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Abstract— In general, most of communication satellites were designed to be 

operated in geostationary orbit. And many of them were designed in prolate dual-spin 
configuration. As a prolate dual-spin vehicle, they have to be stabilized against their 
internal energy dissipation effect. Several countries that located in southern hemisphere, 
has shown interest to use communication satellite. Because of those countries’ southern 
latitude, an idea emerged to incline the communication satellite (due to its prolate dual-
spin configuration) in elliptical orbit. This work is focused on designing Attitude Stability 
System for prolate dual-spin satellite in the effect of perturbed field of gravity due to the 
inclination of its elliptical orbit. DANDE (De-spin Active Nutation Damping Electronics) 
provides primary stabilization method for the satellite in its orbit. Classical Control 
Approach is used for the iteration of DANDE parameters. The control performance is 
evaluated based on time response analysis. 
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Abstrak— Secara umum kebanyakan satelit komunikasi dirancang untuk 
beroperasi pada orbit geostasioner. Dan kebanyakan dari satelit tersebut dirancang 
pada konfigurasi dual-spin prolate. Sebagai wahana dual-spin prolate, satelit harus 
distabilkan dari pengaruh disipasi energi internal. Beberapa negara yang terletak pada 
belahan selatan bumi telah menunjukkan minatnya untuk menggunakan satelit 
komunikasi. Karena letak negara yang berada di latituda selatan, sebuah ide muncul 
untuk menginklinasi satelit pada orbit eliptik. Makalah ini secara khusus membahas 
perancangan sistem stabilitas sikap untuk satelit dual-spin prolate pada pengaruh medan 
gravitasi terganggu akibat inklinasi dari orbit elipsik wahana. DANDE (De-spin Active 
Nutation Damping Electronics) memberikan metoda penstabilan utama pada satelit pada 
orbitnya. Pendekatan kendali klasik digunakan pada iterasi parameter DANDE. Unjuk 
kerja kendali dievaluasi berdasarkan analisis respons waktu.  
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1. INTRODUCTION 
For a stability criterion, most of early 

dual-spin vehicles were designed in an 
oblate configuration. 

However, Kaplan [8] states that launch 
vehicle shroud constraints limited rotor 
diameters. In addition, the major axis 
stability condition effectively limited 
spinning spacecraft sizes. Since U.S. Air 
Force successfully by-passed this 
limitation by operating TACSAT, many of 
prolate spinners were launch to orbit. The 
first communication dual-spin satellite in 
prolate configuration is INTELSAT IV. 

As a case of study, this work used 
Palapa B2R physical data to design 
feedback control parameters for the 
attitude stability system. Near the 
satellite’s End of Life (EOL) time, several 
governments of Africans and Polynesians 
countries have shown interest to buy and 
re-use Palapa B2R. Because of those 
countries’ location in the southern 
latitudes, an idea emerged to incline the 
satellite’s orbit. 

When Palapa B2R is operating in its 
orbit, DANDE (De-spin Active Nutation 
Damping Electronics (Ref. [2] pp. 62-68, 
[1] pp. 127-129, [4], [5])) provides 
primary stabilization method for the 
vehicle, while ANC (Active Nutation 
Control (Ref. [1])) supplies the back-up 
mode. With the use of DANDE as the 
stabilization mode, the current paper 
elaborates the tuning of the feedback 
control parameters using classical control 
approach. 

 
2. REFERENCE COORDINATE 

SYSTEM 
The reference coordinate systems used 

in describing the satellite are the body, 
stability and inertial axes. Ref [9] provides 
the definition and illustration of those axes 
in detail.  Body Axes with their origin at 
the satellite’s c.g. while Error! Reference 
source not found. showed the axes in the 
space, as explained in Ref [9]. 

 

 
 
 
 

 
Fig. 1 Stability Reference Coordinate System 
 

In particular, the Stability Reference 
Coordinate System (Stability Axes) is 
defined as a set of local horizon axes for 
the satellite. It is a target axes for the 
satellite’s Body Axes to point its antennae 
to the Earth. The stability axes is 
presented in Fig. 1. 
 
3. EULER ANGLES 

(ORIENTATION ANGLES) 
The orientation of satellite in space 

with respect to a certain reference 
coordinate system is described by the 
Euler angles. Fig.  describes the attitude of 
the satellite with respect to the Inertial 
Axes. 

