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Abstract

When using images to locate objects, there is the problenomwécting for dis-
tortion and misalignment in the images. An elegant way ofisgl this problem
is to generate an error correcting function that maps pamen image to their
corrected locations. We generate such a function by fittipglgnomial to a set of
sample points. The objective is to identify a polynomialtthasses “sufficiently
close” to these points with “good” approximation of intemir@e points. In the
past, it has been difficult to achieve good global polynorajgroximation using
only sample points. We report on the development of a globlgihmmial approx-
imation algorithm for solving this problem.

Key Words: Polynomial approximation, interpolation, ineagctification.

1 Introduction

The problem that is addressed here occurred in the contakieoflevelopment of a
simple, low-cost robotic exhibit for demonstrating the cept of intelligent robotics to
the general public. Intelligent robotics deals with the osgensors to enhance a robots
performance in an uncertain environment. For the exhil@timplemented a visually-
guided pick-and-place robot. The robot uses an image tardete the location of
objects placed arbitrarily on a flat surface and demonstrstiecess in locating the
objects by manipulating them. The exhibit consists of a ticharm that is fixed in
front of a flat work surface. Two pedestals are placed anyavhéthin reach of the
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arm. One pedestal is blue and the other is green. A blue bplaed on the blue
pedestal and the robot must pick up the ball and place it orgteen pedestal. An
ordinary webcam is placed in a frame above the work surfadesamsed to determine
the location of the pedestals so that the arm can be guideddingly. Fig.[1(a) shows
the camera’s view of the workspace. Once the exhibit has betuap, camera, robot
and workspace are all fixed relative to one another.

(a) unrectified image (b) rectified image

Figure 1: Rectification of an image of a test pattern placed over theti®lvorkspace taken

from a severely misaligned camera. A grid has been supesetpon the images to aid in
comparing the horizontal and vertical alignment of imagadees. Although the original images
are colour coded, the images shown are monochrome. If ther dgfp dot and the upper right
dot are ignored, the rest of the dots in (b) sample the areaeofvbrkspace that is within reach
of the robot.

There is therefore the problem of determining the locatibthe colour-coded
pedestals based on their image. This problem is compound#ttfact that the we-
bcam produces significant image distortion, and by the faait the position and ori-
entation of the camera relative to the work surface may n@xaetly the same every
time the exhibit is set up. A similar problem occurs when antpmated mechanism
is taken apart for maintenance. The mechanism usually neustdalibrated when it is
reassembled. In this sense, we are addressing the probleaspfecalibration of the
vision component of our robotic exhibit.

In processing the image, there is a need to rectify significmage distortion
caused by the optical properties of the camera and by emgoesitioning the cam-
era during set up of the exhibit. We solve this problem by uheit@ing a mapping from
the pixel locations of image points to the physical locatiof corresponding source
points. The mapping has to be determined empirically inicimescalibrate the vision
system each time the apparatus is set up. The pixel positibtiee images of key
points in a test pattern are mapped to the known locationkesfet key points. This
partial mapping is then used to approximate a mapping foettiee image.

In [1], Brown surveyed and classified several establishetthous for determining
the mapping from pixel position to source location for a ceand&Jsing Brown'’s clas-
sification, the errors caused by distortion and misalignraes static in the sense that
they do not change from image to image taken with the samereaimthe same posi-
tion. Static distortions can be rectified in a one-time-@@jup process via calibration
techniques. Our method may be regarded as a calibrationitpah

Brown classifies the distortion due to camera properties&srial and the mis-



alignment as external. Our approach does not require thefuemey sort of model of
the characteristics of the camera or the geometry of how agéts captured. We treat
the mechanism by which source points are captured as images jas a “black box”,
the inner workings of which is not modelled. We thereforediarthese internal and
external distortions without having to distinguish betwégem.

Furthermore, we are concerned with geometric distortiendistinct from photo-
metric distortions. The effect of photometric distorticar® minimised by using pri-
mary colours (red, green, blue) for the key features in tlemasand either black or
white for the other features. Features can therefore beifiehby colour without re-
gard for intensity values. Colour distortions are handhgdiltering out colours below
a fixed saturation value using a median filter to remove spsckhd discretising the
remaining colours to fully saturated red, green or blde [Zsual artifacts are then
located by looking for regions within the image with the ammiate colour.

