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Spatial planning with constraints on translational
distances between geometric objects∗
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Abstract
The main constraint on relative position of geometric objects, used in spatial planning

for computing the C-space maps (for example, in robotics, CAD, and packaging), is the
relative non-overlapping of objects. This is the simplest constraint in which the minimum
translational distance between objects is greater than zero, or more generally, than some
positive value. We present a technique, based on the Minkowski operations, for generating
the translational C-space maps for spatial planning with more general and more complex
constraints on the relative position of geometric objects,such as constraints on various types
(not only on the minimum) of the translational distances between objects. The developed
technique can also be used, respectively, for spatial planning with constraints on transla-
tional distances in a given direction, and rotational distances between geometric objects, as
well as for spatial planning with given dynamic geometric situation of moving objects.

Keywords: Spatial planning, Configuration space, Minkowski operations.

1 Introduction

Problems concerning the relative placement of geometric objects are calledspatial planning
problems [29]. Such problems are important in robotics [24], collision detection [21], [27], and
computer-aided design and manufacturing (CAD/CAM) [11], [54].

A technique commonly used for solving spatial planning problems is theconfiguration
space(or C-space) approach, based on representing each placement of an object, i.e., its posi-
tion and orientation, as a point in some parametric C-space [28], [29]. (Each coordinate of the
C-space represents a degree of freedom in the position or orientation of the object.)

Given a collection of objects, thetranslationalspatial planning problem consists in comput-
ing the set of all the feasible positions (the orientations are fixed) of the objects, where certain
constraints on their relative position are specified. The feasible region of (placements of) an
object is called thefreeC-space of the object. The prohibited configurations of an object form
a forbiddenregion. TheC-space mappingfor a particular spatial planning problem consists
in partitioning the C-space into free and forbidden regions, where the latter are calledC-space
obstacles. See [29] and [63] for more details.

∗A full version of this paper is available at [42].
†PG–Consulting, Holon 58371, Israel. Email addreses: genap@post.tau.ac.il,

gennadypus@walla.com.
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1.1 Previous and related work

Detailed surveys of previous work on spatial planning can befound in [9], [14], [21], [27], [29],
and [63]. See also [2], [4], [26], [33], [54], and [58] and references therein for other related
works on placement and spatial planning.

The basic constraint on the relative position of geometric objects, used in spatial planning
for generating the C-space maps, is the relative non-overlapping of objects; here the minimum
translational distance between the objects must be greaterthan zero, or more generally, than
some positive value. Indeed, this is a key requirement in robotics, packaging, and nesting. See,
e.g., [4], [26], [27], [53], and [63]. However, the geometric problems arising in design and
manufacturing require a placement of objects with more complex constraints on their relative
position, such as constraints on the minimum and/or maximumtranslational distances between
objects, and/or their Hausdorff distances. The problem of generating the C-maps with such
complex constraints is also interesting theoretically.

Placement problems taking into account the minimum translational distance (MTD) be-
tween objects arise in industrial applications, concerning the cutting of materials, the layout of
templates on a stock material, and the layout of an IC chip with geometric design constraints.
See, e.g., [9], [29], [33], [53], and [54]. In these problemsthe MTD has to be at least the cutting
tolerance of the machine that cuts the shapes out of stock material, or the minimal feasible dis-
tances between electronic modules of an IC chip. Placement problems with constraints on the
MTD between objects have been formulated in [53] and [54]. The papers [37] and [54] have
considered placement problems with consrtaints on the minimal value of MTD between objects,
and placement problems with constraints on both the minimaland maximal admissible values
of MTD have been considered in [54]. Algorithms for solving various placement problems with
constraints on the MTD have been considered in [37], [54], and [56] – [58].

The work in [39] has solved the problem of placement of a pair of objects with constraints
on theminimumandmaximumtranslational distances between them, and has also considered
distances involving containment of objects. Placement problems with constraints on several
types oftranslationaldistances between objects, including directional Hausdorff distances be-
tween objects, have been studied in [40] and [41]. These works have also studied a Boolean
function, called thegeometric situation, which describes the system of constraints on the rela-
tive position of objects, and have formulated and solved placement problems with several other
types of geometric situations, namely, with rotational anddynamic geometric situations.

An algorithm for computing the minimum Hausdorff distance between two planar objects
under translation is given in [1]. (Efficient computation ofHausdorff distances has applications,
e.g., in pattern recognition and computer vision; see [1] and [49].) This work has also studied
placement problems taking into account bidirectional Hausdorff distances between objects.

This paper presents a technique, based on the Minkowski operations, for generating the
translational C-space maps for spatial planning problems with more general and more complex
constraints on the relative position of geometric objects.This technique is an extention of that
reported in [40] and [41]. The developed technique can also be used, respectively, for spatial
planning with constraints ontranslational distances in a given direction, and/or onrotational
distances between geometric objects, as well as for spatialplanning with givendynamicgeo-
metric situation of moving objects. A full version of this paper is available at [42].

To formulate the problem let us first present the needed notations and definitions, and then
consider the various standard distances between geometricobjects. We assume that the ge-
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ometric objects areregular sets (r-sets) in the Euclidean spaceRn, for n = 2 or 3, i.e.,
bounded, closed, and semi-analytic subsets ofRn [43]. This means that, for anyr-setA of
Rn, A = ki(A), wherei andk denote theinterior and theclosureof sets, respectively [43].
The complementand theboundaryof A are denoted byAc and∂A, respectively, and a copy
of A translated by a point (or a vector)p is denoted byA + p. We denote byAθ a copy ofA
rotated by an angleθ about the originO [24]. Theregularizedset operations on two objectsA
andB in Rn are defined asA ⊗∗ B = ki(A⊗ B), where⊗ ∈ {∪,∩, \}; see [43] and [44] for
details. TheregularizedcomplementAc∗ of A is defined asAc∗ = ki(Ac). Ther-sets are not
algebraically closed under the standard set operations, but they are closed under the regularized
set operations [43]. For example, the standard intersection A ∩ B of r-setsA andB needs not
be regular, since its boundary may havedanglingfaces/edges and/orisolatedpoints, butA∩∗B
is anr-set.

1.2 Standard distances between geometric objects

Let us consider the following distances between objectsA andB (see [1], [19], and [27]):

d1(B,A) = inf
a∈A

inf
b∈B

‖a− b‖; d2(B,A) = sup
a∈A

sup
b∈B

‖a− b‖;

h(A,B) = sup
a∈A

inf
b∈B

‖a− b‖; h(B,A) = sup
b∈B

inf
a∈A

‖a− b‖;

d∗(A,B) = inf
a∗∈Ac

inf
b∈B

‖a∗ − b‖; H(A,B) = max{h(A,B), h(B,A)},

where‖·‖ is the Euclidean norm. The distanceh(A,B) is called thedirectedHausdorff distance
from A to B, and the distanceH(A,B) is called the Hausdorff distance betweenA andB,
respectively; see [1].H(A,B) is a metric onRn.

These distances betweenr-sets have the following basic properties [19]:

d1(A,B) > 0 ⇐⇒ A ∩ B = ∅; d2(A,A) = diam(A); H(A,B) = 0 ⇐⇒ A = B.

Clearly,d∗(A,B) = d1(A
c, B). Then we haved∗(A,B) > 0 ⇐⇒ B⊂A.

1.3 Problem formulation

Let A be an unmovable object, and letB be another object, allowed only to translate. Let us
consider the following problem:

Problem I For givenλ1, . . . , λ6, and the corresponding constraint

νI(B + p, A) =
{

[

d1(B + p, A) ≤ λ1

]

⊙1

[

d1(B + p, A) ≥ λ2

]

}

⊙2

{

[

d2(B + p, A) ≤ λ3

]

⊙1

[

d2(B + p, A) ≥ λ4

]

}

⊙2

{

[

d∗(B + p, A) ≤ λ5

]

⊙1

[

d∗(B + p, A) ≥ λ6

]

}

,

where⊙1(2) ∈ {∨,∧}, find the regionNI(B,A) of all the feasible translationsB + p of B, in
whichνI(B + p, A) holds.

Thus, our goal is to find all the feasible positionsp of B with respect toA, under the above
constraint on their relative position. This problem is generalization of the well knownFindspace
problem, formulated in [29]. If we letp = O, then the functionνI(B,A) can be interpreted as
the generalized Booleandistance query; see [27] for detailes.
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2 Preliminaries

2.1 Minkowski operations

TheMinkowski sum, and theMinkowski diffferenceof objectsA andB are defined as

A⊕B = {a+ b | a ∈ A, b ∈ B} =
⋃

b∈B

(A + b), and A⊖B =
⋂

b∈B

(A+ b) = (Ac⊕B)c,

respectively [30], [49]. See Figure 1(a). The Minkowski subtraction is adual operation of the
Minkowski addition. Note thatA⊕B = (Ac⊖B)c.

(b)(a)

O xxO
B

B̌

p1

B + p3

y y

A ⊖ B̌
p3

A ⊖ B

B + p1

A⊕B̌

A

A⊕B

A

p2

B + p2

Figure 1: (a) The Minkowski sumA⊕B, and the Minkowski differenceA⊖B of objectsA and
B. (b) The objectsA⊕B̌, andA ⊖ B̌. Herep1 ∈ ∂(A⊕B̌), p2 ∈ ∂(iA⊕iB̌), (B + p1,2)∩̇A,
andp3 ∈ ∂(A ⊖ B̌), (B + p3)⊂̇A, respectively. (Dashed lines show an objectsB + p, where
(a) p ∈ ∂A, (b) p ∈ ∂(iA⊕iB̌) (resp.,p ∈ ∂(A ⊖ B̌)). Dotted lines show pieces of∂(iA⊕iB)
(resp.,∂(iA⊕iB̌)).)

Let B̌ be thereflectionof B with respect to the originO, i.e., B̌ = {−b | b ∈ B}. (For
notational convenience, the objectB̌ is sometimes denoted by−B.) Then thedilation, and the
erosionof A by B are defined as

A⊕B̌ = {a− b | a ∈ A, b ∈ B} =
⋃

b∈B

(A− b), and A⊖B̌ =
⋂

b∈B

(A− b) = (Ac⊕B̌)c,

respectively. See Figure 1(b).
Many properties of the Minkowski operations are well known and well studied. See, e.g.,

[3], [14], [19], [26], [30], [31], and [49] for details. In this section we consider the properties of
the Minkowski operations that we need for our purpose.