 
 

 
Fig. 2 Orientation of Body Axes in Inertial Axes 

 
 



 

  

 
The more complete explanation of the use 
of Euler angles in describing satellite 
orientation is explained in Ref [9]. 

 
 

4. STATE SPACE MODEL of 
PROLATE DUAL SPIN 
SATELLITE in INCLINED 
ELLIPTICAL ORBIT 

In order to stabilize its attitude and 
pointing direction, Palapa B2R uses its 
rotor spinning. Control moments were 
produced by the angular acceleration and 
deceleration of the rotor’s spin. The 
satellite’s motion in the yaw mode is 
coupled with its roll mode. In addition, the 
satellite’s motion in the pitch mode is 
coupled with its yaw mode. With those 
couples, the satellite’s attitude can be 
controlled by the angular acceleration and 
deceleration of the rotor that spun in pitch 
mode. 

In Ref [9], the authors derive State 
Space Model for Dual-Spin Satellite in 
Stability Axes as follows, 
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Eq. 1 

where the [A] and [B] matrices are: 
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By defining ∆I as follows,  
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where n = orbital angular velocity, shown 
in Fig. 1. 

 



 

  

Fig. 1 Rotation of Local Horizon Axes (Stability 
Axes), n 

 
5. CONTROL STRATEGY 

In elliptic and inclined orbit, the 
satellite attitude dynamics acts as a time-
varying system. The value of A14, A25, A35 
and δn will be time-varying for elliptical 
or inclined orbit. However, the elements 
of [A] are constant value only for circular 
orbit at equatorial plane. Therefore, to 
apply Classical Control Approach, the 
iteration for control parameter was held in 
equatorial and circular orbit.   

5.1. Control Strategy for 
Longitudinal Motion 

 

Fig. 
2 Response of θS without Gravity Gradient 

Moment Effect 

 
Fig. 3 Response of θS in Gravity Gradient 

Moment Effect 
 

F
ig. 2 is θS response in equatorial orbit 
without Gravity Gradient Moment. Fig. 3 
is θS response in equatorial orbit in 
Gravity Gradient Moment Effect.  

The comparison from θS response in 
elliptic orbit at 



 

  

Fig. 
2 and Fig. 3 showed that, “Gravity 
Gradient Moment tends to stabilize 
longitudinal motion of the prolate dual-
spin satellite.” 

Therefore, to simplify the iteration 
process of longitudinal control parameter, 
the authors omit the Gravity Gradient 
Moment terms in [A] matrix elements. 
The valueA14, A25, and A35 are set to zero. 
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Eq. 2 

The value of and [B]’s elements are:  



























×
×−

=
−

−

00
10
00
0107735.1
0101218.5
00

5

4

B

 

Eq. 3 

For q-feedback, the damping values are 
too small for harmonics oscillation modes. 
The author uses θS-feedback for 
longitudinal controlling shown in Fig. 4. 
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Fig. 4 θS-feedback Diagram 
 

For θS-feedback shown in Fig. 4, the 
root locus diagram is 

 

 
Fig. 5 Root-Locus for θS-feedback with Kθ < 0 

 
To increase the damping ratio for 

harmonics oscillation modes, the authors 
design a compensator. The authors start 
with a pole placement at 

1
1
+s

  (or spc=-1), 

then place a zero to push the harmonics 
oscillation poles more to the left.  

With a zero placement at s+0.2, the 
locus is: 

 
 

Fig. 6 R-Locus, θS, compensated, with s+0.2/s+1 
With a zero placement at s+0.46, the 

locus is: 



 

  

 
Fig. 7 R-Locus, θS, compensated, with s+0.46/s+1 

With a zero placement at s+0.4819, the 
locus is: 

 
Fig. 8 R-Locus, θS, compensated, with 

s+0.4819/s+1 
 
With a zero placement at s+0.5210, the 

locus is: 
 

 
Fig. 9 R-Locus, θS, compensated, with 

s+0.5210/s+1 
 
By detail, the compensator was chosen 

as follows 
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with Root Locus Diagram (negative 
feedback for Fig. 4), 

 
 

 
Fig. 10 R-Locus, θS, compensated, with 

s+0.498/s+1 
 

 
Fig. 11 Zoom for harmonic oscillation locus 

(upper) 
 

 



 

  

 
 

Fig. 12 Zoom for coalescent/breakaway point 
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Fig. 13 Longitudinal Controlling Diagram by θS-
feedback 

The iteration result for longitudinal 
controlling is θS-feedback, shown in Fig. 
13, with gain 
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5.2. Control Strategy for Lateral 
Motion 

 

 
Fig. 14 Response of φS without Gravity 

Gradient Moment Effect 

 

 
Fig. 15 Response of φS in Gravity Gradient 

Moment Effect 
 

Fig. 14 is φS response in equatorial orbit without 
Gravity Gradient Moment.  

