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Abstract

When using images to locate objects, there is the problem of correcting for dis-
tortion and misalignment in the images. An elegant way of solving this problem
is to generate an error correcting function that maps pointsin an image to their
corrected locations. We generate such a function by fitting apolynomial to a set of
sample points. The objective is to identify a polynomial that passes “sufficiently
close” to these points with “good” approximation of intermediate points. In the
past, it has been difficult to achieve good global polynomialapproximation using
only sample points. We report on the development of a global polynomial approx-
imation algorithm for solving this problem.
Key Words: Polynomial approximation, interpolation, image rectification.

1 Introduction

The problem that is addressed here occurred in the context ofthe development of a
simple, low-cost robotic exhibit for demonstrating the concept of intelligent robotics to
the general public. Intelligent robotics deals with the useof sensors to enhance a robots
performance in an uncertain environment. For the exhibit, we implemented a visually-
guided pick-and-place robot. The robot uses an image to determine the location of
objects placed arbitrarily on a flat surface and demonstrates success in locating the
objects by manipulating them. The exhibit consists of a robotic arm that is fixed in
front of a flat work surface. Two pedestals are placed anywhere within reach of the

∗The original Paper entitled Better Global Polynomial Approximation for Image Rectification, was pub-
lished in the International Journal of Modelling and Simulation, Vol. 28, No. 3, 2008, pp 299-308.
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arm. One pedestal is blue and the other is green. A blue ball isplaced on the blue
pedestal and the robot must pick up the ball and place it on thegreen pedestal. An
ordinary webcam is placed in a frame above the work surface and is used to determine
the location of the pedestals so that the arm can be guided accordingly. Fig. 1(a) shows
the camera’s view of the workspace. Once the exhibit has beenset up, camera, robot
and workspace are all fixed relative to one another.

(a) unrectified image (b) rectified image

Figure 1: Rectification of an image of a test pattern placed over the robot’s workspace taken
from a severely misaligned camera. A grid has been superimposed on the images to aid in
comparing the horizontal and vertical alignment of image features. Although the original images
are colour coded, the images shown are monochrome. If the upper left dot and the upper right
dot are ignored, the rest of the dots in (b) sample the area of the workspace that is within reach
of the robot.

There is therefore the problem of determining the location of the colour-coded
pedestals based on their image. This problem is compounded by the fact that the we-
bcam produces significant image distortion, and by the fact that the position and ori-
entation of the camera relative to the work surface may not beexactly the same every
time the exhibit is set up. A similar problem occurs when any automated mechanism
is taken apart for maintenance. The mechanism usually must be recalibrated when it is
reassembled. In this sense, we are addressing the problem ofeasy recalibration of the
vision component of our robotic exhibit.

In processing the image, there is a need to rectify significant image distortion
caused by the optical properties of the camera and by errors in positioning the cam-
era during set up of the exhibit. We solve this problem by determining a mapping from
the pixel locations of image points to the physical locations of corresponding source
points. The mapping has to be determined empirically in order to recalibrate the vision
system each time the apparatus is set up. The pixel positionsof the images of key
points in a test pattern are mapped to the known locations of these key points. This
partial mapping is then used to approximate a mapping for theentire image.

In [1], Brown surveyed and classified several established methods for determining
the mapping from pixel position to source location for a camera. Using Brown’s clas-
sification, the errors caused by distortion and misalignment are static in the sense that
they do not change from image to image taken with the same camera in the same posi-
tion. Static distortions can be rectified in a one-time-onlysetup process via calibration
techniques. Our method may be regarded as a calibration technique.

Brown classifies the distortion due to camera properties as internal and the mis-
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alignment as external. Our approach does not require the useof any sort of model of
the characteristics of the camera or the geometry of how an image is captured. We treat
the mechanism by which source points are captured as image points as a “black box”,
the inner workings of which is not modelled. We therefore handle these internal and
external distortions without having to distinguish between them.

Furthermore, we are concerned with geometric distortions as distinct from photo-
metric distortions. The effect of photometric distortionsare minimised by using pri-
mary colours (red, green, blue) for the key features in the scene and either black or
white for the other features. Features can therefore be identified by colour without re-
gard for intensity values. Colour distortions are handled by filtering out colours below
a fixed saturation value using a median filter to remove speckles and discretising the
remaining colours to fully saturated red, green or blue [2].Visual artifacts are then
located by looking for regions within the image with the appropriate colour.

The problem is thus reduced to one of finding an adequate approximation of a total
mapping from pixel positions to object locations using a setof sample points. Three
popular approaches to solving this problem are: the use of anartificial neural network;
the use of a piecewise interpolation technique to fit curves of a chosen form in between
the sample points; the use of polynomial interpolation to fita polynomial to the sample
points.

Artificial neural networks are popular among engineers for their ability to gener-
alise from sample data. We find it difficult to argue on practical grounds against this
approach. However, for us, the main difficulty with this method is its inability to yield
a representation of the approximating function that is independent from that of the neu-
ral network itself. However, recent advances in the use of algebraic training of neural
networks to produce closed form analytic solutions are addressing this problem [3, 4].