The problem is thus reduced to one of finding an adequate gippation of a total
mapping from pixel positions to object locations using acfetample points. Three
popular approaches to solving this problem are: the use aftiitial neural network;
the use of a piecewise interpolation technique to fit curf@sotosen form in between
the sample points; the use of polynomial interpolation ta fiblynomial to the sample
points.

Artificial neural networks are popular among engineers li@irtability to gener-
alise from sample data. We find it difficult to argue on praatgrounds against this
approach. However, for us, the main difficulty with this nahs its inability to yield
a representation of the approximating function that is pesh@lent from that of the neu-
ral network itself. However, recent advances in the usegslaiaic training of neural
networks to produce closed form analytic solutions are esking this problem [3]4].

Piecewise interpolation is popular among the data visatidis community for its
ability to handle localised distortionsi[1]. Given samplgirgs on a planar surface,
the domain must be divided into polygonal segments with $ardpmain values as
vertices. A smooth surface segment is then fitted over eatfgqo such that the
sample points associated with the vertices lie on the seyrfand the edges associated
with adjacent segments meet in a prescribed way. There &lysoore than one way
to segment the domain space, and different segmentatiopsyiela very different
interpolations.

Global (as opposed to piecewise) polynomial interpolaantheoretical possibil-
ity that has proven elusive in practice. The Stone-WeiasstiTheorerni [5,/6] estab-
lishes the existence of a polynomial approximation for gverl-valued continuous
function defined on a closed interval. Therefore, as londhasample data does not
admit the existence of discontinuities, we should be ablBtta polynomial to the
points with an arbitrary degree of precision. The problerefeplified by Runge’s
function [5,[7]) is that successive interpolations do natassarily converge as more
data points are added to the set of sample points (c.f. Falbesrem([5, 7]). We will
refer to this problem later as tloenvergence problem

Our solution is similar to global polynomial interpolatiorlowever, the fact that
we are dealing with noisy data allows us to relax the requim@rfor an exact fit and to
focus instead on the suggested shape of the function. Iteuse of this relaxed focus
on an exact fit that we refer to our problem as an approximgtioblem rather than an



interpolation problem. By focusing on the suggested shagieedunction, we directly
address the convergence problem.

In this paper, we present the generic function approximadgigorithm and use
image rectification as an example of its use. In se¢fion 2,eveldp the theory behind
the approximation algorithm in the univariate case. Sed@aliscusses the bivariate
version of the approximation algorithm that is used to solwerobot vision problem.
Sectiorl 2 summarizes our findings.

2 Polynomial approximation of functions

In the univariate case, the polynomial approximation peobkan be defined as fol-
lows:

Definition 1 (The univariate polynomial approximation problem) Find a polynomial
P(z) that fits a set ofn sample pointsz;, y;); wherei = 1,2,...,m and thex; are
distinct; such that:

rfil)dyl —P(x;)| <efore>0

That is, we are trying to identify a polynomidt(z), that fits a finite set of points to a
degree of precision determined byThe condition that the; must be distinct ensures
that there are no discontinuities in the target functionheédwise, a solution is not
assured.

The Weierstrass approximation theorerm([3,15, 7] assurekaighis is a solvable
problem fore > 0:

Theorem 1 (Weierstrass)If F is any continuous function on the finite closed interval
[a, b], then for everye > 0 there exists a polynomid?, (x) of degreen (wheren
depends o) such that:

max |F(z) — P, (z)] <e

z€la,b]

Our finite set of points is not generated from a known functloat we are trying
to approximate, so we will be looking instead for an appration that generates
intermediate points that are “good” in some generic sense.rafjuire the algorithm
to yield an approximating polynomial that does not “curveinecessarily between
sample points. In our algorithm, we try to conservativelgfhape to the sample points
using a linear combination of Chebyshev polynomials. A @rerfice for fitting lower
order Chebyshev polynomials reflects a preference for grsipdpes. This emphasis
on simple shapes addresses the convergence problem byduihgadetail when it
results in a better fit.