In [8] and [14] it is shown that if an objectA is a convex thenA⊖B = A⊖CH(B) =
A⊖ext(B), whereCH(B) denote theconvex hullof B, andext(B) denote the set ofextreme
pointsof B, i.e., the set of vertices ofCH(B). In [31] it is shown that the Minkowski sumA⊕B

4



of two r-setsA andB always results in anr-set, whereas the Minkowski differenceA⊖B could
be a non-regular set; see Figure 1(a).

SinceA⊕(−(B+p)) = (A⊕B̌)−p, we have (see, e.g., [3], [17], [29], [30], [38], and [55]):

(B + p) ∩A 6= ∅ ⇐⇒ p ∈ A⊕B̌;
(B + p) ∩A = ∅ ⇐⇒ p ∈ (A⊕B̌)c;
(B + p)∩̇A ⇐⇒ p ∈ ∂(iA⊕iB̌),

(1)

whereB∩̇A = [(iA ∩ iB = ∅) ∧ (∂A ∩ ∂B 6= ∅)] denotes theouter touchingof the objects
A andB. The objectA⊕B̌ is also called theC-space obstacleof B relative toA [29]. The set
∂(iA⊕iB̌) has been introduced in [3], where it is referred to as theouter envelopeof A andB̌.
In [3] it is shown that∂(A⊕B̌)⊆∂(iA⊕iB̌), and that the set∂(iA⊕iB̌) may have coincident
faces/edges and/or isolated vertices, which areremovedfrom the open point seti(A⊕B̌); see
Figure 1.

From the relationships∂(A⊖B̌) = ∂(Ac⊕iB̌) andA⊖(−(B+p)) = (A⊖B̌)−p, it follows
that ifA⊖B̌ 6= ∅, we get (see [30] and [39]):

(B + p)⊂A ⇐⇒ p ∈ A⊖B̌;
(B + p) 6⊂ A ⇐⇒ p ∈ (A⊖B̌)c;
(B + p)⊂̇A ⇐⇒ p ∈ ∂(A⊖B̌),

(2)

whereB⊂̇A = [(Ac ∩ iB = ∅) ∧ (∂A ∩ ∂B 6= ∅)] denotes theinner touchingof A andB. See
Figure 1(b).

By observations of [3] and [31] we have(iA⊕iB)⊆i(A⊕B); (iA⊖iB)⊇i(A⊖B) and

∂(A⊕B)⊆∂(iA⊕iB); ∂(A⊖B) = ∂(iA⊖iB) = ∂(Ac⊕iB);

A⊕B = (iA⊕iB) ∪ ∂(iA⊕iB); A⊖B = i(A⊖B) ∪ ∂(A⊖B); (3)

(A⊕B)c = (iA⊕iB)c\∂(iA⊕iB); (A⊖B)c = k[(A⊖B)c]\∂(A⊖B). (4)

From the observations of [19] it follows that, forr-sets, we have

A⊕iB = iA⊕B = iA⊕iB; A⊕B = k(iA⊕iB); A⊖B = A⊖iB = iA⊖iB. (5)

(Clearly, for non-regular point sets, the above equalitiesdo not necessarily hold.)
Let us consider the differencěB⊖A. From the properties of the Minkowski difference

(see [30]) it follows thatp ∈ B̌⊖A if and only if p /∈ A⊕B̌c, and thenA ∩ (Bc + p) = ∅, i.e.,
A⊂(B + p). Thus,B + p coversA if and only if p ∈ B̌⊖A. In other words,

A⊂(B + p) ⇐⇒ p ∈ B̌⊖A;
A 6⊂ (B + p) ⇐⇒ p ∈ (B̌⊖A)c;
A⊂̇(B + p) ⇐⇒ p ∈ ∂(B̌⊖A).

(6)

(Note that, by previous observations,B̌⊖A, in general, is a non-regular set.)
In case where bothA andB are allowed to translate, we have(A ± q)⊕(−(B ± p)) =

(A⊕B̌) ∓ p ± q, (A ± q)⊖(−(B ± p)) = (A⊖B̌) ∓ p ± q, and(−(B ± p))⊖(A ± q) =
(B̌⊖A)∓ p± q, respectively. Then all the relationships of (1), (2), and (6) can be reformulated
to handle this more general form. For instance,(B + p)⊂(A+ q) ⇐⇒ (p− q) ∈ A⊖B̌. (For
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A⊕B̌ this well known fact (see, e.g., [17] and [49]) has widely been used in [2], [9], and [33],
for solving various containment problems.) Clearly, forp = O, we have

B ∩A 6= ∅ ⇐⇒ O ∈ A⊕B̌;
B⊂A ⇐⇒ O ∈ A⊖B̌;
A⊂B ⇐⇒ O ∈ B̌⊖A,

which are alternative formulations of theoverlappingof the objectsA andB, of thecontainment
of B in A, and of thecoveringof A by B, respectively.

2.2 Distances between geometric objects concerning their outer relative position

The standard minimum distanced1(B,A) does not take into account the “amount” of intersec-
tion between objectsA andB, sinced1(B,A) = 0, for A ∩ B 6= ∅, regardless of how much
they overlap. Minimum translational distance constraintsthat take into account penetration be-
tween objects have been proposed in [5], [7], [35], [37], and[54]. The work in [42] consider
one specific set of definitions of such minimum distances, since it has been defined in different
ways. In this section we consider the translational distances, as defined in [7] and [37].

Theminimum translationaldistanceMTD(A,B), introduced in [7], is defined as

MTD(A,B) =

{

−MTD+(A,B), for A ∩B 6= ∅;
MTD+(A,B), otherwise,

whereMTD+(A,B) = inf{‖t‖ | A∩̇(B + t)}.
The distancesγ1,2(B,A) betweenA andB, suggested in [37], are defined as

γ1(B,A) =







infc∈∂(A⊕B̌) ‖c‖, for A ∩B = ∅;
0, for A∩̇B;

− infc∈∂(A⊕B̌) ‖c‖, for A ∩B 6= ∅,

γ2(B,A) = sup
c∈∂(A⊕B̌)

‖c‖.

See Figure 2. The distanceγ1(B,A) is defined by the above relationship only in case where
∂(A⊕B̌) = ∂(iA⊕iB̌) (see subsection 2.1). Then, in general, we obtain that

γ1(B,A) =

{

infc∈∂(iA⊕iB̌) ‖c‖, for A ∩ B = ∅;
− infc∈∂(iA⊕iB̌) ‖c‖, otherwise.

See Figure 3. By the observations of subsection 2.1, we getγ1(B,A) = γ1(O, iA⊕iB̌), and

γ1(B,A)







< 0, for O ∈ iA⊕iB̌;
= 0, for O ∈ ∂(iA⊕iB̌);
> 0, for O ∈ (A⊕B̌)c.

Note that in the above relationships the setiA (resp.,iB̌) can be replaced byA (resp.,B̌), since
iA⊕iB̌ = A⊕iB̌ = iA⊕B̌, for r-sets. See [42] for more details.

It can easily be shown thatγ1(B,A) = MTD(A,B). Therefore we denote the minimum
translational distance betweenA andB by γ1(B,A).
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(a) (b) (c)

x

y

x

y

x

y

γ1(O,A⊕B̌)

A

B

A

B

A

B

γ2(O,A⊕B̌) γ1(O,A⊕B̌)

O O

γ2(B,A) γ1(B,A) > 0
A⊕B̌ A⊕B̌ A⊕B̌

O

γ1(B,A) < 0

γ1(B,A) = 0

Figure 2: The distancesγ1,2(B,A), for various relative positions ofA andB, in case where
∂(A⊕B̌) = ∂(iA⊕iB̌). Here (a)A ∩B 6= ∅, (b)A∩̇B, and (c)A ∩ B = ∅, respectively.

(a) (b) (c)

x

y

x

y

O

γ1(B,A) = 0

O

py
y

px

A

A

B

A

B

B

γ1(O, iA⊕iB̌)

∂(iA⊕iB̌)

∂(iA⊕iB̌) ∂(iA⊕iB̌)

O
γ1(O, iA⊕iB̌)

x

γ1(B,A) > 0

Figure 3: The distanceγ1(B,A), for various relative positions ofA andB, in case where
∂(A⊕B̌)⊂∂(iA⊕iB̌). Here (a)A ∩ B 6= ∅; px, py are the values of minimal translations ofB
in directionsx andy, corresponding toγ1(B,A), (b)A∩̇B, and (c)A ∩ B = ∅, respectively.

The properties of translational distances have been well studied. (See, e.g., [7], [17], [22],
[34], [35], [37], [39], [54], and [56]. See also [42] for basic properties ofγ1,2(B,A).) In [7],
[17], [37], and [56] it is shown thatγ1(B,A) (resp.,γ2(B,A)) corresponds to the minimal
(resp., maximal) translationB+p of B relative toA that reaches an outer touching(B+p)∩̇A,
and thatγ1(B,A) = d1(B,A), for A ∩ B = ∅, andγ2(B,A) = γ2(O,A⊕B̌) = d2(B,A). The
distancesγ1,2(B,A) are invariant with respect to both rotations and translations, i.e.,γ1,2(Bθ +
p, Aθ + p) = γ1,2(B,A); see [35], [39], [56], and [57].

