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Abstract

The main constraint on relative position of geometric otgjeased in spatial planning
for computing the C-space maps (for example, in roboticsDCand packaging), is the
relative non-overlapping of objects. This is the simplasistraint in which the minimum
translational distance between objects is greater tham pemmore generally, than some
positive value. We present a technique, based on the Mirkaperations, for generating
the translational C-space maps for spatial planning withenggneral and more complex
constraints on the relative position of geometric objesaish as constraints on various types
(not only on the minimum) of the translational distancesMeetn objects. The developed
technique can also be used, respectively, for spatial plgnmith constraints on transla-
tional distances in a given direction, and rotational dists between geometric objects, as
well as for spatial planning with given dynamic geometriaaiion of moving objects.
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1 Introduction

Problems concerning the relative placement of geometrectd are callegpatial planning
problems [29]. Such problems are important in robotics,[2dllision detection [21], [27], and
computer-aided design and manufacturing (CAD/CAM) [124][

A technique commonly used for solving spatial planning peots is theconfiguration
space(or C-spacg approach, based on representing each placement of art,olgedts posi-
tion and orientation, as a point in some parametric C-sp28k [29]. (Each coordinate of the
C-space represents a degree of freedom in the positioneartation of the object.)

Given a collection of objects, thteanslationalspatial planning problem consists in comput-
ing the set of all the feasible positions (the orientatiomrsfxed) of the objects, where certain
constraints on their relative position are specified. Tlasitde region of (placements of) an
object is called théree C-space of the object. The prohibited configurations of gaatiform
a forbiddenregion. TheC-space mappindpr a particular spatial planning problem consists
in partitioning the C-space into free and forbidden regjavisere the latter are callgd-space
obstaclesSee [29] and [63] for more details.

*A full version of this paper is available at [42].
fPG—Consulting, Holon 58371, Israel. Email addreses: genap@post.tau.ac.il,
gennadypus@walla.com.
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1.1 Previous and related work

Detailed surveys of previous work on spatial planning cafobed in [9], [14], [21], [27], [29],
and [63]. See also [2], [4], [26], [33], [54], and [58] and eegnces therein for other related
works on placement and spatial planning.

The basic constraint on the relative position of geometbjects, used in spatial planning
for generating the C-space maps, is the relative non-quairig of objects; here the minimum
translational distance between the objects must be grdeiarzero, or more generally, than
some positive value. Indeed, this is a key requirement intiog, packaging, and nesting. See,
e.g., [4], [26], [27], [53], and [63]. However, the geometproblems arising in design and
manufacturing require a placement of objects with more dergponstraints on their relative
position, such as constraints on the minimum and/or maxitmanslational distances between
objects, and/or their Hausdorff distances. The problemenfegating the C-maps with such
complex constraints is also interesting theoretically.

Placement problems taking into account the minimum traioslal distance (MTD) be-
tween objects arise in industrial applications, concegytire cutting of materials, the layout of
templates on a stock material, and the layout of an IC chip g&ometric design constraints.
See, e.g.,[9], [29], [33], [53], and [54]. In these problaims MTD has to be at least the cutting
tolerance of the machine that cuts the shapes out of stoakri@abr the minimal feasible dis-
tances between electronic modules of an IC chip. Placemebtgms with constraints on the
MTD between objects have been formulated in [53] and [54]e Ppapers [37] and [54] have
considered placement problems with consrtaints on thenahialue of MTD between objects,
and placement problems with constraints on both the minandlmaximal admissible values
of MTD have been considered in [54]. Algorithms for solvirayious placement problems with
constraints on the MTD have been considered in [37], [54],[@6] — [58].

The work in [39] has solved the problem of placement of a paafgects with constraints
on theminimumand maximumtranslational distances between them, and has also coedide
distances involving containment of objects. Placemenblpras with constraints on several
types oftranslationaldistances between objects, including directional Hautdwtances be-
tween objects, have been studied in [40] and [41]. These svoake also studied a Boolean
function, called theggeometric situationwhich describes the system of constraints on the rela-
tive position of objects, and have formulated and solvedeigent problems with several other
types of geometric situations, namely, with rotational dgdamic geometric situations.

An algorithm for computing the minimum Hausdorff distanedveeen two planar objects
under translation is given in [1]. (Efficient computationHdusdorff distances has applications,
e.g., in pattern recognition and computer vision; see [ [@9].) This work has also studied
placement problems taking into account bidirectional Hawi distances between objects.

This paper presents a technique, based on the Minkowskatpes, for generating the
translational C-space maps for spatial planning problertismore general and more complex
constraints on the relative position of geometric objettss technique is an extention of that
reported in [40] and [41]. The developed technique can a¢saded, respectively, for spatial
planning with constraints otranslational distances in a given directipand/or onrotational
distances between geometric objects, as well as for sgéiahing with givendynamicgeo-
metric situation of moving objects. A full version of thispgex is available at [42].

To formulate the problem let us first present the neededinataand definitions, and then
consider the various standard distances between georméjects. We assume that the ge-



ometric objects areegular sets ¢-sets) in the Euclidean spade’, for n = 2 or 3, i.e.,
bounded, closed, and semi-analytic subset&0{43]. This means that, for any-set A of
R™, A = ki(A), wherei andk denote thenterior and theclosureof sets, respectively [43].
The complemenand theboundaryof A are denoted byl© and0A, respectively, and a copy
of A translated by a point (or a vectgy)is denoted by4 + p. We denote by4? a copy ofA
rotated by an angle about the origirO [24]. Theregularizedset operations on two objects
andB in R™ are defined asl ®* B = ki(A ® B), where® € {U,N,\}; see [43] and [44] for
details. Theegularizedcomplementd®” of A is defined asd®” = ki(A¢). Ther-sets are not
algebraically closed under the standard set operationghéy are closed under the regularized
set operations [43]. For example, the standard intersectio B of r-setsA and B needs not
be regular, since its boundary may halanglingfaces/edges and/@olatedpoints, butAN* B

Is anr-set.

1.2 Standard distances between geometric objects

Let us consider the following distances between objdcésd B (see [1], [19], and [27]):

di(B,A) = inf inf |[a — b||; da(B,A) =supsup ||a —b||;
aCAbEB acA beB

h(A, B) =sup inf |la — bl[; (B, A) = sup inf |la — b]|;
ac A bEB bep A€A
a* ¢ be

where||-|| is the Euclidean norm. The distanteA, B) is called thedirectedHausdorff distance
from A to B, and the distancé/ (A, B) is called the Hausdorff distance betweérand B,
respectively; see [1]H (A, B) is a metric onR™.
These distances betweessets have the following basic properties [19]:
di(A,B) >0 <= ANB=10; dy(A,A) =diamA); H(A,B) =0 < A= DB.

Clearly,d*(A, B) = di(A¢, B). Then we havel*(A, B) > 0 < BCA.

1.3 Problem formulation

Let A be an unmovable object, and IBtbe another object, allowed only to translate. Let us
consider the following problem:
Problem | For given)y, ..., \g, and the corresponding constraint

vi(B +p, A) = {[dl(B +p,A) < \] O [di(B +p, A) > )\2}}
©2 {[d2(3 +p, A) < N3] ©1 [do(B +p, A) > >\4}}

O {[d°(B +p, 4) < 2] @1 [d(B +p,4) > Al |,

where®, ) € {V, A}, find the regionV;(B, A) of all the feasible translation8 + p of 5, in
whichv; (B + p, A) holds.

Thus, our goal is to find all the feasible positignef B with respect ta4, under the above
constraint on their relative position. This problem is gafization of the well knowrrindspace
problem, formulated in [29]. If we lgt = O, then the function;(B, A) can be interpreted as
the generalized Booleatistance querysee [27] for detailes.
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2 Preliminaries
2.1 Minkowski operations

TheMinkowski sumand theMinkowski diffferencef objectsA and B are defined as
AoB={a+blac Abe B} =|J(A+1b), and AoB = [|(A+b) = (A°DB)",
beB beB

respectively [30], [49]. See Figuré 1(a). The Minkowski sabtion is adual operation of the
Minkowski addition. Note thatl® B = (A“©B)°.