Section[ 2.1l presents the basis for our algorithm in its pguiesn and explains
why it is inadequate. We refer to this algorithm as the Cétesector based (CVB)
interpolation. This algorithm is of theoretical interestlyy since it produces results
similar to Lagrange interpolation, with the same convecgegproblems illustrated by
Runge and covered by Fabers theorem [5,7]. It sets the soempeesentation of the
modified version of the algorithm. In sectibn .4, we preshatmodified algorithm
that gives better results on the same data in terms of captthie suggested shape of
the curve. We refer to this second algorithm as the CVB appration algorithm.



2.1 Casting the problem in Cartesian vector space

We address the approximation problem by finding a linear éoation of the firstn
Chebyshev polynomials of the first kind that exhibits theirdesproperties oP(x).
Thus:

n—1
P(z) =Y a;Ti(z) (1)
=0

° TZ(.I') = 2ZCTZ'_1(.I') — Ti_g(l'), fori > 1.

The problem is to find a set of coefficients, : = 0,...,n — 1 that establish a fit.
Although other sets of basis polynomials exist, Chebysloégrmmials reputedly yield
good interpolation results. In what follows, we will assumiéhout loss of generality
thatx falls within the interval—1, 1].

The fact that we are using a finite set of sample points allesw® ueformulate the
problem as one involving vectors in a Cartesiarspace; wheren is the number of
sample points. For this purpose the problem is restatedlas/fo

Definition 2 (The univariate Cartesian vector based (CVB) ptynomial approximation problem)
Given

e asetof points(z;,y;) € R%,i=1,...,m;

e a set ofm-dimensional Cartesian vectors;, j = 0,...,n — 1, such that the
i'th component of;; is equal toT;(z;), fori =1,...,m;

e a Cartesian vectory such that the’'th component ofy is equal toy;, fori =
1

AR (O
e areal valuee (e > 0);
find values for a set of scalar quantities;,, such that:
« =310 a7y,
®0=rvy—p;
e |§%| < e for each componend, of § (i = 1,...,m).
For example, the representation for the expression
2 +2x+1

as a linear combination of Chebyshev polynomials is:

15T0(.”L‘) + 2T1(.’L‘) + 05T2($)



Table 1:The CVB representation of a curve fit.

i Z; Yi To (ml) T1 (CCZ) T2 (‘I'L) aoTo (CCZ) a1T1 (CCZ) asz (‘I'L) P(CCZ)
1]1-10|0.0] 1.0 -1.0 1.0 15 -2.0 0.5 0.0
2|1 00|10/ 10 0.0 -1.0 15 0.0 -0.5 1.0
3| 10|40]| 10 1.0 1.0 15 2.0 0.5 4.0

Table[1 shows the situation for this function for three eyesplaced sample points.
In this example, each Chebyshev polynomial yields a 3-dsioeral Cartesian vector.
A linear combination of these vectors yields a solution. Wk ngfer to the vectors
generated by the polynomial termstasm vectors

If the term vectors; are orthogonal, they may be taken as basis vectors and solu-
tion values for the coefficients,;, may be directly obtained from the projection-pf
on eachr;, respectively.

However, orthogonality does not hold in general, as iletetd by the set of points
in Table[1. An obvious solution to this dilemma is to first itignan orthogonal set of
vectors corresponding to the term vectors and use this skttésmine a solution. We
developed an algorithm to do just this. We refer to it as@MB interpolation

2.2 The CVB interpolation

This algorithm computes an orthogonal set of vectdes, o1, . . ., 0,1}, from the
first m linearly independent term vectors, derives the projeation on each of these
vectors and modifies the coefficients of the term vectorsraacgly.

The orthogonalisation of the term vectors is based on tHewolg theorem on
which the well-knowrGram-Schmidt orthogonalisation procassased:

Theorem 2 Let{vy,vs,...,v,} be an orthonormal set of vectors in a vector space,
V. Then for any vectow € V, the vector:

is orthogonalto eaclw;,i =1,...,n.

This theorem can easily be generalised to apply to orthdgasadistinct fromor-
thonorma) sets as follows:

Theorem 3 Let{vy, va,...,v,} be an orthogonal set of vectors in a vector space,
Then for any vectow € V, the vector:

0w S WV
Z(W'Vz‘) ’

i=1

is orthogonalto eaclw;,i =1,...,n.