The papers [37] and [56] have considered the family of surfaces∂(A⊕B̌⊕λK), for λ ≥ 0,
whereλK is the ball of radiusλ centered atO. In these works it is shown thatγ1(B+p, A) = λ,
for p ∈ ∂(A⊕B̌⊕λK). The surfaces∂(A⊕B̌⊖|λ|K), with similar properties, for negative
values ofλ, have been defined in [56]. (Note that the above relationshipholds only in case
where∂(A⊕B̌⊕λK) = ∂(iA⊕iB̌⊕iλK), for λ > 0, and∂(A⊕B̌) = ∂(iA⊕iB̌), otherwise.)
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3 Parametric families of a single object and distances between a point and
an object

The parametric family of objects

Γ1(λ,K,A) =

{

A⊕λK, for λ ≥ 0;
A⊖|λ|K, for − rA ≤ λ ≤ 0,

whererA is the radius of the largest inscribed ball inA, is called thefull parallel pencilof the
objectA [19], or, forλ ≥ 0, theoffsetsof A [47]. See Figure 4(a). The objectΓ1(−rA, K,A) is
the locus of the centers of all largest inscribed balls inA, and, in general, is a (curved) face/edge.
Clearly,Γ1(−rA, K,A)⊂A.

A second parametric family of objects

Γ2(λ,K,A) = λK⊖A, for λ ≥ RA,

whereRA is the radius of the smallest circumscribed ball ofA, has been introduced in [40]
and [41]. See Figure 4(b). From the definition of Minkowski operations, it follows that
Γ1(λ,K,A) = ∅ if and only if λ < −rA, andΓ2(λ,K,A) = ∅ if and only if λ < RA. Since
λK is convex, it follows thatΓ2(λ,K,A) is convex, for any boundedA, andΓ2(λ,K,A) =
Γ2[λ,K,CH(A)] = Γ2[λ,K, ext(A)]; see subsection 2.1. The objectΓ2(RA, K,A) is a single-
ton point, which is the center of the (unique) smallest enclosing ball ofA. In general, the point
of Γ2(RA, K,A) needs not be inA; see Figure 4(b). From the definitions ofΓ1(λ,K,A) and
Γ2(λ,K,A) it follows thatΓ2(λ,K,A)⊆Γ1(λ,K,A), for λ ≥ RA. (An equality holds in case
whereA is a singleton point.)

(b)(a)

y

λK

O

y

Ox x

p

γ1(p,A)

p

A

γ2(p,A)

Γ1(λ,K, A)

A

λ = RA

Γ2(λ,K,A)

λ = −rA

Figure 4: The parametric families of objectsΓ1,2(λ,K,A), for various values ofλ, and the
distancesγ1,2(p, A). HereΓ2(RA, K,A) 6∈ A, dashed curves show∂Γ1,2(λ,K,A), and the
dotted line shows a piece of∂Γ1(λ,K, iA). The objectsΓ1(−rA, K,A) andΓ2(RA, K,A)
consist of two singleton points, and a singleton point, respectively.
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Let us consider the translational distancesγ1,2(p, A) between a pointp and an objectA:

γ1(p, A) =







infa∈∂A ‖p− a‖, for p ∈ Ac;
0, for p ∈ ∂A;

− infa∈∂A ‖p− a‖, for p ∈ iA,

γ2(p, A) = sup
a∈∂A

‖p− a‖.

To lack of space, all proofs here and in the following sections are omitted. The proofs of the
observations, lemmas, and theorems are presented in [42].

The distancesγ1,2(p, A) have the following properties:

Observation 1 (a) For λ ≥ 0 we have

γ1(p, A)







< λ, for p ∈ Γ1(λ,K, iA);
= λ, for p ∈ ∂Γ1(λ,K, iA);
> λ, for p ∈ [Γ1(λ,K,A)]c,

γ1(p, A)







≤ λ, for p ∈ Γ1(λ,K,A);
6= λ, for p ∈ [∂Γ1(λ,K, iA)]c;
≥ λ, for p ∈ [Γ1(λ,K, iA)]c.

(b) For−rA ≤ λ ≤ 0 we have

γ1(p, A)







< λ, for p ∈ iΓ1(λ,K,A);
= λ, for p ∈ ∂Γ1(λ,K,A);
> λ, for p ∈ [Γ1(λ,K,A)]c,

γ1(p, A)







≤ λ, for p ∈ Γ1(λ,K,A);
6= λ, for p ∈ [∂Γ1(λ,K,A)]c;
≥ λ, for p ∈ k[Γ1(λ,K,A)]c.

Observation 2 For λ ≥ RA we have

γ2(p, A)







< λ, for p ∈ iΓ2(λ,K,A);
= λ, for p ∈ ∂Γ2(λ,K,A);
> λ, for p ∈ [Γ2(λ,K,A)]c,

γ2(p, A)







≤ λ, for p ∈ Γ2(λ,K,A);
6= λ, for p ∈ [∂Γ2(λ,K,A)]c;
≥ λ, for p ∈ k[Γ2(λ,K,A)]c.

It is clear thatinfp∈Rn{γ1(2)(p, A)} = −rA(RA). Generally, fori = 1, 2, we get

γi(p, A)

{

≤ λ, for p ∈ Γi(λ,K,A);
> λ, for p ∈ [Γi(λ,K,A)]c.

(7)

The topological properties of familiesΓ1,2(λ,K,A) have been studied in [42].

4 Correspondence between distances and the parametric families

Let us consider the translational distanceω(B,A) between the objectsA andB. We say
that the distanceω(B,A) correspondsto the parametric family of objectsΩ(λ,K,B,A) if
and only if ω(B + p, A) ≤ λ, for p ∈ Ω(λ,K,B,A). (Clearly, ω(B + p, A) > λ, for
p ∈ [Ω(λ,K,B,A)]c, andω(B,A) ≤ λ, for O ∈ Ω(λ,K,B,A).) The correspondence be-
tweenω(B,A) andΩ(λ,K,B,A) is denoted byω(B,A) ∼ Ω(λ,K,B,A).

In special case where an objectB is the originO, the distance functionω(B + p, A) is
reduced to the distanceω(O + p, A) = ω(p, A) between a pointp and an objectA, and the
family of objectsΩ(λ,K,B,A) is reduced toΩ(λ,K,O,A) = Ω(λ,K,A).

Consider the families of objectsΓ1,2(λ,K,A), and the distancesγ1,2(O + p, A).

9



Lemma 3 For i = 1, 2 we have: (a)γi(O,A) ∼ Γi(λ,K,A). (b) γi(±p, A) = γi(O,A∓ p).

Follow from the relationship (7), and sinceA⊕{±p̌} = A∓ p.
Since diam(A) = 2RA, it can easily be shown thatγ2(p, A) = diam({p} ∪ A) > λ if

and only ifp ∈ [Γ2(λ,K,A)]c, for λ ≥ 2RA. Then we get diam({O} ∪ A) ∼ Γ2(λ,K,A), for
λ ≥ 2RA. (Note thatγ2(p, A) ≤ diam({p}∪A) = diam(A) = λ if and only if p ∈ Γ2(λ,K,A),
for λ ≤ 2RA.)

The properties of the distancesγ1,2(p, A) and their corresponding familiesΓ1,2(λ,K,A) in
case whereA =

⋃n

j=1Aj and/orA =
⋂n

j=1Aj , for A 6= ∅, have been studied in [42].
In general case whereB is a geometric object, but not a single point, we have

Lemma 4 (a) γi(B + p, A) = γi(B,A− p) = γi(p, iA⊕iB̌), for i = 1, 2. (b) γi(p, iA⊕iB̌) =
γi[B + α · p, A− (1− α) · p], for 0 ≤ α ≤ 1. (c) γi(Bθ ± p, Aθ ± q) = γi(B

θ ∓ q, Aθ ∓ p) =
γi[±p∓ q, (iA⊕iB̌)θ], for i = 1, 2.

Remark 1 For i = 2, the setsiA and/or iB can be replaced byA and/orB, respec-
tively, sincesup{‖c‖ | c ∈ ∂(iA⊕iB̌)} = sup{‖c‖ | c ∈ ∂(A⊕B̌)}, i.e., γ2(p, iA⊕iB̌) =
γ2(p, A⊕B̌).

Remark 2 By the first of relationships (5), we haveγi(B,A) = γi(B
∗, A∗), for i = 1, 2,

whereA∗ ∈ {A, iA} andB∗ ∈ {B, iB}, respectively.
Let us first consider the parametric family of objects

Γ1(λ,K,B,A) =

{

(A⊕B̌)⊕λK, for λ ≥ 0;
(A⊕B̌)⊖|λ|K, for − rA⊕B̌ ≤ λ ≤ 0,

(see Figure 5(a)). SinceΓ1(λ,K,B,A) = Γ1(λ,K,A⊕B̌), the objectΓ1(−rA⊕B̌, K,B,A) is
the locus of the centers of all largest inscribed balls inA⊕B̌.

Observation 5 (a) For λ ≥ 0 we have

γ1(B + p, A)















≤ λ, for p ∈ Γ1(λ,K,B,A);
< λ, for p ∈ Γ1(λ,K,B, iA);
= λ, for p ∈ ∂Γ1(λ,K,B, iA);
≥ λ, for p ∈ [Γ1(λ,K,B, iA)]c.

(b) For−r
iA⊕iB̌ ≤ λ < 0 we have

γ1(B + p, A)















≤ λ, for p ∈ Γ1(λ, iK, iB, iA);
< λ, for p ∈ iΓ1(λ, iK, iB, iA);
= λ, for p ∈ ∂Γ1(λ, iK, iB, iA);
≥ λ, for p ∈ k[Γ1(λ, iK, iB, iA)]c.

See Figures 5(a) and 6(a). Hence, the set

P (λ,K,B,A) =
{

p | γ1(B + p, A) = λ
}

=

{

∂Γ1(λ,K,B, iA) for λ ≥ 0;
∂Γ1(λ, iK, iB, iA), for − r

iA⊕iB̌ ≤ λ < 0,

is the surface of the functionγ1(B + p, A), andinfp∈Rn{γ1(B + p, A)} = −r
iA⊕iB̌. Thus, we

get

10



Theorem 6 γ1(B,A) ∼

{

Γ1(λ,K,B,A), for λ ≥ 0;
Γ1(λ, iK, iB, iA), for − r

iA⊕iB̌ ≤ λ < 0.

Note that in case whereλ ≥ 0 the Theorem 6 has also been proved in [37] and [56].
Denote bydP (A,B) the penetration depth ofA andB (see [35]). In [42] it is shown that

γ1(B,A) = −dP (iA, iB), for A ∩ B 6= ∅. Then we havedP (A,B) ∼ Γ1(λ,K,B,A), for
−rA⊕B̌ ≤ λ < 0.