Y Y

ADB

D : B + p2

B+ p1
/ \ ASB / ";Dl

// \\ / \\ , \ 7 \
\ \ 7 \ TN\
@] B x ] =
B
(@ (b)

Figure 1: (a) The Minkowski sum® B, and the Minkowski differencéd © B of objectsA and
B. (b) The objectsA®B, andA © B. Herep, € d(A®B), p, € 0(iA®iB), (B + p12)NA,
andps € (A © B), (B + p3)CA, respectively. (Dashed lines show an objeits- p, where
(@)p € 0A, (b)p € d(iA®iB) (resp.,p € (A © B)). Dotted lines show pieces o{iA®iB)
(resp.,0(iA®iB)).)

Let B be thereflectionof B with respect to the origi, i.e., B = {-b | b € B}. (For
notational convenience, the objdgétis sometimes denoted byB.) Then thedilation, and the
erosionof A by B are defined as

AoB={a-blac Abe B} =|J(A-b), and ASB = [ |(A - b) = (ADB)",

beB beB

respectively. See Figuké 1(b).

Many properties of the Minkowski operations are well knowrd avell studied. See, e.g.,
[3], [14], [19], [26], [30], [31], and [49] for details. In ils section we consider the properties of
the Minkowski operations that we need for our purpose.

In [8] and [14] it is shown that if an object is a convex therAeB = ASCH(B) =
Acext(B), whereC H (B) denote theconvex hullof B, andexzt(B) denote the set aéxtreme
pointsof B, i.e., the set of vertices 6f H (B). In [31] it is shown that the Minkowski SUM& B
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of two r-setsA and B always results in an-set, whereas the Minkowski differenge> B could
be a non-regular set; see Figmg 1(a).
SinceA®(—(B+p)) = (A®B) —p, we have (see, e.g., [3], [17], [29], [30], [38], and [55]):

(B+p)NA#D <= pe ADB;
(B+p)NA=0 <= pe(A®B)" (1)
(B+p)NA = p e d(iAdiB),

whereBNA = [iANiB = 0) A (OAN 0B # 0)] denotes theuter touchingof the objects
A andB. The objectA@ B is also called the€€-space obstaclef B relative toA [29]. The set
0(iA®@iB) has been introduced in [3], where it is referred to asaier envelopef A and 5.
In [3] it is shown thatd(A®B)CA(iA®iB), and that the sel(iA®iB) may have coincident
faces/edges and/or isolated vertices, whichraneovedirom the open point se{ A®B); see
Figure[l.

From the relationship8(Ac B) = d(A°@iB) andAS(—(B+p)) = (ASB) —p, it follows
that if ASB # (), we get (see [30] and [39]):

(B+p)CA <<= pec ASB;
(B+p) ¢ A <= pe (AaB) (2)
(B+p)CA <~ pe€ 3(A63),

whereBCA = [(A°NiB = 0) A (0AN OB # ()] denotes thénner touchingof A andB. See
Figurell(b).
By observations of [3] and [31] we haveA®iB)Ci(A®B); (1AciB)2i(AsB) and

O(A®BB)CA(iA®iB); d(ASB) = 0(iAciB) = d(A°®iB);

A®B = (iA®iB) UJ(iA®iB); ASB =i(A6B)UJ(ASB); 3
(A®B)° = (iA®iB)\0(iA®iB); (A6B)® =k[(ASB)‘|\0(ASB). 4)
From the observations of [19] it follows that, fersets, we have

A®iB = iA®B = iA®iB; A®B = k(iA®iB); ASB = AciB = iAciB.  (5)

(Clearly, for non-regular point sets, the above equaldiesot necessarily hold.)

Let us consider the differencBSA. From the properties of the Minkowski difference
(see [30)) it follows thap € BoA if and only if p ¢ A® B¢, and thend N (B +p) = 0, i.e.,
AC(B + p). Thus,B + p coversA if and only if p € BOA. In other words,

AC(B+p) <= pe BoA;
A¢ (B+p) <= pe(BoA); (6)
AC(B+p) <= ped(BoA).

(Note that, by previous observatior3o A, in general, is a non-regular set.)

In case where bott and B are allowed to translate, we hayg + ¢)&(—(B + p)) =
(ABB) Fp £ ¢, (A+ q)o(—(B +£p)) = (A6B) Fp £ ¢ and(—(B £ p))o(A + q) =
(BSA) F p+ q, respectively. Then all the relationships|af (1, (2), d8)ddan be reformulated
to handle this more general form. For instand@,+ p)C(A +q) <= (p —q) € ASB. (For
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A B this well known fact (see, e.qg., [17] and [49]) has widelymesed in [2], [9], and [33],
for solving various containment problems.) Clearly, fioe O, we have

BNA#) < OeAaB;
BCA <:>O€4@B;
ACB <= O € BOA,

which are alternative formulations of tbgerlappingof the objectsA and B, of thecontainment
of B in A, and of thecoveringof A by B, respectively.

2.2 Distances between geometric objects concerning theioter relative position

The standard minimum distandg( B, A) does not take into account the “amount” of intersec-
tion between objectsl and B, sinced; (B, A) = 0, for AN B # (), regardless of how much
they overlap. Minimum translational distance constraing take into account penetration be-
tween objects have been proposed in [5], [7], [35], [37], E8®]. The work in [42] consider
one specific set of definitions of such minimum distancesesinhas been defined in different
ways. In this section we consider the translational distanas defined in [7] and [37].
Theminimum translationatlistanceM T'D( A, B), introduced in [7], is defined as

—~MTD*(A,B), for An B # 0;

MTD(A, B) = { MTD™(A, B), otherwise

whereMT DY (A, B) = inf{||t|| | AN(B +t)}.
The distances, »(B, A) betweenA and B, suggested in [37], are defined as

inch@(A@B) HCH, for A N B == @,
1(B,A) = 0, for ANB;

(B, A)= sup .
c€I(ADB)

See F[gur£|2. Theydistano,e(B, A) is defined by the above relationship only in case where
J(A®B) = 0(iA®iB) (see subsection 2.1). Then, in general, we obtain that

(B A) _ infcea(iAQBiB) ||C||7 forANB = ®;
T —infcoiamin ¢, otherwise

See Figur&l3. By the observations of subsection 2.1, we,g&t A) = ~,(0,iA®iB), and
<0, forO € iA®iB;
7(B,A){ =0, forO € d(iAeiB);
>0, forO e (A®B)°.

Note that in the above relationships theisé{resp.,iB) can be replaced by (resp.,B), since
iA®iB = A®iB = iA®B, for r-sets. See [42] for more details.

It can easily be shown that (B, A) = MTD(A, B). Therefore we denote the minimum
translational distance betweehand B by ~, (B, A).
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7(B,A) <0 v2(B, A) 7(B,A) >0
71(0, A®B) 72(0, A®B) 71(0, A®B)

(@) (b) (©
Figure 2: The distances »(B, A), for various relative positions ofl and B, in case where
J(A®B) = 0(iA®iB). Here (a)A N B # 0, (b) ANB, and (c)A N B = (), respectively.

(B, 4) = 0 v1(B,A) >0
7 (B, A) =

Py A

5 !
B 2(iA®iB) A(iABiIB)
A(1AGiB) B
Px J

71(0,1A@iB) ”

(@) (b) (©

Figure 3: The distance;(B, A), for various relative positions oft and B, in case where
J(A®B)CO(iA®iB). Here (a)A N B # 0; p., p, are the values of minimal translations Bf
in directionsz andy, corresponding te, (B, A), (b) ANB, and (c)A N B = (, respectively.

The properties of translational distances have been weliet. (See, e.g., [7], [17], [22],
[34], [35], [37], [39], [54], and [56]. See also [42] for bagproperties ofy, »(B, A).) In [7],
[17], [37], and [56] it is shown that, (B, A) (resp.,72(B, A)) corresponds to the minimal
(resp., maximal) translatioB + p of B relative toA that reaches an outer touchifg + p)NA,
and thaty, (B, A) = d,(B, A), for AN B = (), and,(B, A) = 7,(0, ADB) = dy(B, A). The
distancesy; »(B, A) are invariant with respect to both rotations and transtatiae. y; »(B? +
p, A’ + p) = y12(B, A); see [35], [39], [56], and [57].

The papers [37] and [56] have considered the family of se8CA®BHAK), for A > 0,
where) K is the ball of radius\ centered af). In these works itis shown that(B+p, A) = A,
for p € O(A®@B®MK). The surface®)(A®Bo|A| K), with similar properties, for negative
values of)\, have been defined in [56]. (Note that the above relationsblds only in case
whered(A®BBAK) = 0(iAGIBGIAK), for A > 0, andd(A® B) = 0(iA®iB), otherwise.)