The additional factor in the summation normalises each

In our algorithm, we identify an orthogonal set of vectdrsy, 01, . .., 0,1} and
a set of scalarg; 1, such that:

O = 70 (2)

(75 - 0ok)

Pjk = T——= 3

J (Ok . Ok) ( )

j—1
o, = T.,-—ij,kok,forj:1,...,n—1 4

k=0

We refer to eacty; as anorthogonal componentf the corresponding;, for j =
0,...,n—1.

For the CVB interpolation, we need to expressas a function of,. Using [4) we
write:

J
0; = E 95,k Tk
k=0
j—1
= Tj—g Dj,kOk
k=0
j—1 k
= Tj—ij,kZQk,m
k=0 1=0
Jj—1 j-1
= Tj_g TlE Dj,kqk,1
=0 k=l

j—1  j—1
= T =) Tk Y _Piidik )
k=0 1=k
From [B) we get:
% = 1 (6)
7j—1
Gk = — Y Pk (7)
1=k

Fig. [2 shows the CVB interpolation in pseudocode. Table 2vshmtrace of the
CVB interpolation on the problem depicted in Takle 1.

2.3 Difficulties with polynomial interpolation

The following types of data serve to illustrate the difficestencountered with global
polynomial interpolation [8]:

e “Humped and flat data” that suggest a flat curve in some regind#ot in others
(Fig.[3).



1. Set all the coefficients, aj, to zero.
2. Compute the orthogonal components, o; and the scalars gjk.
3. For j=0,...,n—1 do

(a) Compute the error vector, 4.

(b) Set Oinc to

§°0j
(c) For k=0,...,5 do
Set ax to ar+ Oinc-gj k.
Endfor
Endfor

4. Return the set of coefficients, aj.

Figure 2: The CVB interpolation (see sectién P.2). Computationahitiehave been omitted
that deal with avoidance of representational and compmurtatierror.

Table 2:A trace of the CVB interpolation on the problem depicted ibl&&l.

ao a1 | a» o1l P(z1) P(x2) P(xs)
1.666666667| 0.0 | 0.0 | 2.943920289| 1.666666667| 1.666666667| 1.666666667
1.666666667| 2.0 | 0.0 | 0.816496581| -0.333333333| 1.666666667| 3.666666667
1.5 20| 05| 0.0 0.0 1.0 4.0

¢ “Noisy straight line data” withy values given at unevenly spacedalues (Fig.
[4).

e Data from functions that exhibit the convergence probléma dassical example
of which is the Runge function (Fid.] 5). Faber's theorem lagthes that the
Runge function is not the only function that exhibits thisipiem.

These types of data all exhibit a common problem: there sfségnt deviation of
the fitted polynomial from the shape of the curve suggestethéyata points. With
regard to the convergence problem, progressively adding mata points does not
lead to progressively better agreement between the fittythpmial and the suggested
shape of the curve (c.f. Faber’s Theorem). The problem afelafeviations from
ground truth at the intermediate points is usually addieBsene of two ways: either
additional information is supplied as data, or additiormaistraints are imposed as part
of the method of solution.

Hermite interpolation is an attempt to improve the qualityh® interpolation by
using additional information (first derivatives at the dptants), but suffers from the
fact that the additional information is local to the datarjgeiand so does not sufficiently
constrain what happens at the intermediate points. Whatseebe needed are global
constraints that affect the quality of the solution over¢hére interval.
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Figure 3: Interpolation and approximation of data that is flat in sortee@s and humped in
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35 . 3 .
P(x) — P(x)
3 piecewise linear ------- piecewise linear -~
25 i
25
2 2r ]
> 15 > 15+ B
1
1L i
0.5
ol 05 |
-05 L L L 0 L L L
-1 -0.5 0 05 1 -1 -0.5 0 05 1
X X
(a) interpolation on 9 points (b) approximation on data fi@h

Figure 4: Interpolation and approximation of noisy straight linealatith y values given at
unevenly spaced values.