Let us next consider the parametric family of objects

Γ2(λ,K,B,A) = λK⊖(A⊕B̌), for λ ≥ RA⊕B̌,

proposed in [39] and [40]; see Figures 5(b) and 6(b). SinceΓ2(λ,K,B,A) = Γ2(λ,K,A⊕B̌),
the objectΓ2(RA⊕B̌, K,B,A) is a singleton point, which is the center of the (unique) smallest
enclosing ball ofA⊕B̌. The objectΓ2(λ,K,B,A) is convex, for any boundedA andB, and
Γ2(λ,K,B,A) = Γ2[λ,K,CH(A⊕B̌)] = Γ2[λ,K, ext(A⊕B̌)].

(b)(a)

y

x

B

y

x

B

B + p p

p

γ1(B + p,A)

γ2(B + p, A)

Γ2(λ2,K, B, A)

A

∂(A⊕B̌)

A

∂(A⊕B̌)

B + p

B + q

Γ1(λ1,K, B, A)

q

Figure 5: The objectsΓ1,2(λ1,2, K,B,A). Hereγ1,2(B + p, A) = λ1,2 andλ1 > 0. A dotted
line shows a piece of∂Γ1(λ1, K,B, iA), andγ1(B + q, A) = λ1, for q ∈ ∂Γ1(λ1, K,B, iA).

Observation 7 For λ ≥ RA⊕B̌ we have

γ2(B + p, A)















≤ λ, for p ∈ Γ2(λ,K,B,A);
< λ, for p ∈ iΓ2(λ,K,B,A);
= λ, for p ∈ ∂Γ2(λ,K,B,A);
≥ λ, for p ∈ k[Γ2(λ,K,B,A)]c.

(Clearly,infp∈Rn{γ2(B + p, A)} = RA⊕B̌.) Then we get the following:

Theorem 8 γ2(B,A) ∼ Γ2(λ,K,B,A), for λ ≥ RA⊕B̌.

By previous observations, we also obtain thatγ2(B + p, A) = diam((B + p) ∪ A) > λ if
and only ifp ∈ [Γ2(λ,K,B,A)]c, for λ ≥ 2RA⊕B̌. Hence, diam(B ∪A) ∼ Γ2(λ,K,B,A), for
λ ≥ 2RA⊕B̌.

The additional (topological and set theoretic) propertiesof the distancesγ1,2(B,A) and the
familiesΓ1,2(λ,K,B,A) have been studied in [42].
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(b)(a)

y

x

y

x

B + p p

γ2(B + p,A)

Γ2(λ2, K, B, A)

A

q

Γ1(λ1, iK, iB, iA)

B B

γ1(B + p, A)

p

B + p

∂(iA⊕iB̌) ∂(iA⊕iB̌)

A

Figure 6: The objects (a)Γ1(λ1, iK, iB, iA) and (b)Γ2(λ2, K,B,A). Hereγ1,2(B+p, A) = λ1,2

andλ1 < 0. A dashed lines show∂(iA⊕iB̌).

5 Distances between geometric objects concerning their inner relative posi-
tion

The duality of the Minkowski operations provide estimatingthe inner relative position of geo-
metric objects.

5.1 Distances concerning the containment of objects

Let us consider the following translational distances, introduced in [39] and [40]:

η1(B,A) =







infc∈∂(A⊖B̌) ‖c‖, for B 6⊂ A;

0, for B⊂̇A;
− infc∈∂(A⊖B̌) ‖c‖, for B⊂A,

η2(B,A) = sup
c∈∂(A⊖B̌)

‖c‖.

See Figure 7. (The distancesη1,2(B,A) are defined only in case whereA⊖B̌ 6= ∅.)
The properties of the distancesη1,2(B,A) have been studied in [39] and [41]. The distance

η1(B,A) (resp.,η2(B,A)) corresponds to the minimal (resp., maximal) translationB + p of B
relative toA that reaches an inner touching(B+ p)⊂̇A. Since∂(A⊖B̌) = ∂(Ac⊕iB̌), we have
η1(B,A) = −γ1(B,Ac) andη1(B,A) = −d∗(A,B), for B⊂A.

Lemma 9 (a) ηi(p, A) = γi(p, A), for i = 1, 2. (b)ηi(B+p, A) = ηi(B,A−p) = ηi(p, A⊖B̌).
(c) ηi[B + α · p, A − (1 − α) · p] = ηi(p, A⊖B̌), for 0 ≤ α ≤ 1. (d) ηi(Bθ ± p, Aθ ± q) =
ηi(B

θ ∓ q, Aθ ∓ p) = ηi[±p∓ q, (A⊖B̌)θ], for i = 1, 2.

It can easily be shown that

η1(B,A)







< 0, for O ∈ i(A⊖B̌);
= 0, for O ∈ ∂(A⊖B̌);
> 0, for O ∈ (A⊖B̌)c.

12



(a) (b) (c)

x

y

x

y

x

y

η1(B,A) < 0

A

A ⊖ B̌

η1(O,A ⊖ B̌) η2(O,A ⊖ B̌) η1(O,A ⊖ B̌)

η1(B,A) > 0A ⊖ B̌ η2(B,A) A ⊖ B̌

B

A

B

A

O O

B

O

η1(B,A) = 0

Figure 7: The distancesη1,2(B,A), for various relative positions ofA andB. Here (a)B⊂A,
(b)B⊂̇A, and (c)B 6⊂ A, respectively.

See Figure 7. The distancesη1,2(B,A) have used in [40] and [41] to describe the constraints on
the relative position of objects in containment problems.

Let us consider the following parametric families of objects [39], [40]:

H1(λ,K,B,A) =

{

(A⊖B̌)⊕λK, for λ ≥ 0;
(A⊖B̌)⊖|λ|K, for − rA⊖B̌ ≤ λ ≤ 0,

H2(λ,K,B,A) = λK⊖(A⊖B̌), for λ ≥ RA⊖B̌,

See Figure 8.

(a) (b)

A

x

η1(B + p,A)

A

x

yy

p

B B

B + p

H1(λ1,K,B,A)

B + p

H2(λ2,K, B,A)

∂(A ⊖ B̌) ∂(A ⊖ B̌)

p

η2(B + p,A)

Figure 8: The objectsH1,2(λ1,2, K,B,A). Hereη1,2(B + p, A) = λ1,2 andλ1 < 0.
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Observation 10 (a) For λ > 0 we have

η1(B + p, A)















≤ λ, for p ∈ H1(λ,K,B,A);
< λ, for p ∈ H1(λ, iK,B,A);
= λ, for p ∈ ∂H1(λ, iK,B,A);
≥ λ, for p ∈ [H1(λ, iK,B,A)]c.

(b) For i = 1, 2, −rA⊖B̌ ≤ λ1 ≤ 0, andλ2 ≥ RA⊖B̌, respectively, we have

ηi(B + p, A)















≤ λi, for p ∈ Hi(λi, K,B,A);
< λi, for p ∈ iHi(λi, K,B,A);
= λi, for p ∈ ∂Hi(λi, K,B,A);
≥ λi, for p ∈ k[Hi(λi, K,B,A)]c.

Theninfp∈Rn{η1(2)(B + p, A)} = −rA⊖B̌(RA⊖B̌). Thus, by above, we obtain the following:

Theorem 11 ηi(B,A) ∼ Hi(λ,K,B,A), for i = 1, 2.

The additional properties of the distancesη1,2(B,A) and the familiesH1,2(λ,K,B,A) have
been studied in [42].

5.2 Distances concerning the covering of objects

In this section we introduce the distancesδ1,2(B,A) involving thecoveringof A by B:

δ1(B,A) =







infc∈∂(B̌⊖A) ‖c‖, for A 6⊂ B;

0, for A⊂̇B;
− infc∈∂(B̌⊖A) ‖c‖, for A⊂B,

δ2(B,A) = sup
c∈∂(B̌⊖A)

‖c‖.

See Figure 9. (The distancesδ1,2(B,A) are defined only in case wherěB⊖A 6= ∅.)

(a) (b) (c)

x

y

x

y

x

y

γ1(O, B̌ ⊖ A) γ2(O, B̌ ⊖ A) γ1(O, B̌ ⊖ A)

δ2(B,A)

O OO

δ1(B,A) < 0

A

B B

A

B

A

δ1(B,A) > 0B̌ ⊖ A B̌ ⊖ A B̌ ⊖ A

δ1(B,A) = 0

Figure 9: The distancesδ1,2(B,A), for various relative positions ofA andB. Here (a)A⊂B,
(b)A⊂̇B, and (c)A 6⊂ B, respectively.

The properties of the distancesδ1,2(B,A) andη1,2(B,A) are similar. The distanceδ1(B,A)
(resp.,δ2(B,A)) corresponds to the minimal (resp., maximal) translationB + p of B relative
toA that reaches an inner touchingA⊂̇(B + p). The following helpful properties ofδ1,2(B,A)
hold: δ1(B,A) = −γ1(B

c, A) andδi(B,A) = ηi(Ǎ, B̌), for i = 1, 2.
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Lemma 12 (a) δi(B + p, A) = δi(B,A − p) = δi(B⊖Ǎ,−p) = γi(p, B̌⊖A), for i = 1, 2.
(b) δi[B + α · p, A − (1 − α) · p] = δi(B⊖Ǎ,−p), for 0 ≤ α ≤ 1. (c) δi(Bθ ± p, Aθ ± q) =
δi(B

θ ∓ q, Aθ ∓ p) = δi[(B⊖Ǎ)θ,∓p± q] = γi[±p∓ q, (B̌⊖A)θ], for i = 1, 2.

It can easily be shown that

δ1(B,A)







< 0, for O ∈ i(B̌⊖A);
= 0, for O ∈ ∂(B̌⊖A);
> 0, for O ∈ (B̌⊖A)c.

See Figure 9. The distancesδ1,2(B,A) can be used to formalize the constraints on the relative
position of objects in covering problems.