3 Parametric families of a single object and distances betves a point and
an object

The parametric family of objects

| A®MK, for A > 0;
DA K, A) = { ASE, for —rq <\ <0,

wherer 4 is the radius of the largest inscribed balldn is called thefull parallel pencil of the
objectA [19], or, for A > 0, theoffsetsof A [47]. See Figuréld(a). The objelct(—r4, K, A) is
the locus of the centers of all largest inscribed balld jand, in general, is a (curved) face/edge.
Clearly,I'1(—r4, K, A)CA.

A second parametric family of objects

To(\ K, A) = AKSA, for A > Ry,

where R4 is the radius of the smallest circumscribed ballfgfhas been introduced in [40]
and [41]. See Figurg]4(b). From the definition of Minkowskieogttions, it follows that
I\ K, A) =0 ifand only if A < —r4, andT'y (), K, A) = () if and only if A < R4. Since
MK is convey, it follows that'y(\, K, A) is convex, for any bounded, andI'y(\, K, A) =
o[\, K,CH(A)] = '3[\, K, ext(A)]; see subsection 2.1. The objési{ R4, K, A) is a single-
ton point, which is the center of the (unique) smallest esiolgp ball of A. In general, the point
of I'y(Ra, K, A) needs not be iM; see Figurel4(b). From the definitions Bf(\, K, A) and
[o(\, K, A) it follows that'y (A, K, A)CI'y (A, K, A), for A > R4. (An equality holds in case
whereA is a singleton point.)

Y Y

’, }\:RA\‘
L[]

() (b)

Figure 4: The parametric families of objedfs.(\, K, A), for various values of\, and the
distancesy; »(p, A). Herel's(R4, K, A) ¢ A, dashed curves showdi’, »(\, K, A), and the
dotted line shows a piece @fl’;(\, K,iA). The objectsl’y(—ra, K, A) andI'y(R4, K, A)
consist of two singleton points, and a singleton point, eetipely.



Let us consider the translational distanges(p, A) between a point and an objecti:

infueoa ||p — al, forp € Ac;
Vl(pv A) = 07 forp S aAJ

- infaeaA ||p - CI,H, forp € iA7
Ya(p, A) = sup [[p—all.

acdA
To lack of space, all proofs here and in the following seciare omitted. The proofs of the
observations, lemmas, and theorems are presented in [42].
The distances, »(p, A) have the following properties:

Observation 1 (a) For A > 0 we have

<\, forpeT'i(\ K, iA); <\ forp e I'i(\ K, A);
71(p7 A) = )‘7 forp € al—‘1(>\7 K7 iA)a 71(p7 A) 7& )‘7 forp € [arl()‘7 Kv iA)]Ca
>\, forp e [I'h(\ K, A)]°, >\, forp e I (A K,iA)]“

(b) For —r, < A < 0 we have

<\ forpeil’y(\ K, A):;
’71(]97 A) = )\, forp S afl()\, K, A)7
>\, forp e [[h(\ K, A)°

<\, forpeTi(\ K, A);
71(]97 A) 7& )‘7 forp € [arl()\v K7 A)]Ca
) Z )\7 forp € k[rl()\v K7 A)]C

Observation 2 For A > R4 we have

<\, forp e il'y (A, K, A); <\, forp e T'y(\, K, A);
Y2(p, A) § = A, forp € Ols(A\, K, A); - 72(p, A)  # A forp € [T (A, K, A)]
>\, forp e [[y(\, K, A)]°, >\, forp e k[I's(A, K, A)|°.

It is clear thatinf,cpn {71(2)(p, A)} = —ra(Ra). Generally, fori = 1,2, we get

<\ forp e T';(\ K, A);
V(P A){ >\, forp e [0\, K, A))e. o

The topological properties of familids »(\, K, A) have been studied in [42].

4 Correspondence between distances and the parametric fahes

Let us consider the translational distancé3, A) between the objectsl and B. We say
that the distances(B, A) correspondgo the parametric family of objectQ(\, K, B, A) if
and only ifw(B + p,A) < A forp € Q\ K, B,A). (Clearly,w(B + p,A) > A, for

p € [Q\ K, B,A)% andw(B,A) < \, for O € Q(\ K, B, A).) The correspondence be-
tweenw(B, A) andQ(\, K, B, A) is denoted by (B, A) ~ Q(\, K, B, A).

In special case where an objetis the originO, the distance functiow(B + p, A) is
reduced to the distance(O + p, A) = w(p, A) between a poinp and an object4, and the
family of objectsQ(\, K, B, A) is reduced td2(\, K, 0, A) = Q(\, K, A).

Consider the families of objects »(\, K, A), and the distances »(O + p, A).
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Lemma 3 Fori = 1,2 we have: (@), (0, A) ~ I';(\, K, A). (0) vi(£p, A) = 7(0, A F p).

Follow from the relationshig(7), and sineep{+p} = A F p.

Since dianiA) = 2Ry, it can easily be shown that(p, A) = diam({p} U A) > X if
and only ifp € [I'2(A, K, A)|¢, for A > 2R 4. Then we getdiaf{O} U A) ~ I';(\, K, A), for
A > 2R 4. (Note thatyy(p, A) < diam({p}UA) = diam(A) = Xifandonlyifp € I's(\, K, A),
for A <2R,.)

The properties of the distances.(p, A) and their corresponding familiés 5(\, K, A) in
case wherel = |Ji_, A; and/orA = (\7_, A;, for A # (), have been studied in [42].

In general case whet® is a geometric object, but not a single point, we have

Lemma 4 (@) v;(B + p, A) = (B, A — p) = v(p,iA®iB), fori = 1,2. (b) v(p, iA®iB) =
VilB+a-p,A—(1—a)-pl,for0<a <1.(c)w(B’ +p, A’ +q) = (B’ F¢, A’ Fp) =
YilEp F q, 1A®iB)Y], fori =1, 2.

Remark 1 Fori = 2, the setsiA and/oriB can be replaced byl and/or B, respec-
tively, sincesup{||c|| | ¢ € d(iA®iB)} = sup{||c|| | ¢ € A(A®B)}, i.e., 2(p,iA®IB) =
Y2(p, A®B).

Remark 2 By the first of relationshipg (5), we havg(B, A) = ~;(B*, A*), fori = 1,2,
whereA* € {A,iA} andB* € {B,iB}, respectively.

Let us first consider the parametric family of objects

[ (A®@B)®)K, for A > 0;
(A K, B, 4) = { (ABB)ONK, for —ryup < A <0,
(see Figurél5(a)). Sinde (A, K, B, A) = I'1(\, K, A®B), the objectl’ (=7 40,5, K, B, A) is
the locus of the centers of all largest inscribed balldinB.

Observation 5 (a) For A > 0 we have

<\ forpe (N K, B, A);
<\ forp eTy(\ K, B,iA);
n(B+p, Ay A, forp e oIy (N K, B,iA);
>\, forp e [[h(\ K, B,iA)]°.

(b) For —r; 45 < A < 0 we have

<\, forp e I'1(\,iK,iB,iA);
<\, forp e il';(\,iK,iB,iA);
=\, forp € o' (\,iK,iB,iA);
>\, forp e k[I' (A 1K, iB,iA)]°.

M (B +p, A)

See Figureg|5(a) and 6(a). Hence, the set

1(A\, K, B,iA) for A > 0;

P<)\7K7BuA>: {p|71(B+p7 _)\} { ()\ IK iB IA) for — TiA@iB S)\<0’

is the surface of the functiom (B + p, A), andinf,cgn {71 (B + p, A)} = —rjsq:5- Thus, we
get
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'\ K, B, A), for A > 0;
Fl(}\,iK, iB,iA), fOf - TiA@iB S )\ < 0

Note that in case wherke > 0 the Theorenl6 has also been proved in [37] and [56].
Denote bydp(A, B) the penetration depth of and B (see [35]). In [42] it is shown that
v1(B,A) = —dp(iA,iB), for AN B # (. Then we havelp(A, B) ~ I'1(\, K, B, A), for
—Tann < A <O.
Let us next consider the parametric family of objects

To(\, K, B, A) = AKS(A®B), for A > R, 5,

proposed in [39] and [40]; see Figufds 5(b) &hd 6(b). SIhde, K, B, A) = I')(\, K, A®B),
the objects(R 4,5, I, B, A) is a singleton point, which is the center of the (unique) $esal
enclosing ball ofA©B. The objectly(\, K, B, A) is convex, for any bounded and B, and
Ty(\, K, B, A) = I,)[\, K, CH(A®B)] = T';[\, K, ext(A®B)).