The difficulty with applying global constraints in interpdion is the requirement
that a perfect fit be achieved at the sample points. This requeint gives the sample
points a special status relative to the intermediate poirtte fact that a constraint must
respect this special status would render it less than glabahe constraint would have
to behave differently in the vicinity of the sample pointsa perfect fit is not required,
then globabhpproximatiomrmay be used. Theory states that polynomial approximations
exist that follow closely any curve that can be described lbgrinuous real-valued
function on a closed interval. Global constraints can beawasily applied to selecting
the best approximation than to finding a perfect fit.
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Figure 5: Performance on the convergence problem. Data sets wene faka the Runge
function. Comparison of (a) with (b) illustrates that intelating with more data points does not
always give better results. Comparison of (c) and (d) itatst convergence on the same data
using the CVB approximation algorithm presented in se@gh

2.4 The CVB approximating algorithm

In this section, we present ouEVB approximating algorithmThis algorithm gives
better convergence than the CVB interpolation. This imprognt was achieved by
exploiting the observation that the shape of a function fitethe error vector§ (see
Definition[2), is captured in part by the direction &ftogether with the fact that the
direction of a Cartesian vector is invariant under scalaltiplication. We define the
shape of a function as follows:

Definition 3 (The shape of a function) Consider two continuous real-valued functions,
F, andF,, defined on the same closed intenaalF; andF, are of the same shape if
there exists a finite non-zero real scale factgisuch thaff'; = sFq

Thus, a particular shape is denoted by the set of all the ifumsthat are of that shape.
We will only explore in this paper the properties of this ceptof shape that are
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relevant to our exposition. In the first instance, we will ioa our discussion to real-
valued functions defined on the interva: [—1, 1].

Definition 4 (Value ratios) If two functions,F; andFs, are of the same shape, then
for any two distinct valuesy;,z2 € I, such thatF;(a2) # 0 (and, by extention,

Fa(z2) # 0), itis the case tha 122; = gzg;; Thatis, the ratio of'; (1) to Fy (z2)

is the same as the ratio &% (z1) to Fo(x3).

It is this invariance of value ratios across functions of shene shape that defines our
concept of shape.

Now consider a Chebyshev polynomidl, and its associated term vecter, de-
fined on a set of sample points. The ratios of the componentd@bne another are
value ratios ofl'. But these ratios also define the direction of the Cartesgaov, 7.
So that the shape @f determines the direction af However, since the finite dimen-
sional term vector cannot capture the infinity of value ratios that specify thepe of
T, the direction ofr only partly captures the shape'df

If we wish to compare the shape of a Chebyshev polynoriialyith the shape
suggested by, we can compare the direction of the corresponding ternovegtwith
the direction ofd. In particular, we look at the projection éfon 7 and express the
projection as a scalar multiple of The scalar factor thus identified is used to adjust
the coefficient ofT' in equation[{lL).

The main difference between the CVB approximating algarigmd the CVB in-
terpolation is an emphasis on fitting the shape of the terrtoveas distinct from an
orthogonal component thereof. However, since term veati@sot orthogonal in gen-
eral, more than one approximation may be possible. As a nef@eatecting a preferred
solution, we adopt an heuristic based on fitting lower ordems first.

Like the CVB interpolation, the CVB approximation algorithvorks by finding
projections of the error vector on a vector space identified Einite number of term
vectors. It gives preference to using the term vectors &ssacwith lower order
Chebyshev terms. The process is as follows (see [Hig. 6 foalgmithm in pseu-
docode):

e The first projection to be eliminated is the projectiorvadn 7o. Whenever the
projection ofd on a term vectorr, has been eliminatea, will be referred to as
having beervisited

o If 7; has been visited, therj_; must be re-visited. This rule is applied recur-
sively to revisits untilr is revisited.

e After 7; has been visited and all consequent revisits have takes,flaenT;
is visited.

e The process terminates when the required degree of accofdityhas been
obtained.

Reuvisits are necessary in order to maintain the fit of lowdeoterms. More preferred
terms are revisited after lesser preferred ones in ordeimonise the effect of revisits
on their fit. Thus the most preferred term is revisited last.

11



1. Set all the coefficients, aj, to zero.

2. Compute the error vector, §.

3. Set j to O.

4. While j <n and max(|§’]) > ¢ for i=1,---,m do

;6
(a) Set a; to aj + 2

T Tj

(b) Compute the error vector, 6.

(c) For k=(j—-1),(j—2),...,0 do
Compute the error vector, 6.
TE O
Set arp to ak+—T;Tk.
Compute the error vector, 6.
Endfor

(d) set j to j+1

EndWhile

5. Return the set of coefficients, a;.

Figure 6: The CVB approximation algorithm (see sectlon]2.4). Comanial details have
been omitted that deal with avoidance of representatiamhlcamputational error.