Let us consider the parametric families of objects

∆1(λ,K,B,A) =

{

(B̌⊖A)⊕λK, for λ ≥ 0;
(B̌⊖A)⊖|λ|K, for − rB̌⊖A ≤ λ ≤ 0,

∆2(λ,K,B,A) = λK⊖(B̌⊖A), for λ ≥ RB̌⊖A.

See Figure 10. Since∆i(λ,K,B,A) = −Hi(λ,K,A,B), for i = 1, 2, we get

Observation 13 (a) For λ > 0 we have

δ1(B + p, A)















≤ λ, for p ∈ ∆1(λ,K,B,A);
< λ, for p ∈ ∆1(λ, iK,B,A);
= λ, for p ∈ ∂∆1(λ, iK,B,A);
≥ λ, for p ∈ [∆1(λ, iK,B,A)]c.

(b) For i = 1, 2, −rB̌⊖A ≤ λ1 ≤ 0, andλ2 ≥ RB̌⊖A, respectively, we have

δi(B + p, A)















≤ λi, for p ∈ ∆i(λi, K,B,A);
< λi, for p ∈ i∆i(λi, K,B,A);
= λi, for p ∈ ∂∆i(λi, K,B,A);
≥ λi, for p ∈ k[∆i(λi, K,B,A)]c.

Thus,infp∈Rn{δ1(2)(B + p, A)} = −rB̌⊖A(RB̌⊖A). Hence, we can conclude

Theorem 14 δi(B,A) ∼ ∆i(λ,K,B,A), for i = 1, 2.

Note that the Theorem 14 also follows from the claim (a) of Lemma 12, and from the relation-
ship∆1(2)(λ,K,B,A) = Γ1(2)(λ,K, B̌⊖A).

The additional properties of the distancesδ1,2(B,A) and the families∆1,2(λ,K,B,A) have
been studied in [42].

6 Hausdorff distances and corresponding families of objects

SinceH(A,B) = inf{λ ≥ 0 | B⊂Γ1(λ,K,A), A⊂Γ1(λ,K,B)} [19], we haveh(B,A) =
inf{λ ≥ 0 | B⊂Γ1(λ,K,A)}. Thenh(B,A) = 0 in case whereB⊂A, i.e., the distance
h(B,A) does not take into account the “amount” of containment ofB in A.
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(b)(a)

O

B

A
∂(B̌ ⊖ A)

p

y

O

B

y

p

∆1(λ1,K, B,A)

B + p B + p

∆2(λ2,K,B,A)

x x

∂(B̌ ⊖ A)

δ1(B + p,A)

δ2(B + p,A)

A

Figure 10: The objects (a)∆1,2(λ1,2, K,B,A). Hereδ1,2(B + p, A) = λ1,2 andλ1 < 0.

In [41] has been introduced the signed distanceµ(B,A) = supb∈B{γ1(b, A)}, eliminating
this shortcoming, and it is shown that

µ(B,A) =

{

h(B,A), for B 6⊂ A;
η1(B,A), otherwise.

Then the signed distanceµ(A,B) can be defined as

µ(A,B) =

{

h(A,B), for A 6⊂ B;
δ1(B,A), otherwise.

Hence,H(A,B) = max{µ(A,B), µ(B,A)}.
In [1] and [41] has been suggested the parametric family of objectsM1(λ,K,B,A) =

Γ1(λ,A)⊖B̌, for λ ≥ −rA⊖B̌, and it is shown thatµ(B,A) ∼ M1(λ,K,B,A); see Fig-
ure 11(a). The family of objectsM2(λ,K,B,A) = Γ1(λ, B̌)⊖A, for λ ≥ 0, has been intro-
duced in [1], and it is shown (in our notation) thath(A,B) ∼ M2(λ,K,B,A), andH(A,B) ∼
M3(λ,K,B,A) = [M1(λ,K,B,A)∩M2(λ,K,B,A)], respectively. See Figure 11(b). Clearly,
for −rB̌⊖A ≤ λ ≤ 0, we haveµ(A,B) ∼ M2(λ,K,B,A).

For notational convenience, the distancesµ(B,A), µ(A,B), andH(A,B) are sometimes
denoted bym1(B,A), m2(B,A), andm3(B,A), respectively. Then we get

Theorem 15 mi(B,A) ∼ Mi(λ,K,B,A), for i = 1− 3.

The objectsM1−3(λ,K,B,A) have the following simple properties:

M1(2)(λ,K,B,A) = −M2(1)(λ,K,A,B); M3(λ,K,B,A) = −M3(λ,K,A,B).

Observation 16 (a) For i = 1− 3, andλ > 0 we have

mi(B + p, A)















≤ λ, for p ∈ Mi(λ,K,B,A);
< λ, for p ∈ iMi(λ, iK, iB, iA);
= λ, for p ∈ Mi(λ,K,B,A)\iMi(λ, iK, iB, iA);
≥ λ, for p ∈ k[M1(λ, iK, iB, iA)]c.
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(a) (b)

y

A

p

x

B

y

x

p

A

B + p

µ(B + p,A)
µ(A,B + p)

B̌

∂(A ⊖ B̌)

M2(λ2,K, B,A)

B + p

M1(λ1,K,B,A)

∂Γ1(λ1,K, A)

Figure 11: The objects (a)M1,2(λ1,2, K,B,A). Here, respectively,µ(B + p, A) = λ1 >
0, µ(A,B + p) = λ2 > 0, and ∂Γ1(λ1, K,A) = ∂Γ1(λ1, iK, iA), ∂Γ1(λ2, K, B̌) =
∂Γ1(λ2, iK, iB̌).

(b) For i = 1, 2, −rA⊖B̌ ≤ λ1 ≤ 0, and−rB̌⊖A ≤ λ2 ≤ 0 we have

mi(B + p, A)















≤ λi, for p ∈ Mi(λi, K,B,A);
< λi, for p ∈ iMi(λi, K,B,A);
= λi, for p ∈ ∂Mi(λi, K,B,A);
≥ λi, for p ∈ k[Mi(λi, K,B,A)]c.

Remark 3 In [42] it is shown that, in contrast to the distances considered in Sections 2 –
5, the region where the distanceµ(B + p, A) (resp.,µ(A,B + p)) is equal toλ may have the
non-empty interior.

The additional properties of the Hausdorff distances and their corresponding families have
been studied in [42].

7 Translational distances between geometric objects and translational geo-
metric situations

The distances considered in Sections 2 – 6 are referred to as the translationaldistances (orT -
distances). LetT D(B,A) = {γ1,2(B,A), η1,2(B,A), δ1,2(B,A), m1−3(B,A)} be a collection
of theT -distances betweenB andA, and letω(B,A) ∈ T D(B,A). TheT -distancesω(B,A)
and their corresponding familiesΩ(λ,K,B,A) have the following properties:

ω(B + p, A) = ω(B,A− p) = ω[B + α · p, A− (1− α) · p], for 0 ≤ α ≤ 1;

ω(Bθ ± p, Aθ ± q) = ω(Bθ ∓ q, Aθ ∓ p);

Ω(λ1, K,B,A)⊆Ω(λ2, K,B,A), for any boundedA andB, andλ1 ≤ λ2;

Ω[λ,K,B + α · p, A− (1− α) · p] = Ω(λ,K,B,A)− p, for 0 ≤ α ≤ 1;
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Ω(λ,K,Bθ ± p, Aθ ± q) = Ω(λ,K,Bθ ∓ q, Aθ ∓ p) = [Ω(λ,K,B,A)]θ ∓ p± q.

From the last relationship it follows thatω(B ± p, A± q) ≤ λ, for ±p∓ q ∈ Ω(λ,K,B,A).
By the previous observations, we get

(A ∩ B = ∅) ∧ (B 6⊂ A) ⇐⇒
[

γ1(B,A) > 0
]
∧

{

[

η1(B,A) > 0
]
∨
[

µ(B,A) > 0
]

}

;

(A ∩ B 6= ∅) ∧ (A⊂B) ⇐⇒
[

γ1(B,A) ≤ 0
]
∧

{

[

δ1(B,A) ≤ 0
]
∨

[

µ(A,B) ≤ 0
]

}

.

Hence, the various situations of the relative position of objectsA andB can be described by the
system of constraints on theT -distances betweenA andB.

Definition 17 The relationshipν(B + p, A) = [ω(B + p, A) ⊙ λ], where⊙ ∈ {<,=, >}, is
called the primitive translational geometric situation (PTGS) of an objectB with respect to an
objectA.

Let us consider the PTGSν(B + p, A) as an event. Then the class of all the possible
PTGS’sS+(B,A) forms analgebraAT of events [23]. ForS+(B,A) permitting the following
definitions:

1. Theunionof events:ν1(B + p, A) ∨ ν2(B + p, A).
2. Theintersectionof events:ν1(B + p, A) ∧ ν2(B + p, A).
3. Thecomplementof event:[ν(B + p, A)]c.
4. ThecertaineventI is the union of all the PTGS’s inS+(B,A).
5. Theimpossibleevent0 is an impossible relative position of objects, for givenν(B+p, A).
The classS(B,A) of PTGS’s, comprisingS+(B,A) and0, forms a completely additive

Boolean algebra; see [23].
Let us consider the union of PTGS’s. (Recall thatω(B,A) ∈ T D(B,A).) Then we get

[ω(B + p, A) ≤ λ] = [ω(B + p, A) < λ] ∨ [ω(B + p, A) = λ];

[ω(B + p, A) 6= λ] = [ω(B + p, A) < λ] ∨ [ω(B + p, A) > λ]; (8)

[ω(B + p, A) ≥ λ] = [ω(B + p, A) > λ] ∨ [ω(B + p, A) = λ].

(Clearly, [ω(B + p, A) < λ] ∧ [ω(B + p, A) > λ] = 0.) We define also the TGS of type
[ω(B + p, A) → min], since in Sections 4 – 6 have been obtained the possible minimal values
of theT -distances. We next add these TGS’s to the set of PTGS’s:

Definition 18 The relationshipν(B + p, A) = [ω(B + p, A) ⊙ λ or ω(B + p, A) → min],
where⊙ ∈ {<,≤,=, 6=,≥, >}, is called the basic translational geometric situation (BTGS) of
B relative toA.