Theorem 6 (B, A) ~ {

T2(X2, K, B, A)

I'i(A1, K, B, A)

v2(B +p, A)

71 (B +p, A)

DB

[C) (b)

Figure 5: The object§; 5(\1 2, K, B, A). Herev,2(B +p, A) = A2 and\; > 0. A dotted
line shows a piece ail'; (A, K, B,iA), andvy,(B + g, A) = Ay, forq € oI’y (\q, K, B,iA).

Observation 7 For A > R, 5 we have

<\ forp ey (N K, B, A);
<\, forpeil’y(\ K, B, A);
=\, forp € OI'y(\, K, B, A);
> )\, forp e k[I'2(\, K, B, A)]°.

72(B + p, A)

(Clearly,inf,cgr{72(B + p, A)} = R, .) Then we get the following:
Theorem 8 v5(B, A) ~ I'y(\, K, B, A), for A > R 4. 5.
By previous observations, we also obtain thatB + p, A) = diam((B + p) U A) > X if
and only ifp € [I'y(\, K, B, A)|°, for A > 2R, 5. Hence, diariB U A) ~ I'y(\, K, B, A), for
The additional (topological and set theoretic) propertiethe distances; »(B, A) and the
familiesI'; »(\, K, B, A) have been studied in [42].

11



I2(X2, K, B, A)
B+p P
71 (B +p, A)

v2(B + p, A)

' B+p

A(iA®iB) A(iA®iB)
(A1, iK,iB,iA)
B B

[ m A

(@ (b)

Figure 6: The objects (@), (\1,iK,iB,iA) and (b)['s(\2, K, B, A). Herevy; o(B+p, A) = A1 2
and); < 0. A dashed lines show(iA®iB).

5 Distances between geometric objects concerning their ienrelative posi-
tion

The duality of the Minkowski operations provide estimatthginner relative position of geo-
metric objects.

5.1 Distances concerning the containment of objects

Let us consider the following translational distancegodticed in [39] and [40]:

infeepacn llcll,  for B §Z A;
m(B,A) = 0, for BCA;
—infepacp llcll,  for BCA,
(B, A) = sup ||
ccd(ACB)

See Figurél7. (The distances,(5, A) are defined only in case wheres B # ().)

The properties of the distances.(B, A) have been studied in [39] and [41]. The distance
(B, A) (resp.,:(B, A)) corresponds to the minimal (resp., maximal) translafion p of B
relative toA that reaches an inner touchifig + p) CA. Sinced(AoB) = d(A°@iB), we have
m (B, A) = —y(B, A°) andn, (B, A) = —d*(A, B), for BCA.

Lemma 9 (a)7;(p, A) = vi(p, A), fori = 1,2. (b)n;(B+p, A) = n;(B, A—p) = ni(p, ASB).
©m[B+a-pA—(1—a) p]=mnp,ASB),for0 < a < 1. (d)m(B* £p, A’ +q) =
mi(B’ F ¢, A’ ¥ p) = ni+p F ¢, (ASB)’], fori = 1,2,
It can easily be shown that
<0, forO€i(AsB);
m(B,A) < =0, forO € J(ASB);
>0, forO e (ASB)-.

12



AOB AOB m(B,A) >0

n2(0,AS B) m(0, A6 B)

(a) (b) (©)

Figure 7: The distancesg »(B, A), for various relative positions ol and B. Here (a)BCA,
(b) BCA, and (c)B ¢ A, respectively.

See Figurél7. The distances, (B, A) have used in [40] and [41] to describe the constraints on
the relative position of objects in containment problems.
Let us consider the following parametric families of obgef&9], [40]:

[ (AeB)®)K, for A > 0;
HA K, B, 4) = { (ASB)ONK, for —ryp <A <0,
Hy(\, K,B,A)=  AKS(ASB), for A > R, 5,
See Figurél8.
Yy Yy

A A
9(A© B)
"""""""" B+1p!

i )
----------- sl
~_ m(B +p, A)
_________ HO KB A)
B B
(@) (b)

Figure 8: The object#l; (A1 2, K, B, A). Heren, (B +p, A) = A2 and; < 0.
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Observation 10 (a) For A > 0 we have

< )\7 forp S Hl<)\7 K7BaA)7

<\, forp € Hi(\iK, B, A);

=\, forp € 0H,(\,iK, B, A);

>\, forp e [Hi(\ 1K, B, A)]°.
(b)Fori=1,2, —r o5 < A\ < 0,andX, > R, 3, respectively, we have
S )\iv forp € HZ()\ZvaBvA)7

<\, forp S IHZ()\Z, K, B,A),

= )\i7 forp € 8HZ()\27 K7 B7A)7

> )\Z‘, forp S k[HZ()\Z, K, B, A)]C
Theninf,cpn{m@) (B +p, A)} = —rao5(R4s). Thus, by above, we obtain the following:
Theorem 11 n;(B, A) ~ H;(\, K, B, A), fori =1, 2.

The additional properties of the distanegs(B, A) and the familiesH; »(\, K, B, A) have
been studied in [42].

7]1(B +p, A)

5.2 Distances concerning the covering of objects

In this section we introduce the distanégs(B, A) involving thecoveringof A by B:

infeeppeny llcll,  forAd B;
0(B,A) = 0, for ACB;
—infcypen lcll, for ACB,

0 (B, A) = sup  ||c].
ced(BSA)

See Figuré€l9. (The distancés,(B, A) are defined only in case whefeS A # ().)

y y 51(B,A) =0 Y

%

61(B,A) <0
G : @ ‘ O :

~v2(0, B © A) 1(0,B 6 A)

B

—~

(a) (b) (©

Figure 9: The distance$ »(B, A), for various relative positions ol andB. Here (a)ACB,
(b) ACB, and (c)A ¢ B, respectively.

The properties of the distancés, (B, A) andn, »(B, A) are similar. The distancg (B, A)
(resp.,d2(B, A)) corresponds to the minimal (resp., maximal) translafiba p of B relative
to A that reaches an inner touchidg™ (B + p). The following helpful properties of; »(B, A)
hold: 6,(B, A) = —y1 (B¢, A) andé;(B, A) = n;(A, B), fori = 1, 2.

14



Lemma 12 (a) 6;(B + p, A) = &(B, A — p) = 6:(BSA, —p) = ~i(p, BoA), fori = 1,2.
(0) 6:[B+a-p,A—(1—a)-p] =d6(BoA,—p),for0 < a < 1. (c)5i(B"£p, A"+ q) =
0;,(B° ¥ ¢, A’ F p) = 6,[(BOA)’, Fp £ gl = vi[£p F ¢, (BSA)’], fori = 1,2.

It can easily be shown that

<0, forOei(BeoA);
51(B,A){ =0, forO e d(BoA);
>0, forO e (BSA)-.

See Figur€l9. The distancés, (B, A) can be used to formalize the constraints on the relative
position of objects in covering problems.
Let us consider the parametric families of objects

(BOA)DAK, for A > 0;

Al()\,K,B,A)Z{ (BeA)e|\K, for —Tgea <A L0,

Ay(\, K, B,A) = MKO(BoA), for A > Ry 4.
See Figuré10. SincA;(\, K, B, A) = —H;(\, K, A, B), fori = 1,2, we get

Observation 13 (a) For A > 0 we have

<\, forp e Ay(\, K, B, A);
<\, forpe Ai(\iK, B, A);
=\, forp € 0A;(\iK, B, A);
>\, forp e [A(\IK, B, A)]“.

51(B +p7 A)

(b) Fori =1,2, —rgo4 < A\ <0, andX; > Rp ,, respectively, we have

< )\Z', forp c AZ()\Z,K,B,A>,

< )\Z‘, forp c iAZ()\Z,K,B,A),

= \;, forp € 0A;(\;, K, B, A);
> \;, forp e k[A;(\;, K, B, A)|°.

Thus,infyegn{d12)(B + p, A)} = —roa(Rio4). Hence, we can conclude
Theorem 14 §,(B, A) ~ A;(\, K, B, A), fori =1,2.