Piecewise interpolation is popular among the data visualisation community for its
ability to handle localised distortions [1]. Given sample points on a planar surface,
the domain must be divided into polygonal segments with sample domain values as
vertices. A smooth surface segment is then fitted over each polygon such that the
sample points associated with the vertices lie on the surface, and the edges associated
with adjacent segments meet in a prescribed way. There is usually more than one way
to segment the domain space, and different segmentations may yield very different
interpolations.

Global (as opposed to piecewise) polynomial interpolationis a theoretical possibil-
ity that has proven elusive in practice. The Stone-Weierstrass Theorem [5, 6] estab-
lishes the existence of a polynomial approximation for every real-valued continuous
function defined on a closed interval. Therefore, as long as the sample data does not
admit the existence of discontinuities, we should be able tofit a polynomial to the
points with an arbitrary degree of precision. The problem (exemplified by Runge’s
function [5, 7]) is that successive interpolations do not necessarily converge as more
data points are added to the set of sample points (c.f. FabersTheorem [5, 7]). We will
refer to this problem later as theconvergence problem.

Our solution is similar to global polynomial interpolation. However, the fact that
we are dealing with noisy data allows us to relax the requirement for an exact fit and to
focus instead on the suggested shape of the function. It is because of this relaxed focus
on an exact fit that we refer to our problem as an approximationproblem rather than an
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interpolation problem. By focusing on the suggested shape of the function, we directly
address the convergence problem.

In this paper, we present the generic function approximation algorithm and use
image rectification as an example of its use. In section 2, we develop the theory behind
the approximation algorithm in the univariate case. Section 3 discusses the bivariate
version of the approximation algorithm that is used to solveour robot vision problem.
Section 4 summarizes our findings.

2 Polynomial approximation of functions

In the univariate case, the polynomial approximation problem can be defined as fol-
lows:

Definition 1 (The univariate polynomial approximation problem) Find a polynomial
P(x) that fits a set ofm sample points(xi, yi); wherei = 1, 2, . . . ,m and thexi are
distinct; such that:

m
max
i=1

|yi − P(xi)| ≤ ǫ, for ǫ ≥ 0

That is, we are trying to identify a polynomial,P(x), that fits a finite set of points to a
degree of precision determined byǫ. The condition that thexi must be distinct ensures
that there are no discontinuities in the target function. Otherwise, a solution is not
assured.

The Weierstrass approximation theorem [3, 5, 7] assures us that this is a solvable
problem forǫ > 0:

Theorem 1 (Weierstrass) If F is any continuous function on the finite closed interval
[a, b], then for everyǫ > 0 there exists a polynomialPn(x) of degreen (wheren
depends onǫ) such that:

max
x∈[a,b]

|F(x) − Pn(x)| < ǫ

Our finite set of points is not generated from a known functionthat we are trying
to approximate, so we will be looking instead for an approximation that generates
intermediate points that are “good” in some generic sense. We require the algorithm
to yield an approximating polynomial that does not “curve” unnecessarily between
sample points. In our algorithm, we try to conservatively fita shape to the sample points
using a linear combination of Chebyshev polynomials. A preference for fitting lower
order Chebyshev polynomials reflects a preference for simple shapes. This emphasis
on simple shapes addresses the convergence problem by only adding detail when it
results in a better fit.

Section 2.1 presents the basis for our algorithm in its purest form and explains
why it is inadequate. We refer to this algorithm as the Cartesian vector based (CVB)
interpolation. This algorithm is of theoretical interest only, since it produces results
similar to Lagrange interpolation, with the same convergence problems illustrated by
Runge and covered by Fabers theorem [5,7]. It sets the scene for presentation of the
modified version of the algorithm. In section 2.4, we presentthe modified algorithm
that gives better results on the same data in terms of capturing the suggested shape of
the curve. We refer to this second algorithm as the CVB approximation algorithm.
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2.1 Casting the problem in Cartesian vector space

We address the approximation problem by finding a linear combination of the firstn
Chebyshev polynomials of the first kind that exhibits the desired properties ofP(x).
Thus:

P(x) =

n−1
∑

i=0

aiTi(x) (1)

whereTi(x) is defined forx ∈ [−1, 1] as

• T0(x) = 1,

• T1(x) = x,

• Ti(x) = 2xTi−1(x) − Ti−2(x), for i > 1.

The problem is to find a set of coefficients,ai, i = 0, . . . , n− 1 that establish a fit.
Although other sets of basis polynomials exist, Chebyshev polynomials reputedly yield
good interpolation results. In what follows, we will assumewithout loss of generality
thatx falls within the interval[−1, 1].