Since[ω(B + p, A) < λ]c = [ω(B + p, A) ≥ λ], [ω(B + p, A) = λ]c = [ω(B + p, A) 6= λ], and
[ω(B+ p, A) > λ]c = [ω(B+ p, A) ≤ λ], then, by the relationships of (8), and, by DeMorgan’s
laws, we obtain the following useful relationships:

[ω(B + p, A) < λ] = [ω(B + p, A) ≤ λ] ∧ [ω(B + p, A) 6= λ];

[ω(B + p, A) = λ] = [ω(B + p, A) ≤ λ] ∧ [ω(B + p, A) ≥ λ];

[ω(B + p, A) > λ] = [ω(B + p, A) ≥ λ] ∧ [ω(B + p, A) 6= λ].
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Definition 19 The Boolean functionν(B+p, A) = f [ν1(B+p, A), . . . , νk(B+p, A)] of BTGS’s
νi(B + p, A), for i = 1, . . . , k, is called the translational geometric situation (TGS) ofB with
respect toA.

A particular TGS describes the constraints on the relative position of objects, and can be used
as theobjective functionin the spatial planning problems.

8 Constructing the feasible region of an object for given translational geo-
metric situation

Let Ω(λ,K,B,A) is the corresponding family of the distanceω(B,A). From the observations
of Sections 4 – 6, and from the Definition 18 it follows that, for given BTGSν(B + p, A), all
the feasible translationsB + p of B with respect toA are obtained if and only ifp belongs to
the regionN(B,A), whereν(B + p, A) is true. For example,

ν1(B + p, A) = [ω(B + p, A) ≤ λ1] ⇐⇒ p ∈ N1(B,A) = Ω(λ1, K,B,A);
ν2(B + p, A) = [ω(B + p, A) > λ2] ⇐⇒ p ∈ N2(B,A) = [Ω(λ2, K,B,A)]c.

The correspondence betweenν(B+p, A) andN(B,A) is denoted byν(B+p, A) ∼ N(B,A).
Consider the TGSν(B+ p, A) = ν1(B+ p, A)∧ ν2(B+ p, A), where the BTGS’sν1,2(B+

p, A) are as above. Clearly, its corresponding region isN(B,A) = N1(B,A) ∩ N2(B,A). In
case whereλ1 ≤ λ2, we haveN(B,A) = ∅, and thereforeν(B + p, A) is an impossible TGS,
i.e., ν(B + p, A) = 0. For the TGSν(B + p, A) = ν1(B + p, A) ∨ ν2(B + p, A) we have
N(B,A) = N1(B,A) ∪ N2(B,A). If λ1 ≥ λ2 thenN(B,A) = Rn. (Note that in this case
ν(B + p, A) 6= I.)

Consider next the TGSν(B+p, A) = [ω(B+p, A) ≤ λ1]∨[ω(B+p, A) ≤ λ2], whereλ1 ≤
λ2. ThenN(B,A) = Ω(λ1, K,B,A) ∪ Ω(λ2, K,B,A) andΩ(λ1, K,B,A)⊆Ω(λ2, K,B,A),
for λ1 ≤ λ2. Hence,N(B,A) = Ω(λ2, K,B,A). That is, the TGSν(B+p, A) corresponding to
the regionN(B,A) can be represented in different ways, e.g., asν(B+p, A) = [ω(B+p, A) ≤
λ2] orν(B+p, A) =

∨n

i=1[ω(B+p, A) ≤ λi], whereλi ≤ λ2, for i = 1, . . . , n. Thus, in general,
the TGSν(B + p, A) does not unique relative to its corresponding regionN(B,A). However,
for givenN(B,A), the unique (minimal) corresponding TGSν(B + p, A) can be constructed.
Finally, if in the above example, we letN(B,A) = Ω(λ,K,B,A) ∪ Ω(λ2, K,B,A), where
λ1 < λ ≤ λ2, then we obtain that the TGS[ω(B + p, A) ≤ λ1] does not corresponds to the
regionΩ(λ,K,B,A), howeverν(B + p, A) ∼ N(B,A) in this case. Therefore, we get the
following:

Proposition 20 (a) The TGSν(B+ p, A) = f [ν1(B+ p, A), . . . , νk(B+ p, A)] corresponds to
the regionN(B,A) = F [N1(B,A), . . . , Nk(B,A)] if (but not only if)νi(B+p, A) ∼ Ni(B,A),
for i = 1, . . . , k, and the operations of union, intersection, and complementof the BTGS’s
νi(B+p, A) of ν(B+p, A) correspond to the operations of union, intersection, and complement
of regionsNi(B,A) ofN(B,A). (b)ν(B+p, A) is an impossible TGS if and only ifN(B,A) =
∅. (c) ν(B + p, A) is a certain TGS only if (but not if)N(B,A) = Rn.

The regionN(B,A) is called thesolution of the TGSν(B + p, A). (Note that the region
Ni(B,A) of N(B,A) is solution of the BTGSνi(B + p, A), for i = 1, . . . , k.)
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Remark 4 Let ν(B + p, A) be the BTGS concerning theT -distanceω(B + p, A), and let
ω(B+p, A) ∼ Ω(λ,K,B,A), andν(B+p, A) ∼ N(B,A), respectively. In the next paragraph
we assume, for simplicity, that the regionN(B,A) does not have coincident faces/edges and/or
isolated points, which are removed from the interiors of theobjects ofΩ(λ,K,B,A), for any
λ. Then we get

ω(B + p, A)















≤ λ, for p ∈ Ω(λ,K,B,A);
< λ, for p ∈ iΩ(λ,K,B,A);
= λ, for p ∈ ∂Ω(λ,K,B,A);
≥ λ, for p ∈ k[Ω(λ,K,B,A)]c.

In this special case the set∂Ω(λ,K,B,A) is the surface of the functionω(B + p, A).
The types of objects satisfying the above assumption are sufficiently wide. For example,

the convex objects, the polygons/polytops and/or curved objects in general position, i.e., which
do not have parallel edges/faces. Thus, one can to constructthe solution of a particular TGS
according to the more simpler relationships than that is done in Sections 4 – 6. See [42] for
details.

Examples. Consider the TGS’sνl(B + p, A) and their solutionsNl(B,A), denoted byνl, Nl,
for short. Denote alsoω(B + p, A), Ω(λ,K,B,A) by ω, Ω(λ). Below we leti(j) = 1, 2.

1 ν1 = (γi ≤ λi) ∧ (γj ≥ λj); N1 = Γi(λi) ∩ k[Γj(λj)]
c = Γi(λi)\iΓj(λj).

1a ν1a = (γi < λi) ∧ (γj > λj); N1a = iΓi(λi) ∩ [Γj(λj)]
c = iΓi(λi)\Γj(λj).

1b ν1b = (γi ≤ λi) ∧ (γj > λj); N1b = Γi(λi) ∩ [Γj(λj)]
c = Γi(λi)\Γj(λj).

1c ν1c = (γi ≥ λi) ∧ (γj ≥ λj); N1c = k[Γi(λi)]
c ∩ k[Γj(λj)]

c = k[Γi(λi) ∪ Γj(λj)]
c.

2 ν2 = (γi = λi) ∧ (γj = λj); N2 = ∂Γi(λi) ∩ ∂Γj(λj).

3 ν3 = (γ1 ≥ λ1) ∧ (γ2 → min), whereλ1 6= r(A⊕B̌);

N3 = k[Γ1(λ1)]
c ∩ Γ2(RA⊕B̌) = Γ2(RA⊕B̌)\iΓ1(λ1).

4 ν4 = (η1 → min); N4 = H1(−rA⊖B̌).

5 ν5 = (η1 ≤ λ1 ≤ 0) ∧ (η2 → min); N5 = H1(λ1) ∩H2(RA⊖B̌).

6 ν6 = [(γ1 = λ1) ∧ (γ2 = λmin)] 6= 0; N6 = ∂Γ1(λ1) ∩ ∂Γ2(λmin),

whereλmin =

{

inf{λ | Γ2(λ)⊂̇Γ1(λ1)}, for Γ2(RA⊕B̌) ∈ Γ1(λ1);
inf{λ | Γ2(λ)∩̇Γ1(λ1)}, for Γ2(RA⊕B̌) /∈ Γ1(λ1).

See Figure 12. The analysis of the Examples 1 – 6 can be found in[42].
Remark 5 The regionN(B,A) may have various topology. It can be open or closed, regular

or non-regular, bounded or unbounded, connected or disconnected. So, in the above examples
the regionN1 is closed bounded, whereas the regionN1a is open bounded; the regionN1c is
closed unbounded. In case whereN(B,A) contains the subset of its boundary, it is neither open
nor closed. Thus, in general,N(B,A) is an object withnon-manifoldboundary. The region
N1b give an example of such an object. In case wherei = j, λi > λj , andλi,j > 0, respectively,
the objectN1 is regular, i.e.,N1 = Γi(λi)\

∗Γj(λj). (Note that in case whereλi = λj we get
N1 = ∂Γi(λi), i.e., the objectN1 is non-regular.)

20



A

∂(A⊕B̌)

B

Ox x

A

∂(A ⊖ B̌)

∂Γ2(λ2)

∂Γ1(λ1)

∂Γ2(λmin)

p1p2

N1

N4

N3

q1q3

q2

y y

Figure 12: The corresponding regionsNl of TGS’s νl, for l = 1, . . . , 6, in case where
Γ2(RA⊕B̌) 6∈ Γ1(λ1). Here i = 2, j = 1, andλ1 < λ2, respectively. The regionN1 is
simply connected,N2 = {p1, p2}, andN3 = Γ2(RA⊕B̌), respectively. The regionN4 is a curve,
N5 = ∅, andN6 = {q1, q2, q3}.

Let us next consider the following problem:
Problem II Find the regionNII , corresponding to the TGS

νII =
[

(λ1 ≤ γ1 ≤ λ2) ∧ (λ3 ≤ γ2 ≤ λ4)
]

∨
[

(λ5 ≤ η1 ≤ λ6) ∧ (λ7 ≤ η2 ≤ λ8)
]

.