Note that the Theorem [L4 also follows from the claim (a) of beafil2, and from the relation-
ShipAl(g)()\, K, B, A) = Fl(g)()\, K, B@A)

The additional properties of the distandes(B, A) and the families\; »(\, K, B, A) have
been studied in [42].

6 Hausdorff distances and corresponding families of objest

SinceH(A,B) = inf{\ > 0 | BCT'1(\, K, A), ACl’y(\, K, B)} [19], we haveh(B, A) =
inf{\ > 0 | BcI'y(\,K,A)}. Thenh(B,A) = 0 in case whereBCA, i.e., the distance
h(B, A) does not take into account the “amount” of containmenBaf A.
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B+p

61(B+p,A)$ / ..... \ J

Ar(h, K, B, A) As(A2, K, B, A)

[ z (@) T

() (b)

Figure 10: The objects (a); 2(\1 2, K, B, A). Hered, o(B + p, A) = A2 and\; < 0.

In [41] has been introduced the signed distantB, A) = sup,.z{71(b, A)}, eliminating
this shortcoming, and it is shown that

e, 4) = §

Then the signed distangg A, B) can be defined as

| h(A,B), for A ¢ B;
w4, B) = { 51(B, A), otherwise

Hence,H (A, B) = max{u(A, B), u(B, A)}.

In [1] and [41] has been suggested the parametric family ¢éatb M (A, K, B, A) =
I\ A)eB, for A > —r,. 5, and it is shown thap(B, A) ~ M;(\ K, B, A); see Fig-
ure[I1(a). The family of objectd/,(\, K, B, A) = I';()\, B)©A, for A\ > 0, has been intro-
duced in [1], and it is shown (in our notation) thdtA, B) ~ Ms(\, K, B, A),andH (A, B) ~
M3\, K, B, A) = [M;(\, K, B, A)NMy(\, K, B, A)], respectively. See Figurell1(b). Clearly,
for —rpoa < A <0, we haveu(A, B) ~ My(M\, K, B, A).

For notational convenience, the distangg®, A), u(A, B), and H (A, B) are sometimes
denoted byn, (B, A), ms(B, A), andmgs(B, A), respectively. Then we get

Theorem 15 m;(B, A) ~ M;(\, K, B, A),fori =1 — 3.
The objects\/; _3(\, K, B, A) have the following simple properties:
Mioy(N\, K, B, A) = —Mymy(\, K, A, B); Ms(\, K,B,A) = —M;(\, K, A, B).

h(B,A), for B ¢ A;
m (B, A), otherwise

Observation 16 (a) For: = 1 — 3, and > 0 we have

<\, forp e M;(\, K, B, A);

<\, forp € iM;(\,iK,iB,iA);

=\, forp € M;(\, K, B, A\iM;(\,iK,iB,iA);
> A, forp € k[M; (), iK,iB,iA).
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Lo T T T T T T ~
Y ’ \ Y
/ \

B+p

p

A\

B+p

Se___ /o ___ AL __ — 7 Ms(Xo, K, B, A A, B
\ u(B +p, A) 2%z S 7‘/
B Mi(\, KB, A) B

(@) (b)

Figure 11: The objects (a)/12(\12, K, B, A). Here, respectivelyu(B + p, A) = A\ >
0, IM(A,B —|—Vp) = X > 0, and 8F1()\1,K,A) = 8F1()\1,iK,iA>, 8F1()\2,K,B) =
A1 (e, iK, iB).

(b)Fori =1,2, —r o5 < A\ <0,and—rz., < Ay < 0we have

< )\Z', forp S MZ()\Z,K, B,A)7
<\, forp S iMZ()\Z,K,B,A>,

= )\Z', forp c 3MZ()\Z, K, B,A),
2 )\iv forp € k[MZ'()\Z',K, B,A)]C

Remark 3 In [42] it is shown that, in contrast to the distances congiden Sections 2 —
5, the region where the distanpéB + p, A) (resp.,u(A, B + p)) is equal toA may have the
non-empty interior.

The additional properties of the Hausdorff distances aed ttorresponding families have
been studied in [42].

7 Translational distances between geometric objects anddnslational geo-
metric situations

The distances considered in Sections 2 — 6 are referred teashslationaldistances (off -
distances). LeTD (B, A) = {m2(B,A),ma(B,A), 6 2(B,A),mi_3(B,A)} be a collection
of the T’-distances betweeR and A, and letw (B, A) € TD(B, A). TheT-distancesv(B, A)
and their corresponding famili€y \, K, B, A) have the following properties:

wB+p,A)=w(B,A-p)=wB+a-pA—(1—a) p], for0<a<1;

w(B" +p, A"+ q) = w(B’ F ¢, A’ T p);
Q(\, K, B, A)CQ(\, K, B, A), for any bounded! and B, and\; < \;
QNK,B+a-p,A—(1—a)-p=Q\K,B,A) —p, for0 < a <1;
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QN K, B £p, A’ +q) = QN K, B’ £ ¢, A’ p) = [Q\, K, B, A)’ Fp+q.

From the last relationship it follows that B + p, A + ¢) < A, for +p Fq € Q(\, K, B, A).
By the previous observations, we get

(ANB=0)A (B¢ A) < [1(B,A)>0]AJ[m(B,A) >0]V[u(B,A) > 0]
(ANB#0) A (ACB) <= [n(B,A) <0] A1 [60:(B,4) <0]V [u(A,B) <0] ¢.

Hence, the various situations of the relative position géots A and B can be described by the
system of constraints on tife-distances betweedA and B.

Definition 17 The relationship/(B + p, A) = [w(B + p, A) ® A|, where® € {<,=,>},is
called the primitive translational geometric situationT8S) of an objecB with respect to an
objectA.

Let us consider the PTG8(B + p, A) as an event. Then the class of all the possible
PTGS'sS* (B, A) forms analgebra A+ of events [23]. FoS™ (B, A) permitting the following
definitions:

1. Theunionof eventsi, (B + p, A) V 1»(B + p, A).

2. Theintersectiorof eventsiv, (B + p, A) A va( B + p, A).

3. Thecomplemenof event:[v(B + p, A)]°.

4. Thecertainevent! is the union of all the PTGS’s i§* (B, A).

5. Theimpossibleevent) is an impossible relative position of objects, for giveB +p, A).

The classS(B, A) of PTGS'’s, comprisingSt (B, A) and0, forms a completely additive
Boolean algebra; see [23].

Let us consider the union of PTGS'’s. (Recall théaB, A) € TD(B, A).) Then we get

w(B+p,A) <A =[wB+p,A) <A V[wB+p A) =]\

w(B+p,A) £\ = [w(B+p,A) < AV [w(B+p, A) >\ (8)
w(B+p,A) >\ = [w(B+p,A) >NV [wB+p A) = \.

(Clearly, [w(B + p,A) < A A [w(B+ p,A) > A\] = 0.) We define also the TGS of type
[w(B + p, A) — min], since in Sections 4 — 6 have been obtained the possible mlinatues
of theT-distances. We next add these TGS'’s to the set of PTGS'’s:

Definition 18 The relationship/(B + p, A) = [w(B + p,A) ® Aorw(B + p, A) — min],
where® € {<, <, =,#,>, >}, is called the basic translational geometric situation (BS) of
B relative to A.

Sincejw(B+p, A) < \° = [w(B+p,A) > A, [w(B+p,A) == [w(B+p,A) # A],and
[w(B+p, A) > \]° = [w(B+p, A) < A, then, by the relationships ¢fl(8), and, by DeMorgan’s
laws, we obtain the following useful relationships:

w(B+p,A) <A =[wB+pA) <AA[wB+p, A) #\;
w(B+p,A) =\ =[wB+pA) <A A[wDB+p,A) > \;
w(B+p,A) >\ =[wB+pA) > AA[wB+p, A) # .
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Definition 19 The Boolean function(B+p, A) = f{v1(B+p, A), ..., v (B+p, A)|of BTGS's
vi(B+p,A), fori =1,... k,is called the translational geometric situation (TGS)®fvith
respect toA.

A particular TGS describes the constraints on the relatbgtipn of objects, and can be used
as theobjective functionn the spatial planning problems.