2.4.1 Convergence of the CVB approximation algorithm

To prove convergence, we consider the general situatiorhinohwve have visited the
first p term vectors and still have a non-zero residual error veltternote that we can
eliminate this error if we can approximate the error vecting a linear combination
of the Chebyshev polynomials that have not yet been visitéel.use the real-valued
version of the Stone-Weierstrass theoréin [6] to prove that$ possible.

Theorem 4 () Let X be a compact set and I€t(X) denote the space of continuous
real-valued functions defined oxi. Assume tha#l is a subalgebra o€(X). ThenA

is dense iNC(X) in the uniform norm iffA separates points and for eaghe X there
exists arf € A satisfyingf(z) # 0.

Proof
To prove that the polynomial vector spaPewith basis se{T,, | n > p} is dense in
C(X), where X is the interval [-1,1], prove that:

1. X is compact.
2. Pisasubalgebradf(X).

3. P separates points (for any distinct points, x> € X , thereis dl';,,n > p s.t.
Ty (21) # Tn(z2).

4. Foreach: € X thereisdl,,n > ps.t.T,(z) # 0.

12



Taking each condition in turn:

1. X is a closed and bounded interval on the real number line atldeiefore
compact.

2. Pis asubalgebra df(X) sinceP is closed for the usual multiplication and ad-
dition of functions, and for scalar multiplication by reallues. This is sufficient
to ensure that the defining properties of an algebra holdieistibspace? as
they do forC(X).

3. Letzy,z9 € [—1,1] such thatr; # xo and T, (xz1) = T,(x2) . Given that
Tn(x) = cos(ncos™(x)), letxy = cos(61) andxy = cos(62) with §; > 65 and
01,6 € [0, 7]. If Tp(21) = Tr(a2), we getcos(nby) = cos(nbs). Thisimplies
that eithemf; (mod 27) = nfs (mod 27) or —(nd; (mod 27) = 27 — (nbs
(mod 27)), which gives

0, — 6y = N for some integerN (8)
n

Sinced,, 03 € [0, 7] andf; > 0, it follows from (8) that:

N 1
0< — <= 9)
n 2

Now, T,,+1(z1) = cos((n + 1)6;). So that from[(B):
(n+1)0; =27 <N + %) + (n+1)6; (10)

From [9) and[(Z0) we can conclude that((n + 1)61) # cos((n + 1)62). So
thatT,,,, separates the points.

4. The zeroes dt’,, are given byg‘J(.") = cos (%) forj =1,...,n. Sothat

To (") = 0. Letol™ = 207 so thatc!™ = cos (67)). 1f ¢ is also

2n
a zero ofT,, ;1 thenT, 1 (gj(.")) = cos ((n + 1)95.")) = 0. This implies that

9;") is a multiple ofw. However, by definition, this is not the case. § )
cannot also be a zero df,,4+1. Therefore, for any € [-1,1], if T,(z) = 0,
thenT,,1(z) # 0 and the result follows.

Since we are solving the problem in the Cartesiasspace identified by the:
sample points, we must prove that the subspace identifideetset ofr,,, wheren > p,
contains term vectors a linear combination of which willlga vector arbitrarily close
to the error vector.

Proof
Since the term vectors are derived from the Chebyshev poiljais and the subspace
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PisdenseinC(X), it follows that there is a linear combination of Chebyshelypo-
mials in this subspace that is arbitrarily close to a funtpassing through the points
of the error vector. This will identify a linear combinatiofiterm vectors that is arbi-
trarily close to the error vector. There will therefore ajwde at least one more term
vector that reduces the magnitude of the error vector.

As for the rate of convergence, it is a well-known result ip@gximation theory
that if m is the number of sample points, good results can be obtaingthbing your
sample points at the zeroes ©f,,,;. This yieldsm orthogonal term vectors. For
these points, the CVB approximation algorithm yields thesaolution as the CVB
interpolation algorithm. Furthermore, the quality of thgpeoximation is consistent
with the shape fitting properties of the CVB approximaticgoaithm.