By Example 1, the solution is the region

NII =
{

[

Γ1(λ2)\iΓ1(λ1)
]

∩
[

Γ2(λ4)\iΓ2(λ3)
]

}

∪
{

[

H1(λ6)\iH1(λ5)
]

∩
[

H2(λ8)\iH2(λ7)
]

}

.

See Figure 13. Note that in case whereλ1 > λ2 or λ3 > λ4, andλ5 > λ6 or λ7 > λ8 we have
NII = ∅ andνII = 0.

Let us turn to solve the problem, formulated in subsection 1.3. The following regionsN ′
I ,

for ⊙1 = ∧, ⊙2 = ∨, andN ′′
I , for ⊙1 = ∨, ⊙2 = ∧, are the solutions of the Problem I:

N ′
I =

[

Γ1(λ1)\iΓ1(λ2)
]

∪
[

Γ2(λ3)\iΓ2(λ4)
]

∪
[

H1(λ5)\iH1(λ6)
]

;

N ′′
I =

[

Γ1(λ1) ∪ k[Γ1(λ2)]
c
]

∩ [Γ2(λ3) ∪ k[Γ2(λ4)]
c
]

∩
[

H1(λ5) ∪ k[H1(λ6)]
c
]

.

Clearly, if λ1 < λ2, λ3 < λ4, andλ5 < λ6, thenN ′
I = ∅ andν ′

I = 0. In case whereλ1 ≥ λ2,
λ3 ≥ λ4, andλ5 ≥ λ6 we haveN ′′

I = Rd. (However,ν ′′
I 6= I in this case.)

The additional properties of the TGS’s have been studied in [42].

9 Applications

In this section we consider the spatial planning problems with more general and more complex
constraints on the distances between geometric objects. Wealso briefly consider the several
other types of geometric situations: the translational geometric situation in a given direction,
the rotational, and the dynamic geometric situations, respectively.
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Figure 13: Illustration for the Problem II. Here the regionNII is 5-connected.

9.1 Findspace problem

Let A = {A1, . . . , An} be a collection ofn, possibly intersecting, obstaclesAi, completely
contained in the regionR, and letB be the object moving relative toA under translations. See
Figure 14(a). (For notational convenience, we also denoteA =

⋃n

i=1Ai.)
ThetranslationalFindspace problem [29] is to find all the possible translations(B+p)⊂R,

such that(B + p) ∩ A = ∅. In this casep is called thefreeposition. (If (B + p)∩̇A, thenp is
called thesemi-freeposition [4].)

The C-space obstacle ofB relative toA is defined asCOB(A) = {p | (B + p) ∩ A 6=
∅} = A⊕B̌ =

⋃n

i=1COB(Ai) =
⋃n

i=1(Ai⊕B̌) [29]. (The object[COB(A)]c is called the
free C-spaceof B relative toA.) The C-spaceinterior of B relative to the regionR is defined
asCIB(R) = {p | (B + p)⊆R} = [COB(R

c)]c; see Figure 14(a). By the definition of the
Minkowski difference, we getCIB(R) = R⊖B̌.

In [14] it is shown that the set of all the feasible positions of B relative toA andR can
be represented asFPB(A, R) = (R\A)⊖B̌ = (R⊖B̌)\(A⊕B̌) = CIB(R)\COB(A); see
Figure 14(a).

Let us consider the Findspace problem in terms of the translational geometric situations
(TGS), studied in Sections 7 and 8. The conditions(B + p)⊂R and(B + p) ∩ A = ∅ can be
formalized as[η1(B + p, R) ≤ 0] and [γ1(B + p,A) > 0], respectively. In [42] it is shown
that [γ1(B + p,A) > 0] =

∧n

i=1[γ1(B + p, Ai) > 0]. Then the Findspace problem can be
reformulated as follows: Find the regionN(B,A, R) corresponding to the TGS

ν(B + p,A, R) =
[

η1(B + p, R) ≤ 0
]

∧

{ n
∧

i=1

[

γ1(B + p, Ai) > 0
]

}

.
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Figure 14: The translational Findspace problem in case where A = {A1, A2, A3}. (a) Here
the regionFPB(A, R) is connected, andp1,2 are the free positions ofB. Dashed lines
show ∂[COB(A)] and ∂[CIB(R)], respectively. (b) Illustration for the Problem III. Here
NIII(B,A, R) is a two-connected region andλ1 = 0, λ2 = |λR|, andλ3 = 1.5 ·λ2, respectively.
Dashed curves show∂[COB(λA,A)] and∂[CIB(λR, R)].

Since[γ1(B + p, Ai) > 0] = [γ1(B + p, Ai) ≤ 0]c, we have
∧n

i=1

[

γ1(B + p, Ai) > 0
]

=
{
∨n

i=1[γ1(B + p, Ai) ≤ 0]
}c

. Hence, the solving of the Findspace problem can be represented
as follows:

N(B,A, R) = H1(0, K,B,R)
⋂

{ n
⋂

i=1

[

Γ1(0, K,B,Ai)
]c
}

= H1(0, K,B,R)
⋂

[

n
⋃

i=1

Γ1(0, K,B,Ai)
]c

= H1(0, K,B,R)
⋂

[

Γ1

(

0, K,B,

n
⋃

i=1

Ai

)

]c

= H1(0, K,B,R)
∖

Γ1(0, K,B,A).

Clearly,H1(0, K,B,R) = CIB(R) andΓ1(0, K,B,A) = COB(A).
We next consider more general Findspace problems.
Problem III Find the corresponding regionNIII(B,A, R) of the TGS

νIII(B + p,A, R) =
[

η1(B + p, R) ≤ λR ≤ 0
]

∧

{ n
∧

i=1

[

γ1(B + p, Ai) > λi ≥ 0
]

}

.

Solving the Problem III. For given TGSνIII(B + p,A, R), the C-space obstacle depends on
λA = {λi}

n
i=1, corresponds to the TGS

∨n

i=1[γ1(B + p, Ai) ≤ λi], and therefore it can be
represented asCOB(λA,A) =

⋃n

i=1 Γ1(λi, K,B,Ai). The interior C-space corresponding to

23



the TGS[η1(B+p, R) ≤ λR ≤ 0] is the regionCIB(λR, R) = H1(λR, K,B,R). (See Sections
4, 5, and Figure 14(b).) Thus, we get

NIII(B,A, R) = H1(λR, K,B,R)
⋂

{ n
⋂

i=1

[

Γ1(λi, K,B,Ai)
]c
}

= H1(λR, K,B,R)
∖

[

n
⋃

i=1

Γ1(λi, K,B,Ai)
]

.

Problem IV Find the solutionNIV (B,A) of the TGS

νIV (B+p,A) =
[

γl1(B+p,A) ≤ λ1

]

∧

[

γl2(B+p,A) > λ2

]

, wherel1(2) = 1, 2; λ1(2) ≥ 0.

Solving the Problem IV. The general solution is the region

NIV (B,A) = Γl1(λ1, K,B,A)
⋂

[

Γl2(λ2, K,B,A)
]c

= Γl1(λ1, K,B,A)\Γl2(λ2, K,B,A).

By observations of [42] and of Section 8, in case wherel1(2) = 1 andλ1(2) ≥ 0, we have

νIV (B + p,A) =

{ n
∨

i=1

[

γ1(B + p, Ai) ≤ λ1

]

}

∧

{ n
∧

i=1

[

γ1(B + p, Ai) > λ2

]

}

;

NIV (B,A) =
[

n
⋃

i=1

Γ1(λ1, K,B,Ai)
]

∖

[

n
⋃

i=1

Γ1(λ2, K,B,Ai)
]

,

whereas, forl1(2) = 2 andλ1(2) ≥ min1≤i≤n{RAi⊕B̌}, we get

νIV (B + p,A) =

{ n
∧

i=1

[

γ2(B + p, Ai) ≤ λ1

]

}

∧

{ n
∨

i=1

[

γ2(B + p, Ai) > λ2

]

}

;

NIV (B,A) =
[

n
⋂

i=1

Γ2(λ1, K,B,Ai)
]

∖

[

n
⋂

i=1

Γ2(λ2, K,B,Ai)
]

.

See Figure 15. Note thatνIV (B + p,A) = 0 andNIV (B,A) = ∅, for λ1 ≤ λ2.
Finally, we consider the Findspace problem concerning thecoveringof objects.
Problem V Find the regionNV (B+p,A) of all the possible coverings of objectA by object

B + p, for given TGS

νV (B + p,A) =

{ n
∨

i=1

[

δ2(B + p, Ai) ≤ εi

]

}

∧

{ n
∧

i=1

[

λ−
i ≤ δ1(B + p, Ai) ≤ λ+

i ≤ 0
]

}

.

The solution is

NV (B + p,A) =
[

n
⋃

i=1

∆2(εi, K,B,Ai)
]

⋂

{ n
⋂

i=1

[

∆1(λ
+
i , K,B,Ai)

∖

i∆1(λ
−
i , K,B,Ai)

]

}

.

For more simple constraintνV (B+p,A) =
∧n

i=1[δ1(B+p, Ai) ≤ λi ≤ 0], we getNV (B,A) =
⋂n

i=1∆1(λi, K,B,Ai); see Figure 16.
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Figure 15: Illustration for the Problem IV. HereA = {A1, A2}, bothA1 andA2 are line seg-
ments,B = {O}, λ1 > λ2, and the regionNIV (B,A) is connected. Dashed curves show pieces
of ∂Γl1(l2)(λ1(2), B, A1(2)). Here (a)l1(2) = 1, and (b)l1(2) = 2.

9.2 Placement of geometric objects

An approches commonly used for solving the placement problems are thesequential-single
method, suggested in [53] and [57], and themultiple placement of several objects, suggested
in [2], [9], and [33].

The sequential-single placement consists in the sequential placement of the objects ofA
with respect to thecontainerA0 in a fixed order, sayA1, A2, . . . , An, according to the special
objective function. For instance, the valid positionpi of Ai must be a point with extremal (or
specified) values of coordinates. (In case of planar problemspi = (xi, yi) can have, for example,
a minimal, maximal, or specifiedxi and/oryi.)