8 Constructing the feasible region of an object for given traslational geo-
metric situation

Let Q(\, K, B, A) is the corresponding family of the distancéB, A). From the observations
of Sections 4 — 6, and from the Definitibnl18 it follows that; fiven BTGSv(B + p, A), all
the feasible translation8 + p of B with respect taA are obtained if and only ip belongs to
the regionN (B, A), wherev(B + p, A) is true. For example,

I/l(B + p, A) = [M(B + p, A) < )\1] <~ pE& Nl(B,A) = Q()\l,K, B,A)7
v(B+p,A)=[w(B+p,A) >\ <= pe Nyo(B,A) =[QN\, K, B, A)|".

The correspondence betwee(B + p, A) andN (B, A) is denoted by(B +p, A) ~ N(B, A).

Considerthe TG%(B +p, A) = v1(B+p, A) Ava(B +p, A), where the BTGS’s »(B +
p, A) are as above. Clearly, its corresponding regiolV {83, A) = Ny(B, A) N No(B, A). In
case where\; < )\, we haveN (B, A) = (), and therefore/(B + p, A) is an impossible TGS,
i.e.,v(B +p,A) = 0. Forthe TGSv/(B + p,A) = ni(B +p,A) V 1o(B + p, A) we have
N(B,A) = Ni(B,A) U No(B,A). If \; > Ay thenN(B,A) = R". (Note that in this case
v(B+p,A)#1.)

Consider nextthe TG&(B+p, A) = [w(B+p, A) < M| V[w(B+p, A) < Xy, where); <
Xa. ThenN(B, A) = Q(\, K, B, A) UQ(X\, K, B, A) andQ(\, K, B, A)CQ(\s, K, B, A),
for Ay < Xo. Hence N (B, A) = Q(\y, K, B, A). Thatis, the TGS (B+p, A) corresponding to
the regionV (B, A) can be represented in different ways, e.gu@$+p, A) = [w(B+p, A) <
o] orv(B+p, A) = /1, [w(B+p, A) < \;], where); < Xy, fori =1,...,n. Thus, in general,
the TGSv(B + p, A) does not unique relative to its corresponding reghiB, A). However,
for given N(B, A), the unigque (minimal) corresponding TGSB + p, A) can be constructed.
Finally, if in the above example, we 1&{(B, A) = Q(\, K, B, A) U Q(Xq, K, B, A), where
A1 < A < )y, then we obtain that the TG®(B + p, A) < )| does not corresponds to the
regionQ(\, K, B, A), howeverv(B + p, A) ~ N(B, A) in this case. Therefore, we get the
following:

Proposition 20 (a) The TGS/(B +p, A) = fn(B+p, A),...,v(B+ p, A)] corresponds to
the regionN (B, A) = F[Ny(B, A), ..., Ni(B, A)] if (but notonly if)v;(B+p, A) ~ N;(B, A),
fori = 1,...,k, and the operations of union, intersection, and complenoénhe BTGS'’s
vi(B+p, A) of v(B+p, A) correspond to the operations of union, intersection, andglement
of regionsN;(B, A) of N(B, A). (b)v(B+p, A) isanimpossible TGS if and onlyM(B, A) =
0. (c)v(B + p, A) is a certain TGS only if (but not ifiN (B, A) = R™.

The regionN (B, A) is called thesolution of the TGSv(B + p, A). (Note that the region
Ni(B,A) of N(B, A) is solution of the BTGS/;(B + p, A),fori =1,...,k.)
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Remark 4 Let v(B + p, A) be the BTGS concerning the-distancev(B + p, A), and let
w(B+p,A) ~Q(\ K, B, A),andv(B+p, A) ~ N(B, A), respectively. In the next paragraph
we assume, for simplicity, that the regidf( B, A) does not have coincident faces/edges and/or
isolated points, which are removed from the interiors ofdabgcts ofQ(\, K, B, A), for any
A. Then we get
<\ forpe QN K, B, A);
< A, forp € iQ(\, K, B, A);
=\, forp € 0Q(\ K, B, A);
>\, forp e k[Q(\, K, B, A)°.

In this special case the se@(\, K, B, A) is the surface of the functian(B + p, A).

The types of objects satisfying the above assumption afecisntly wide. For example,
the convex objects, the polygons/polytops and/or curvgelotdin general position, i.e., which
do not have parallel edges/faces. Thus, one can to congreisblution of a particular TGS
according to the more simpler relationships than that issdarSections 4 — 6. See [42] for
details.

w(B+p, A)

Examples. Consider the TGS'’s;(B + p, A) and their solutionsv;(B, A), denoted by, N,
for short. Denote als@ (B + p, A), Q(\, K, B, A) by w, ©(\). Below we leti(j) = 1, 2.

L=< N) Ay =) No=Ti() Nk ()] = Ti(A)\IL;(A).

la vig = (7 <X) A (3> Aj); Nia = i0(A) 0 [T(A5)]° = A0 (A)\T5(A)-
Ib vip = (v S A) A (1 > Aj); Ny = ( ) N = ( )\ (A)-
Ie vie= (12 XN) Ay 2N Nie =K[Ii(A)]" N k[ (A)]° = k[Ii(A) UT;(A))°
2 ;==X A(y =) No=0Li(A) NOL;(A).

3 v3= (1= M)A (72 = min), Whereh; # rzp;
N = K[['1(A)] N Ta(Rag) = Ta(Ragp)\il1 (M)
4 vy = (m —min); Ny= Hi(—7455)
5 vs=(m <A <0)A (e = min); Ns = Hi(M) N Ha(Ryuop)
6 v =[(7 =)A= Auin)] #0; Ng=09T1(A1) N2 (Auin),

inf{\ | Do(X)CT1 (M)}, for Ie(Rugp) € Thi(A);
Hlf{)\ | Tg()\)ﬁfl()\l)}, for FZ(RAGBB) ¢ Fl()\l)

See Figuré 12. The analysis of the Examples 1 — 6 can be foJA@]in

Remark 5 The regionN (B, A) may have various topology. It can be open or closed, regular
or non-regular, bounded or unbounded, connected or disobeeh. So, in the above examples
the region/V; is closed bounded, whereas the regi¥r is open bounded; the regia¥,.. is
closed unbounded. In case whé¥éB, A) contains the subset of its boundary, it is neither open
nor closed. Thus, in generaN (B, A) is an object withnon-manifoldboundary. The region
Ny, give an example of such an object. In case whietej, \; > \;, and); ; > 0, respectively,
the object)V; is regular, i.elN; = I';(A\)\*T';(};). (Note that in case wherk, = \; we get
Ny = 0T';(\), i.e., the objectV, is non-regular.)

where i, = {
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Figure 12: The corresponding region§ of TGS's v, for/ = 1,...,6, in case where
[o(Ragp) € I'i(A). Herei = 2, 5 = 1, andA; < X\, respectively. The regiowV; is

simply connectedN, = {p1, p2}, andN3 = I'y(R 44 3), respectively. The regiofV, is a curve,
N5 =0, andNs = {q1, 2, g3}

Let us next consider the following problem:
Problem Il Find the regionV;;, corresponding to the TGS

vir =M <1 < M)A A< <AV s << A6) A (A <mp < As)]

By Example 1, the solution is the region

Nip = { [T1(Aa)\iT1 (A1)] N [Ta(A)\iTa(As)] } U { [H1(X6)\LH1(A5)] N [Ha(As)\iH2(A7)] }

See Figuré_13. Note that in case whage> )\, or A3 > )4, and\s > \g or \; > \g we have
Ny = 0 andV[[ =0.

Let us turn to solve the problem, formulated in subsecti@ The following regionsV;,
for ©; = A, ®y = Vv, andN7, for ©®; =V, ®y = A, are the solutions of the Problem I:

Ny = [Li()\IF(Ae)] U [Fo(As)\il2(Na)] U [Hi(As)\H1 ()]

N7 = [T1(\) UK[T1(A2)]] N [T2(As) UK[Ta(A)]] N [Hi(Xs) UK[H: (X))

Clearly, if \; < o, A3 < Ay, and\s < Xg, thenN; = () andv} = 0. In case where; > \,,
A3 > Ay, and)s > A\ we haveN; = R%. (Howevery} # I in this case.)
The additional properties of the TGS’s have been studied2h [

9 Applications

In this section we consider the spatial planning problentk wiore general and more complex
constraints on the distances between geometric objectsal$@ebriefly consider the several
other types of geometric situations: the translationahgetoic situation in a given direction,
the rotational, and the dynamic geometric situations,eetyely.
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Figure 13: Illustration for the Problem II. Here the regityp; is 5-connected.