Fig. 15 is φS response in equatorial 
orbit in Gravity Gradient Moment Effect.  

The comparison from θS response in 
elliptic orbit at  

Fig. 14 and  
Fig. 15 showed that, “Gravity Gradient 

Moment tends to de-stabilize lateral 
motion of the prolate dual-spin satellite.” 

Therefore, the iteration processes of 
lateral control parameter should included 
the Gravity Gradient Moment terms in [A] 
matrix elements. The value A14, A25, and 
A35 are non-zero, 
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Eq. 6 

and the value of and [B]’s elements as in  
Eq. 3.  

For p-feedback as lateral controlling 
(shown in Fig. 16), 
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Fig. 16 p-feedback Diagram 

 
 
the Root Locus Diagram is 

 
Fig. 17 Root-Locus for p-feedback with Kp > 0 

To push the divergence pole across 
imaginary axis, negative p-feedback 
applied results the Root Locus Diagram: 

Pushing the divergence pole to the left 
side imaginary axis will destabilize the 
harmonic oscillation modes. Once again, 
the author design a compensator for p-
feedback.  

 
Fig. 18 Root-Locus for p-feedback with Kp < 0 

By trial ‘n error with sisotool in 
MATLAB®, the compensation function is, 
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Eq. 7 

 and the Root Locus Diagram becomes 



 

  

 
Fig. 19 Root-Locus for p-feedback compensated 

with Kp > 0 

 
Fig. 20 Root-Locus for p-feedback compensated 

with several critical gains 

 
 

Fig. 21 Root-Locus for p-feedback compensated 
gain margin 

 
The iteration result for lateral 

controlling is p-feedback, shown in Fig. 
22, with gain 
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Fig. 22 Lateral Controlling Diagram by p-
feedback 

5.3. Control Strategy for 
Directional Motion 

Because of the coupled between lateral 
and directional motion, the Gravity 
Gradient Moment Effects are also 
included in the iteration for Directional 
Control Parameters.  

With [A] matrix elements showed in 
Eq. 6 and the value of and [B]’s elements 
as in Eq. 3, for the r-feedback as 
directional controlling (shown in Fig. 23), 
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Fig. 23 r-feedback Diagram 

the Root Locus Diagram is 



 

  

 
Fig. 24 Root-Locus for r-feedback with Kr > 0 
 

 
Fig. 25 Zoom for Root-Locus for r-feedback with 

several critical gains 

 
 

Fig. 26 Zoom for Root-Locus for r-feedback with 
breakaway gain 

To increase the damping value for 
harmonic mode, the authors use directly 
the Open Loop Root Locus and choose the 
gain as constant. The directional 
controlling is r-feedback, shown in Fig. 
27, with gain 

000 300=rK  

Eq. 9 
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Fig. 27 Directional Controlling Diagram by r-

feedback 
 
 

6. INTERPRETATIONS of CLOSED 
LOOP SIMULATION RESULTS  

To evaluate the performance of the 
Attitude Control System, numerical 
simulations conducted with Simulink from 
Matlab 6.5. 

The effect of the orbit’s eccentricity, e, 
were induced with the variation of orbital 
drift rate in Stability Axes, δn together 
with variation of satellite’s distance from 
the center of the Earth, R. Inclination of 
orbit will effect the simulation due to the 
variation of RZI, the Z-Axis component of 
satellite’s position vector in Inertial Axes. 
Attitude controlling was done with the 
deviation of armature voltage in the de-
spin motor, δe, from its stationer value. 
The reference input is the command 
signal, δeref . 

This paper only reports simulation 
results on Euler Angles since the most 
important thing in Satellite’s Attitude 
Stability is to keep pointing error under 
pointing budget and to reduce any 
nutation angle. 

