. 10. Geometrical interpretation of the singularities. 
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Fig. 11.  Parallel (“flat”) singularity surface. 

 

 

Fig. 12. Cross-section of the workspace ( x yp p=  ; 2 2
x yr p p= + ). 

 

 

Fig. 13. Evolution of the ( )det J  in the bisector direction (for multiple solutions, 

 the determinants differ only by the sign). 
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Fig. 14. Orthoglide singularity-free workspace (97.2% of the sphere). 
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Fig. 15. Evolution of the ( ) 1cond −J  for the horizontal sections. 

pz=0.00 pz=0.85 
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Table 1. Orthoglide postures for the boundary of the sphere SL boundary.  

Joint coordinates, ρ Inverse Jacobian 1det( )−J  Posture & singularities 

 

( )0001 ,,=ρ  

 

zyx ppp
0  

“bar” posture  (three legs are aligned) 

direct singularity (all cases), inverse singularity  

(only if 0=xp  or 0=yp or 0=zp ) 

( )0022 ,,px=ρ  

( )0203 ,p, y=ρ  

( )zp,, 2004 =ρ  

 

zyx ppp−
0  

“half-bar” posture (two legs are aligned) 

direct singularity (all cases), inverse singularity  

(only if 0=xp  or 0=yp or 0=zp ) 

( )0225 ,p,p yx=ρ  

( )zx p,,p 2026 =ρ  

( )zy p,p, 2207 =ρ  

 

zyx

zyx

ppp
ppp4

 

non-singular general posture if  

0≠xp  and 0≠yp and 0≠zp ) 

“flat” singular posture (both inverse and direct)  if 

0=xp  or 0=yp  or 0=zp ) 

( )yyx p,p,p 2228 =ρ
 zyx

zyx

ppp
ppp

−

4
 

non-singular general posture if  

0≠xp  and 0≠yp and 0≠zp ) 

described above singular case,  

if 0=xp  or 0=yp  or 0=zp   
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FIGURE CAPTIONS 

Fig. 1. Orthoglide kinematic architecture 

Fig. 2. Orthoglide geometrical model . 

Fig. 3. Feasible and non-feasible “zero” configurations. 

Fig. 4. Feasible regions for separate constraints (2D example)  

Fig. 5. Feasible regions for simultaneous constraints (2D example)  

Fig. 6. Geometrical solution of the direct kinematics . 

Fig. 7. Double (a) and single (b) solutions of the direct kinematics. 

Fig 8. Orthoglide workspace. 

Fig 9. Feasible joint space. 

Fig. 10. Geometrical interpretation of the singularities. 

Fig. 11.  Parallel (“flat”) singularity surface. 

Fig. 12. Cross-section of the workspace ( x yp p=  ; 2 2
x yr p p= + ). 

Fig. 13. Evolution of the ( )det J  in the bisector direction. 

Fig. 14. Orthoglide singularity-free workspace  (97.2% of the sphere). 

Fig. 15. Evolution of the ( ) 1cond −J  for the horizontal sections. 