9.1 Findspace problem

Let A = {A4;,..., A,} be a collection of:, possibly intersecting, obstacles, completely
contained in the regioR, and letB be the object moving relative td under translations. See
Figure[14(a). (For notational convenience, we also dedote( ;" | A;.)

ThetranslationalFindspace problem [29] is to find all the possible transtegid + p) C R,
such that B + p) N A = 0. In this casep is called thefree position. (If (B + p)NA, thenp is
called thesemi-fregoosition [4].)

The C-space obstacle @f relative to.A is defined as”Oz(A) = {p | (B+p) N A #
0}y = AoB = U, COp(4A;) = U, (Ai@B) [29]. (The objectCOz(A)]° is called the
free C-spacef B relative to.A.) The C-spacanterior of B relative to the regiork is defined
asCIg(R) = {p | (B+ p)CR} = [COp(R")]; see Figuré_T4(a). By the definition of the
Minkowski difference, we gef'/3(R) = ROB.

In [14] it is shown that the set of all the feasible positiorisiorelative to.4 and R can
be represented aBPs( A, R) = (R\A)©B = (ROB)\(A®B) = CIz(R)\COp(A); see
Figure[14(a).

Let us consider the Findspace problem in terms of the traoskl geometric situations
(TGS), studied in Sections 7 and 8. The conditioBs+ p)CR and(B + p) N A = ) can be
formalized asn, (B + p, R) < 0] and [y (B + p,.A) > 0], respectively. In [42] it is shown
that[v,(B + p, A) > 0] = A_,[n(B + p,4;) > 0]. Then the Findspace problem can be
reformulated as follows: Find the regid( B, A, R) corresponding to the TGS

B+ AR = (845 R) <) AL A B+ > 0] |
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Nrrr(B, A, R)

(a) (b)

Figure 14: The translational Findspace problem in case evder= {A;, A;, A3}. (a) Here
the region F'Ps(A, R) is connected, ang,, are the free positions oB. Dashed lines
show 0[COg(A)] and J[C1p(R)], respectively. (b) lllustration for the Problem Ill. Here
Ni1(B, A, R) is atwo-connected region and = 0, A\, = = 1.5- )y, respectively.
Dashed curves sho®{COp(A4,.A)] andd[CIg(Ag, R)].

Since[y1 (B + p, A;) > 0] = [n(B +p, 4;) < 0], we have\, [vi(B + p, A;) > 0] =
{Viim(B+p,4) < 0]}0. Hence, the solving of the Findspace problem can be repesen
as follows:

N(B, A R) = Hy(0,K, B, R) ﬂ{ﬂ[ (0.K.B,A)] }

1

— H,(0.K,B,R)( UPloKBA]
=1

Al
= H,(0.K,B,R)() {r OKBUAHC
(

= H(0,K, B, R)\I'1(0, K, B, A).

Clearly, H,(0, K, B, R) = CIg(R) andI'1(0, K, B, A) = COg(A).
We next consider more general Findspace problems.
Problem 1l Find the corresponding regia¥;;; (B, A, R) of the TGS

virr(B+p, A, R) = | (B +p, B) < A < 0] \ { A (B +p,4) > x> 0] }
i=1

Solving the Problem Ill. For given TGS/;;;(B + p, A, R), the C-space obstacle depends on
Aa = {N}I,, corresponds to the TGY_, [ (B + p, 4;) < A, and therefore it can be
represented a§8'Op(A4, A) = U, I'1(\;, K, B, A;). The interior C-space corresponding to
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the TGSy, (B+p, R) < Ag < 0] istheregionCIz(Ag, R) = Hi(\g, K, B, R). (See Sections
4,5, and Figuré14(b).) Thus, we get

Ni(B, A R) = Hi(\r, K, B, R) ﬂ{ [Fl()‘ivK>B7Ai)]c}

n
1=

1
— H\(\n, K, B, R)\[OFl()\i, K, B, A,-)].
i=1
Problem IV Find the solutionV; (B, .A) of the TGS
viv(B+p, A) = |y, (B+p, A) < Al] A [712(B+p, A) > AQ], wherel, ) = 1,2; Ay > 0.
Solving the Problem IV. The general solution is the region
Niv(B,A) = Tyy (M, K, B, A) [PlQ(AQ, K, B, A)]C — T}, (0, K, B, A\, (Mo, K, B, A).

By observations of [42] and of Section 8, in case whiggg = 1 and ;) > 0, we have

n

viv(B + p, A) = {\/ (B +p,4) < N } /\{/Z\1 (B +p,4) > o] };

i=1

N (B.4) = U0 KB, A0\ [U T 0 1.5, 4]

whereas, fof;5) = 2 and ;) > mini<;j<,{R, 5}, We get

n n

viv(B +p, A) = {/\ (B +p,4) < M| } A { V [2(B +p,4) > x| };

i=1 =1

N (B, A) = [ﬁrg(Al, K, B, AZ-)} \ [ (n] Ty(No, K, B, AZ-)} .

See Figur€15. Note that, (B + p, A) = 0 and Ny (B, A) = 0, for A, < A,.

Finally, we consider the Findspace problem concerningtiveringof objects.

Problem V Find the regionVy (B +p, A) of all the possible coverings of objedtby object
B + p, for given TGS

n

v (B +p, A) = {\Z/1 [52(B+p,Ai) ggi]}/\{/\ [A; < 5B +p,A) <A go]}.

=1
The solution is
No(B 4+, A) = [ Aler, 6,5, 40 | ) { N [AOF K B ANIA O K B, A }
i=1 i=1
For more simple constraim, (B +p, A) = A\;_,[01(B+p, 4;) < \; < 0], we getNy (B, A) =
N, A(\;, K, B, A;); see Figuré&e.
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Nrv (B, A)

(@) (b)

Figure 15: lllustration for the Problem IV. Heté = {A;, A,}, both A; and A, are line seg-
ments,B = {0}, \; > \q, and the regioV,y (B, .A) is connected. Dashed curves show pieces
of 01“11@2)()\1(2), B, Al(g)). Here (a)l1(2) =1, and (b)ll(g) = 2.

9.2 Placement of geometric objects

An approches commonly used for solving the placement pnoblare thesequential-single
method, suggested in [53] and [57], and thaltiple placement of several objects, suggested
in [2], [9], and [33].

The sequential-single placement consists in the sequi@tdiegement of the objects ofl
with respect to the&ontainer A, in a fixed order, sayl;, A,, ..., A,, according to the special
objective function. For instance, the valid positi@nof A; must be a point with extremal (or
specified) values of coordinates. (In case of planar problers (x;, y;) can have, for example,

a minimal, maximal, or specified; and/ory;.)

The multiple (or simultaneous) placement, as follows fresmiame, is independent on the
order of placement of the objects dfrelative toA,, and provides the placement of each object
of A, sayA;, taking into account the possibility of the placement ofaaibther object§ A, },
wherel < ¢ < n, andi # j. The goal is to find the sdt,; of all the feasible positions of;,
forj =1,...,n,with respect t4,.

The generalized sequential-single and multiple placemeitiems (i.e., the problems with
more complex constraints on the relative position of olgjgktin in [33] and [57]) and their
solutions have been studied in [42].

9.3 Application to the other types of geometric situations

The work in [41] has studied the following types of geomesitcations:

The translationalgeometric situationn direction . describes constraints on translational
distancesn a given directionbetween geometric objects. The minimum and maximum dis-
tancesy, »(B, A, u) taking into account theuterposition of B relative toA in directionu have
been introduced in [22] and [37]. The minimum and maximuntatises), »(B, A, u) taking
into account thenner position of B relative to A have been proposed in [39] and [41]. The
parametric families of objects corresponding to the distann a given direction are obtained
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Figure 16: lllustration for the Problem V. (a) An objectis= {A;, A, A3} and B. (b) Here
the regionVy (B, A) is siply connectedAC (B + p), forp € Ny (B, A); Ay =0, A2 < 0, and
A3 = Ao, respectively. Dashed lines sh@h, (\;_3, B, A).

by using thepartial vector operations on objects, which are generalizationhe@Minkowski
operations. See [41] and [45] for more detailes.