For clarity in presenting diagrams and 
graphics, the concept of simulation 
programming and the Euler angles 
graphics are presented in Appendices. The 
concept of simulation programming 
diagrams describe simulation algorithm of 
the controlled dual-spin satellite in each 
mode. 



 

  

6.1. Simulation in Longitudinal 
Controlled Mode 

The results of attitude dynamics 
simulation (Fig. 28) show good damping 
characteristics when responding to the 
doublet input. 

6.1.1. Effect of Eccentricity in 
Inclined Orbit (i = 30°) 

Graphical interpretation for Effect of 
Eccentricity in Inclined Orbit for θS (Fig. 
29 and Fig. 30): Longitudinal controlling 
reduced θS deviation amplitude –1.5° into 
damped oscillation with amplitude 0.01° 
in s 30 . The subsidence mode of θS 
deviation becomes oscillation mode with 
damping time s 60± . For 10 orbit period  
( s 2256.77 ) the long periodic oscillation 
mode of θS were oscillating regularly from 

6102 −×−  to deg 106 6−×+ . 

6.1.2. Effect of Inclination in 
Elliptic Orbit (e = 0.2) 

Graphical interpretation for Effect of 
Inclination in Elliptic Orbit for θS (Fig. 31 
and Fig. 32): Inclination increment will 
give random effect to θS in order to 

deg 10 12−  for s 500 . For 10 orbit period  
( s 2256.77 ), the increment of inclination 
has no effect on the response of θS. 

 

6.2. Simulation in Lateral Mode 
The results of attitude dynamics 

simulation (Fig. 33) show good damping 
characteristics when responding the 
doublet input. 

6.2.1. Effect of Eccentricity in 
Inclined Orbit (i = 30°) 

Graphical interpretation for Effect of 
Eccentricity in Inclined Orbit for φS (Fig. 
34 and Fig. 35): Lateral controlling 
reduced roll librations mode of φS with 
amplitude deg 101 3−× becomes damped 
oscillation mode with maximum 
amplitude deg 101 4−×  with damping 
time s 52 . The increment of eccentricity 

induced long period oscillation modes of 
φS with smaller amplitude from its open-
loop values (open-loop: 3104 −×−  to 

deg 106 3−×+ ). This mode oscillates 

from 3105.1 −×−  to deg 105.1 3−×+ .. 

6.2.2. Effect of Inclination in 
Elliptic Orbit (e = 0.2) 

Graphical interpretation for Effect of 
Inclination in Elliptic Orbit for φS (Fig. 36 
and Fig. 37): In s 500  of simulation, the 
inclination increment from 0° to 30° will 
amplify the φS deviation amplitude to 

deg 105.1 8−× . For simulation time in 
order of orbital periode, the increasing of 
inclination from 0° to 30° will amplify the 
amplitudes of long period oscillation 
mode of φS for deg 102 8−×± . 

 

6.3. Simulation in Directional Mode 
The results of attitude dynamics 

simulation (Fig. 38) show good damping 
characteristics when responding the 
doublet input. 

6.3.1. Effect of Eccentricity in 
Inclined Orbit (i = 30°) 

Graphical interpretation for Effect of 
Eccentricity in Inclined Orbit for ψS (Fig. 
39 and Fig. 40): Directional controlling 
reduced the yaw librations mode of ψS and 
changing it into non-oscillatory mode. The 
ψS response followed the doublet input in 
command signal δeref. The orbit 
eccentricity can be seen since s 200  and 
deviates ψS to deg 104 7−×+  at s 500 .  
The orbit eccentricity also develops the 
undamped mode of long period 
oscillation. The long period oscillation 
mode of ψS oscillates from 3105.5 −×−  to 

deg 106.1 3−×+  in order of orbital 
period. This deviation still under Palapa 
B2R pointing error, N-S: 0.047° and E-W: 
0.047° Ref. [5]. 

 



 

  

6.3.2. Effect of Inclination in 
Elliptic Orbit (e = 0.2) 

Graphical interpretation for Effect of 
Inclination in Elliptic Orbit for ψS (Fig. 41 
and Fig. 42): For s 500  simulation the 
increment of inclination from 0° to 30° 
will amplify the amplitude of ψS deviation 
to deg 105.1 10−× . For simulation time in 
the order of orbital period the increment 
of inclination from 0° to 30° will effects 
the amplitude of long period oscillation 
mode of ψS from 51075.0 −×−  to 

deg 105.0 5−×+ . 
 