Since we were using noisy data, we did not exploit this reisudtur application.
Instead, we used heavy sampling of the particular area efast (the region of the
workspace that the robot can actually reach) with minimad@ang of points at the
limits of the x and y intervals (i.e. the corners of the regtalar workspace). In general,
because the norm of the residual error vector decreasesvagimes are fitted, and in
most cases only a component of the error vector is removeddesdith term visited,
convergence slows down as the algorithm progresses.

3 The bivariate CVB approximation algorithm

We use a bivariate version of the CVB approximation algonitio map image pixels
onto object locations. The bivariate approximation probie defined as follows:

Definition 5 (The bivariate polynomial approximation problem) Find a polynomial
P(x,y) that fits a set ofn sample pointgz;, y;, z;); wherei = 1,2,...,m and the
ordered pairs(z;, y;) are distinct; such that:

m%f{ lzi = P(xi,y:)| < e fore>0
1=

Thus:

n—1ln—1

P(z,y) =Y > ai;Ti(z)T;(y) (11)

i=0 j=0

whereT}, is the (k+1)th Chebyshev polynomial of the firstkindy € [-1,1]; a; ; =
0if i + 7 > n (i.e. the coefficients form a triangular array). As definBdy, y) is a
bivariate polynomial of degree — 1.

Casting this problem in Cartesian vector space, we definbitfagiate CVB poly-
nomial approximation problem as follows:

Definition 6 (The bivariate CVB polynomial approximation pr oblem) Given

e asetof points(z;,y;, z;) €ER3,i=1,...,m;
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e a set ofm-dimensional Cartesian vectors, ;, for j + k < n and j,k =
0,...,n — 1, such that the'th component ofr; ;. is equal toT;(x;) Tk (vs),
fori=1,...,m;

e a Cartesian vectory such that the’th component ofy is equal toz;, fori =
1,...,m;

e areal valuee (e > 0);
find values for a set of scalar quantities;, ., such that
e p=>ajrmirforj+k<nandjk=0,...,n—1;
®0=rvy—p;
e |§%| < e for each componend, of § (i = 1,...,m).

So that the bivariate CVB polynomial approximation problgwolves a search for
a linear combination ofn-dimensional Cartesian vectors; whereis the number of
sample points. Once the problem has been cast as a CVB prableroefficients of
the solution are found through a progressive reduction efréisidual error vector as
for the univariate CVB polynomial approximation problem.

In the univariate version of the CVB approximation algamititerms were visited in
order of increasing degree of the corresponding Chebystlgnpmial. In the bivariate
case, itis notimmediately obvious how to define the orderefgrence of terms, since
several terms can be of the same degree. The following jerefarg rules produce
acceptable results for our application:

Let (4, j) denote the term with coefficient ;:

e The term(a, b) is visited before termc,d) if a + b < ¢+ d. Thatis,i + j is
used as a primary measure of the “preference” for fitting en@ bver another.

e If a+b = c+d, then(a, ) is visited before ternic, d) if min(a, b) < min(c, d).
That is,min(¢, j) is used as a secondary heuristic preference metric.

e If a+b = c+ dandmin(a,b) = min(c, d), then{a, b) is visited before term
(¢,d) if a < ¢. This is an arbitrary ordering rule to sequence terms of kequa
preference.

o After term (i, j) is visited, only termga, b) wherea < i andb < j are revisited
and revisits take place in reverse order to visits.

Informally, when visiting, these rules give preference teran that is of lower degree
in the first instance, or if of equal degree, has a componexttishof lower degree
than any component of a lesser preferred term. When rengsitihe same preferences
are observed, but revisits are restricted to terms with a@omapts no greater than the
corresponding components of the last visited term. So thaeneral, preference is
given to lower order terms. Proof of convergence is simitathiat for the univariate
case given in sectidn 2.4.1.

15



3.1 Using the bivariate CVB approximation algorithm

Fig. [ (a) shows a deliberately severe misalignment of tineeca. The image of the
workspace appears to be rotated in a clockwise directior.cBimera also produces a
pincushion distortion that is reportedly imperceptibleniost observers but is signifi-
cant with respect to locating objects on the workspace. dbarected, distortion results
in an error of as much as eight millimetres in the locationroblject (corresponding
to a misplacement of four pixels in the location of an imagmpo

In comparison, Fig[1 (b) shows the results of using the mEw@ICVB approxi-
mation algorithm to rectify the image shown in Fig. 1 (a). Thetified image shows
a rectangular border to the workspace with edges that aterladigned horizontally
and vertically, as can be seen by comparing their alignmaétht the superimposed
grid. In practice, the misalignment will also be impercbfaj but both distortion and
misalignment are sufficient to cause errors in locating etbjen the workspace.