The rotational geometric situation describes constraints on minimum aagimumrota-
tional distances between geometric objects. Denotd bthe image ofA in polar coordinates,
i.e., A* = {(r,0) | (rcos,rsinf) € A}. Then a copy4? of A rotated by an angle around
the origin O corresponds to a copyt* + {(0, ¢)} of A* translated by a point0, ¢) in polar
coordinates. Therefore one can usejtlhetial vector operations in polar coordinates for mod-
eling the relative position of geometric objects undertiotes. The rotational distances and the
translational distances in a given direction have usediht@formalize the constraints on the
relative position of links in problems of modeling of mecksam’s motion.

The dynamicgeometric situation is defined, for moving objects, by reprging an objects
as a four-dimensional sets in the space-tiitesee [6], [39], and [41]. (Note that the distances
between objects “in the space” and “in the time” are incorapka [64].)

Let A* = U,co.y[A®)], B* = Uigoy[B(#)] be the image oft, B in G*. We denote by’
the partial addition “by the time”, and b* the reflection ofB* with respect to the origi) in
R3. Let next\K* be the cylinder irG* with a basis\ K. Then the parametric family of objects

DK B A7) = | [AeBO@AK] = 4" B &K
te[0,1]

corresponds to the distaneg( B*, A*) = inf,co {71 [B(t), A(t)]} betweenA* and B*.

Itis clear that the suggested technique for solving thestedional spatial planning problems
can also be applied to geometric problems with the consildgpes of constaints on the relative
position of objects.

10 Computational issues

From the observations of Sections 8 and 9 it follows that thgp&ce map of spatial plan-
ning problem, is the region obtained by standard and/olagged Boolean operations, and by
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Minkowski operations on regular and/or non-regular olgetn general, the C-space map is a
non-regulargeometric object of various topology witton-manifoldooundary; see Remark 5
of Section 8. (Recall that the non-regular object may haveraal dangling faces/edges and/or
isolated points, and/or internal entities such as crackiéoansolated points [43].) Therefore
for implementation of spatial planning we need the methadgdpresentation and manipu-
lation of such an objects. In this section we briefly consither computer representations of
geometric objects that are suitable for solving the spataining problems, and the strategies
for computing the C-space maps.

Representaions of geometric objects. The two representation schemes that are most widely
used in solid modeling and computer graphics are boundamgsentation (BRep) and con-
structive solid geometry (CSG) [43]. Let be a point set ofR” (n = 2,3). CSGA) is a
Boolean composition of algebraic halfspaces using regadrset operations. BRep) is a
collection of closed faces/edges. The problems of CSG topB&aversion and of BRep to
CSG conversion have been studied in [43], [50], and [51].

The third type of representation scheme suitable for oupqae is the linear ray represen-
tation (LRRep) [31], [39], denoted by LRR]. (In [39] it is called the linear raster represen-
tation.) LRR(A) is an approximation of an objeet by a set of parallel segments belonging to
a grid L of parallel lines, i.e., LRR{)= A N L. Conversions between BRep and LRRep, and
between CSG and LRRep have been detally studied in [32].

The constructive non-regularized geometry (CNRG) methagofor representation and
manipulation of non-homogeneous (i.e., made of severatmadg with different properties),
non-closed point sets with internal structures and incetegboundaries have been suggested
in [48]. The work in [18] has proposed an approach for repregen of geometric objects with
non-manifold boundary.

The boundary representation of non-regular geometricctdbjgith non-manifold boundary
using the techniques of [18] and [48] have been studied ih [#2akes into account both the
geometry and the topology of objects. The work in [42] haw® alonsidered the topological
operations (complement, interior, closure, and regudéion) on a single non-regular object.

Boolean operations. Algorithms and implementation for computing the regulaedzet oper-
ations on polyhedral objects have been proposed in [44]alRinat the standard unioA U B

of two r-setsA and B always results in an-set, whereas the standard intersectibn B and
the standard set differenc€\ B need not be regular: the sétn B may have dangling edges,
e.g., in case wherd contacts withB along the portion of its boundary [43]; the s&{ B may
be partially open, e.g., in case whéré N iB # () [36], [44]. Algorithms for computing the
set operations on non-manifold boundary representatigectsbhave been proposed in [18]
and [46]. We assume below some familiarity with theory argbathms of [18] and [44].

As mentioned in [44], the algorithms will work with curvedjebts, and they are insensitive
to whether a solid’s boundary is or is not a two-manifold, enak is not connected. Hence, the
algorithms of [44] can be modified to compute the standardd&wooperations on non-regular
objects of various topology with non-manifold boundary.

LetS = A®* B, wherex denotes one of the standard set operations. The mainagilised
in algorithms of [44] to compute the boundary$éare the set membership classification (SMC)
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[59], and the combining classifications, defined by meansefregularized set operations.
See [44] and [59] for detalils.

In [42] the algorithms of [44] have been modified for compgtithe standard Boolean
set operations on non-regular (possibly unbounded) getnuddjects of various topology, for
BReps. To define and to combine the classifications the wofdhhave used the standard,
but not a regularized set operations.

Minkowski operations. Many various algorithms to compute the Minkowski operagibave
been proposed. Detailed surveys of previous work on comg@tiie Minkowski operations can
be found in [13], [20], [25], [26], [36], [60], and [63]. Algithms for computing the Minkowski
sums and the Minkowski differences in two and three dimerssare given, e.g., in [2], [3],
[14], [15], [17], [25] — [29], [33], [37], and [60], for BRepsand in [31] and [39], for LRReps.
Note that the referenced algorithms perform computing thekivski operations on regular
objects. They can generate the manifold boundaries andoaigpplicable to the cases where
the boundary of the resulting object is non-manifold; sé3 {ér details.

In [12] and [20] have been presented an algorithmgsdbustandefficientconstruction of
planar Minkowski sums for polygons using exact rationalhanietic. In contrast with most
existing techniques the algorithms of [12], [20] directlgrulle the degenerate configurations,
arising in the boundary of the Minkowski sum, such as intestdated points and/or coinciding
edges. In other words, these algorithms compute the outeiage of A and B, i.e., the
boundary of the open sétl®iB (see subsection 2.1). The recent works in [61] and [62] have
presented an algorithms for exact and efficient constmaifdVlinkowski sums of polygons,
and for exact and approximate construction of offset pahggaespectively, that handle the
degenerate configurations also. Hence, the algorithmsajf [20], [61], and [62] allow to
construct the parametric families of polygonal objectsduee computing the C-space maps.

The algorithms of [12] and [20] are based on convex deconipasif polygons. However,
as mentioned in [3], not all curved objects permit convexodegosition, e.g., an object with
an inward concave edge. Therefore to handle the curvedtsbjemre suitable are the methods
that deal with the geometric objects directly.

In [42] the algorithms of [3] have been modified for computthg Minkowski operations
on non-regular objects of various topology, for BReps, gsire techniques of [18] and [48].

Distances between geometric objects.Many algorithms for computing the distances be-
tween geometric objects have been developed (see [27]ril€dsurveys of previous work
on computing the MTD between regular objects can be found @, [13], [16], [21], [27],
and [35]. Algorithms for computing the distances concegrtine outer relative position of
objects in two and three dimensions (see subsection 2.2yiaeda, e.g., in [7], [10], [13]
— [17], [35], [37], and [52], for BReps, and in [39] and [41hrfLRReps. The algorithms
of [12], [20], and [61] for robust construction of planar Miowski sums can be used for com-
puting the MTD between non-regular polygonal objects.

Algorithms for computing the distances concerning the ammhent of objects in two and
three dimensions (see subsection 5.1) are given in [39] 4b}] for LRReps. Note that for
this goal can also be used algorithms for computing the Mirgko difference, for BReps; see,
e.g., [14] and [15]. Algorithms for computing the distancescerning the covering of objects
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(see subsection 5.2) and algorithms for computing themists.concerning the containment of
objects are similar.

Algorithms for computing the translational distances inaeqg direction in two and three
dimensions are given in [10], [13], [22], and [52], for BRejp&d in [39] and [41], for LR-
Reps, respectively. The algorithms of [39] and [41] are Hasethe partial vector operations
(see subsection 9.1). Algorithms for computing the rotatlalistances and the partial vector
operations in polar coordinates are given in [41].

Thus, using the algorithms for computing the various tydetisiances between geometric
objects provide solving the generalized distance querglpr, as defined in subsection 1.3.
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