The multiple (or simultaneous) placement, as follows from its name, is independent on the
order of placement of the objects ofA relative toA0, and provides the placement of each object
of A, sayAj , taking into account the possibility of the placement of allanother objects{Ai},
where1 ≤ i ≤ n, andi 6= j. The goal is to find the setP0j of all the feasible positions ofAj ,
for j = 1, . . . , n, with respect toA0.

The generalized sequential-single and multiple placementproblems (i.e., the problems with
more complex constraints on the relative position of objects than in [33] and [57]) and their
solutions have been studied in [42].

9.3 Application to the other types of geometric situations

The work in [41] has studied the following types of geometricsituations:
The translationalgeometric situationin directionu describes constraints on translational

distancesin a given directionbetween geometric objects. The minimum and maximum dis-
tancesγ1,2(B,A, u) taking into account theouterposition ofB relative toA in directionu have
been introduced in [22] and [37]. The minimum and maximum distancesη1,2(B,A, u) taking
into account theinner position ofB relative toA have been proposed in [39] and [41]. The
parametric families of objects corresponding to the distances in a given direction are obtained
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Figure 16: Illustration for the Problem V. (a) An objectsA = {A1, A2, A3} andB. (b) Here
the regionNV (B,A) is siply connected,A⊂(B + p), for p ∈ NV (B,A); λ1 = 0, λ2 < 0, and
λ3 = λ2, respectively. Dashed lines show∂∆1(λ1−3, B, A).

by using thepartial vector operations on objects, which are generalizations ofthe Minkowski
operations. See [41] and [45] for more detailes.

The rotational geometric situation describes constraints on minimum and maximumrota-
tional distances between geometric objects. Denote byA∗ the image ofA in polar coordinates,
i.e.,A∗ = {(r, θ) | (r cos θ, r sin θ) ∈ A}. Then a copyAφ of A rotated by an angleφ around
the originO corresponds to a copyA∗ + {(0, φ)} of A∗ translated by a point(0, φ) in polar
coordinates. Therefore one can use thepartial vector operations in polar coordinates for mod-
eling the relative position of geometric objects under rotations. The rotational distances and the
translational distances in a given direction have used in [41] to formalize the constraints on the
relative position of links in problems of modeling of mechanism’s motion.

Thedynamicgeometric situation is defined, for moving objects, by representing an objects
as a four-dimensional sets in the space-timeG4; see [6], [39], and [41]. (Note that the distances
between objects “in the space” and “in the time” are incomparable [64].)

Let A∗ =
⋃

t∈[0,1][A(t)], B
∗ =

⋃

t∈[0,1][B(t)] be the image ofA,B in G4. We denote by⊕t

the partial addition “by the time”, and by̌B∗ the reflection ofB∗ with respect to the originO in
R3. Let nextλK∗ be the cylinder inG4 with a basisλK. Then the parametric family of objects

Γ1(λ,K,B∗, A∗) =
⋃

t∈[0,1]

[A(t)⊕B̌(t)⊕λK] = A∗
t

⊕ B̌∗
t

⊕λK∗

corresponds to the distanceγ1(B∗, A∗) = inft∈[0,1]{γ1[B(t), A(t)]} betweenA∗ andB∗.
It is clear that the suggested technique for solving the translational spatial planning problems

can also be applied to geometric problems with the considered types of constaints on the relative
position of objects.

10 Computational issues

From the observations of Sections 8 and 9 it follows that the C-space map of spatial plan-
ning problem, is the region obtained by standard and/or regularized Boolean operations, and by
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Minkowski operations on regular and/or non-regular objects. In general, the C-space map is a
non-regulargeometric object of various topology withnon-manifoldboundary; see Remark 5
of Section 8. (Recall that the non-regular object may have external dangling faces/edges and/or
isolated points, and/or internal entities such as cracks and/or isolated points [43].) Therefore
for implementation of spatial planning we need the methods for representation and manipu-
lation of such an objects. In this section we briefly considerthe computer representations of
geometric objects that are suitable for solving the spatialplanning problems, and the strategies
for computing the C-space maps.

Representaions of geometric objects. The two representation schemes that are most widely
used in solid modeling and computer graphics are boundary representation (BRep) and con-
structive solid geometry (CSG) [43]. LetA be a point set ofRn (n = 2, 3). CSG(A) is a
Boolean composition of algebraic halfspaces using regularized set operations. BRep(A) is a
collection of closed faces/edges. The problems of CSG to BRep conversion and of BRep to
CSG conversion have been studied in [43], [50], and [51].

The third type of representation scheme suitable for our purpose is the linear ray represen-
tation (LRRep) [31], [39], denoted by LRR(A). (In [39] it is called the linear raster represen-
tation.) LRR(A) is an approximation of an objectA by a set of parallel segments belonging to
a gridL of parallel lines, i.e., LRR(A)= A ∩ L. Conversions between BRep and LRRep, and
between CSG and LRRep have been detally studied in [32].

The constructive non-regularized geometry (CNRG) methodology for representation and
manipulation of non-homogeneous (i.e., made of several materials with different properties),
non-closed point sets with internal structures and incomplete boundaries have been suggested
in [48]. The work in [18] has proposed an approach for representation of geometric objects with
non-manifold boundary.

The boundary representation of non-regular geometric objects with non-manifold boundary
using the techniques of [18] and [48] have been studied in [42]. It takes into account both the
geometry and the topology of objects. The work in [42] have also considered the topological
operations (complement, interior, closure, and regularization) on a single non-regular object.

Boolean operations. Algorithms and implementation for computing the regularized set oper-
ations on polyhedral objects have been proposed in [44]. Recall that the standard unionA ∪ B
of two r-setsA andB always results in anr-set, whereas the standard intersectionA ∩ B and
the standard set differenceA\B need not be regular: the setA ∩ B may have dangling edges,
e.g., in case whereA contacts withB along the portion of its boundary [43]; the setA\B may
be partially open, e.g., in case whereiA ∩ iB 6= ∅ [36], [44]. Algorithms for computing the
set operations on non-manifold boundary representation objects have been proposed in [18]
and [46]. We assume below some familiarity with theory and algorithms of [18] and [44].

As mentioned in [44], the algorithms will work with curved objects, and they are insensitive
to whether a solid’s boundary is or is not a two-manifold, andis or is not connected. Hence, the
algorithms of [44] can be modified to compute the standard Boolean operations on non-regular
objects of various topology with non-manifold boundary.

LetS = A⊗∗B, where⊗ denotes one of the standard set operations. The main utilities used
in algorithms of [44] to compute the boundary ofS are the set membership classification (SMC)
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[59], and the combining classifications, defined by means of the regularized set operations.
See [44] and [59] for details.

In [42] the algorithms of [44] have been modified for computing the standard Boolean
set operations on non-regular (possibly unbounded) geometric objects of various topology, for
BReps. To define and to combine the classifications the work in[42] have used the standard,
but not a regularized set operations.

Minkowski operations. Many various algorithms to compute the Minkowski operations have
been proposed. Detailed surveys of previous work on computing the Minkowski operations can
be found in [13], [20], [25], [26], [36], [60], and [63]. Algorithms for computing the Minkowski
sums and the Minkowski differences in two and three dimensions are given, e.g., in [2], [3],
[14], [15], [17], [25] – [29], [33], [37], and [60], for BReps, and in [31] and [39], for LRReps.
Note that the referenced algorithms perform computing the Minkowski operations on regular
objects. They can generate the manifold boundaries and are not applicable to the cases where
the boundary of the resulting object is non-manifold; see [60] for details.

In [12] and [20] have been presented an algorithms forrobustandefficientconstruction of
planar Minkowski sums for polygons using exact rational arithmetic. In contrast with most
existing techniques the algorithms of [12], [20] directly handle the degenerate configurations,
arising in the boundary of the Minkowski sum, such as internal isolated points and/or coinciding
edges. In other words, these algorithms compute the outer envelope ofA andB, i.e., the
boundary of the open setiA⊕iB (see subsection 2.1). The recent works in [61] and [62] have
presented an algorithms for exact and efficient construction of Minkowski sums of polygons,
and for exact and approximate construction of offset polygons, respectively, that handle the
degenerate configurations also. Hence, the algorithms of [12], [20], [61], and [62] allow to
construct the parametric families of polygonal objects used for computing the C-space maps.

The algorithms of [12] and [20] are based on convex decomposition of polygons. However,
as mentioned in [3], not all curved objects permit convex decomposition, e.g., an object with
an inward concave edge. Therefore to handle the curved objects more suitable are the methods
that deal with the geometric objects directly.

In [42] the algorithms of [3] have been modified for computingthe Minkowski operations
on non-regular objects of various topology, for BReps, using the techniques of [18] and [48].

Distances between geometric objects.Many algorithms for computing the distances be-
tween geometric objects have been developed (see [27]). Detailed surveys of previous work
on computing the MTD between regular objects can be found in [10], [13], [16], [21], [27],
and [35]. Algorithms for computing the distances concerning the outer relative position of
objects in two and three dimensions (see subsection 2.2) aregiven, e.g., in [7], [10], [13]
– [17], [35], [37], and [52], for BReps, and in [39] and [41], for LRReps. The algorithms
of [12], [20], and [61] for robust construction of planar Minkowski sums can be used for com-
puting the MTD between non-regular polygonal objects.

Algorithms for computing the distances concerning the containment of objects in two and
three dimensions (see subsection 5.1) are given in [39] and [41], for LRReps. Note that for
this goal can also be used algorithms for computing the Minkowski difference, for BReps; see,
e.g., [14] and [15]. Algorithms for computing the distancesconcerning the covering of objects
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(see subsection 5.2) and algorithms for computing the distances concerning the containment of
objects are similar.

Algorithms for computing the translational distances in a given direction in two and three
dimensions are given in [10], [13], [22], and [52], for BReps, and in [39] and [41], for LR-
Reps, respectively. The algorithms of [39] and [41] are based on the partial vector operations
(see subsection 9.1). Algorithms for computing the rotational distances and the partial vector
operations in polar coordinates are given in [41].

Thus, using the algorithms for computing the various types of distances between geometric
objects provide solving the generalized distance query problem, as defined in subsection 1.3.
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