No attempt was made to ensure that the key points in the téstipavere evenly
spaced, or placed according to the zeros of a Chebyshevgrolgh Instead, all but
two of the key poin&were used to sample the region of the workspace that is within
reach of the robot. The two extra points were used primauilfi¢ the corners of the
workspace for illustrative purposes.

An even spacing of the key points in the test pattern is of tipreable utility since
this does not guarantee an even spacing of their images diigtdotion and misalign-
ment. Fig.[4 illustrates the stability of approximationscasnpared to interpolations
when unevenly spaced points are used. This characterfsdigproximations was ex-
ploited here.

As for using the zeroes of a Chebyshev polynomial, theredgjtrestion of which
Chebyshev polynomial to use, since, for the CVB approxiamatlgorithm, it is not
predetermined how many Chebyshev terms will be includederapproximation. For
the rectification depicted in Fid.] 1, the CVB approximatidgagithm yielded a so-
lution with 27 bivariate Chebyshev terms. This yields a polynomial of de@t A
bivariate polynomial of degree can have up te} (n + 1)(n + 2) terms. Given that
twenty sample points were used and a bivariate polynomidegfee20? = 400 can
have up t®0601 terms, this represents a significant saving in computatmrexhead.

4 Summary and conclusions

We have developed what we believe to be a novel algorithm lfavad polynomial
approximation. We call this algorithm the Cartesian Ve&ased approximation algo-
rithm, or CVB approximation algorithm. This algorithm hawveral desirable features:

e It does not require one to fix the degree of the approximatoigrmmial ahead
of time. The algorithm is capable of progressively addinlypomial terms until
the required precision of fit is achieved (or some specifieit lon resources is
reached).

1The key points are the centres of the solid circles in thepetern shown in Fig]1.
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e Since the algorithm progressively converges on a “clostsidgifunction”, an
approximate solution is available after each iteratione Tdnger the algorithm
runs, the better the fit.

e The algorithm yields better results on the type of data teaally presents diffi-
culties for global polynomial interpolation.

It has been proven that the algorithm will yield an approxiorathat is withine of a
perfect fit, where > 0 and the uniform norm is used as the distance metric. The rate
of convergence depends on the choice of data points.

Our focus has been on presenting the CVB approximation ighgorand we use
image rectification to illustrate its use. We show how glgimdynomial approximation
can be used to calibrate the vision component of a visuallyeglpick-and-place robot.
Calibration problems are sufficiently prevalent within fledd of robotics to render this
example relevant.

There are, however, other types of mappings within the fi€lalotics to which
the algorithm may not be directly applicable. For instariogjme series analysis a
study is made of a time-varying information-carrying sigfoa the purpose of predict-
ing its future behaviour. Since time series analysis attertgppredict future events,
there is an emphasis on extrapolation. Our algorithm iscasgeinterpolation rather
than extrapolation. It is an open question whether it candapted for time series
analysis.

Systems identification is another area that uses functipnoxpmation [9]. For
instance, ARMAX/NARMAX models are parametrised modelsydtesms consisting
of time-varying input values and output values, where tisaiamption is that the output
values depend in some way on current and past input valuester8yidentification
involves finding an instantiation of the parameters thdtgi@a predictor of system be-
haviour. If a parametrised system model can be contrivetdishzolynomial in form
with the parameters appearing as coefficients, and the dataectransformed to repre-
sent points on this polynomial, then any polynomial appmation method (including
ours) may be used to estimate the parameters.

In a case where several approximations exist, there is tastigm of how the char-
acteristics of the approximation relate to the adequachefésulting system model.
More specifically, it may be necessary to minimise some domsaécific cost function
that includes more than the error in the approximation aedctintribution of higher
order polynomial terms. By limiting the scope of this papethe details of the CVB
approximation algorithm per se, we leave such domain spegifestions open for fu-
ture discussion.

§88
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