 

7. CONCLUDING REMARKS 
In Closed-Loop simulation, the 

feedback parameter successfully improved 
the stability of satellites attitude from 
impulsive perturbation. Because of 
controlling, pitch librations on θS can be 
damped <60s, roll librations on φS can be 
damped <30s, and yaw librations on ψS 
can be damped <30s. 

Longitudinal controlling with θS-
feedback also successfully reduces the 
effect of eccentricity. In elliptic orbit, the 
amplitude of θS oscillation reduced from 

o20−  to o90+  becomes 0° (±100%).  
Lateral controlling with p-feedback 

also reduces the effect of eccentricity. In 
elliptic orbit, the amplitude of φS 
oscillation reduced from deg 104 3−×−  
to deg 106 3−×+  becomes 

deg 105.1 3−×−  to deg 105.1 3−×+ . 
Directional controlling with r-feedback 

also cannot reduce the effect of 
eccentricity, but the deviation can be 
tolerated. In elliptic orbit, the amplitude of 
ψS is oscillating from deg 106 3−×−  to 

deg 102 3−×+ . (Pointing error N-S: 
0.047° & E-W: 0.047°, Ref. [7]). 

The increment of inclination, i, has no 
effect on longitudinal controlled motion in 
the dual-spin satellite. However, 
increasing the inclination of orbital plane, 
i, can amplify the amplitude of long 

period oscillation modes in φS-controlled 
and ψS-controlled. 
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8. APPENDICES 

8.1. Simulation in Longitudinal Mode 
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Fig. 28 Attitude Dynamics Simulation Diagram in Longitudinal Mode 

 

8.1.1. Effect of Eccentricity in Inclined Orbit (i = 30°) 
 Plot of θS because impulsive input δeref 

 
Fig. 29 Plot of θS; input δeref ; i=30deg 



 

  

 
 

 Plot of θS because elliptic orbital drift input δn 

 
Fig. 30 Plot of θS; input δeref ; i=30deg 

 
 

8.1.2. Effect of Inclination in Elliptic Orbit (e = 0.2) 
 Plot of θS because impulsive input δeref 

 
Fig. 31 Plot of θS; input δeref ; e = 0.2 

 



 

  

 
 Plot of θS because elliptic orbital drift input δn 

 
Fig. 32 Plot of θS; input δeref ; e = 0.2; 10 Periode 

 



 

  

8.2. Simulation in Lateral Mode 
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Fig. 33 Attitude Dynamics Simulation Diagram in Lateral Mode 

 

8.2.1. Effect of Eccentricity in Inclined Orbit (i = 30°) 
 Plot of φS because impulsive input δeref 

 
Fig. 34 Plot of φS; input δeref ; i=30deg 



 

  

 
 Plot of φS because elliptic orbital drift input δn 

 
Fig. 35 Plot of φS; input δeref ; i=30deg 

 
 

8.2.2. Effect of Inclination in Elliptic Orbit (e = 0.2) 
 Plot of φS because impulsive input δeref 

 
Fig. 36 Plot of φS; input δeref ; e = 0.2 

 



 

  

 Plot of φS because elliptic orbital drift input δn 

 
Fig. 37 Plot of φS; input δeref ; e = 0.2; 10 Periode 

 
 

8.3. Simulation in Directional Mode 
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Fig. 38 Attitude Dynamics Simulation Diagram in Directional Mode 

 

8.3.1. Effect of Eccentricity in Inclined Orbit (i = 30°) 
 Plot of ψS because impulsive input δeref 



 

  

 
Fig. 39 Plot of ψS; input δeref ; i=30deg 

 
 
 
 

 Plot of ψS because elliptic orbital drift input δn 

 
Fig. 40 Plot of ψS; input δeref ; i=30deg 

 
 
 



 

  

8.3.2. Effect of Inclination in Elliptic Orbit (e = 0.2) 
 Plot of ψS because impulsive input δeref 

 
Fig. 41 Plot of ψS; input δeref ; e = 0.2 

 
 

 Plot of ψS because elliptic orbital drift input δn 

 
Fig. 42 Plot of ψS; input δeref ; e = 0.2; 10 Periode 

 