The fact that we are using a finite set of sample points allows us to reformulate the
problem as one involving vectors in a Cartesianm-space; wherem is the number of
sample points. For this purpose the problem is restated as follows:

Definition 2 (The univariate Cartesian vector based (CVB) polynomial approximation problem)
Given

• a set of points,(xi, yi) ∈ R
2, i = 1, . . . ,m;

• a set ofm-dimensional Cartesian vectors,τj , j = 0, . . . , n − 1, such that the
i’th component ofτj is equal toTj(xi), for i = 1, . . . ,m;

• a Cartesian vector,γ such that thei’th component ofγ is equal toyi, for i =
1, . . . ,m;

• a real valueǫ (ǫ > 0);

find values for a set of scalar quantities,aj , such that:

• ρ =
∑n−1

j=0 ajτj ;

• δ = γ − ρ;

• |δi| ≤ ǫ for each component,δi, of δ (i = 1, . . . ,m).

For example, the representation for the expression

x2 + 2x+ 1

as a linear combination of Chebyshev polynomials is:

1.5T0(x) + 2T1(x) + 0.5T2(x)
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Table 1:The CVB representation of a curve fit.
i xi yi T0(xi) T1(xi) T2(xi) a0T0(xi) a1T1(xi) a2T2(xi) P(xi)

1 -1.0 0.0 1.0 -1.0 1.0 1.5 -2.0 0.5 0.0
2 0.0 1.0 1.0 0.0 -1.0 1.5 0.0 -0.5 1.0
3 1.0 4.0 1.0 1.0 1.0 1.5 2.0 0.5 4.0

Table 1 shows the situation for this function for three evenly spaced sample points.
In this example, each Chebyshev polynomial yields a 3-dimensional Cartesian vector.
A linear combination of these vectors yields a solution. We will refer to the vectors
generated by the polynomial terms asterm vectors.

If the term vectorsτj are orthogonal, they may be taken as basis vectors and solu-
tion values for the coefficients,aj , may be directly obtained from the projection ofγ

on eachτj , respectively.
However, orthogonality does not hold in general, as illustrated by the set of points

in Table 1. An obvious solution to this dilemma is to first identify an orthogonal set of
vectors corresponding to the term vectors and use this set todetermine a solution. We
developed an algorithm to do just this. We refer to it as theCVB interpolation.

2.2 The CVB interpolation

This algorithm computes an orthogonal set of vectors,{o0,o1, . . . ,om−1}, from the
first m linearly independent term vectors, derives the projectionof γ on each of these
vectors and modifies the coefficients of the term vectors accordingly.

The orthogonalisation of the term vectors is based on the following theorem on
which the well-knownGram-Schmidt orthogonalisation processis based:

Theorem 2 Let {v1,v2, . . . ,vn} be an orthonormal set of vectors in a vector space,
V . Then for any vectorw ∈ V , the vector:

o = w −

n
∑

i=1

(w · vi)vi

is orthogonal to eachvi, i = 1, . . . , n.

This theorem can easily be generalised to apply to orthogonal (as distinct fromor-
thonormal) sets as follows:

Theorem 3 Let{v1,v2, . . . ,vn} be an orthogonal set of vectors in a vector space,V .
Then for any vectorw ∈ V , the vector:

o = w −

n
∑

i=1

(w · vi)

(vi · vi)
vi

is orthogonal to eachvi, i = 1, . . . , n.
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The additional factor in the summation normalises eachvi.
In our algorithm, we identify an orthogonal set of vectors,{o0,o1, . . . ,on−1} and

a set of scalarspj,k, such that:

o0 = τ0 (2)

pj,k =
(τj · ok)

(ok · ok)
(3)

oj = τj −

j−1
∑

k=0

pj,kok, for j = 1, . . . , n− 1 (4)

We refer to eachoj as anorthogonal componentof the correspondingτj , for j =
0, . . . , n− 1.

For the CVB interpolation, we need to expressoj as a function ofτk. Using (4) we
write:

oj =

j
∑

k=0

qj,kτk

= τj −

j−1
∑

k=0

pj,kok

= τj −

j−1
∑

k=0

pj,k

k
∑

l=0

qk,lτl

= τj −

j−1
∑

l=0

τl

j−1
∑

k=l

pj,kqk,l

= τj −

j−1
∑

k=0

τk

j−1
∑

l=k

pj,lql,k (5)

From (5) we get:

qj,j = 1 (6)

qj,k = −

j−1
∑

l=k

pj,lql,k (7)

Fig. 2 shows the CVB interpolation in pseudocode. Table 2 shows a trace of the
CVB interpolation on the problem depicted in Table 1.

2.3 Difficulties with polynomial interpolation

The following types of data serve to illustrate the difficulties encountered with global
polynomial interpolation [8]:

• “Humped and flat data” that suggest a flat curve in some regionsand not in others
(Fig. 3).

7



1. Set all the coefficients, aj, to zero.

2. Compute the orthogonal components, oj and the scalars qj,k.

3. For j = 0, . . . , n− 1 do

(a) Compute the error vector, δ.

(b) Set Oinc to
oj ·δ

oj ·oj

(c) For k = 0, . . . , j do

Set ak to ak +Oinc · qj,k.
Endfor

Endfor

4. Return the set of coefficients, aj.

Figure 2: The CVB interpolation (see section 2.2). Computational details have been omitted
that deal with avoidance of representational and computational error.

Table 2:A trace of the CVB interpolation on the problem depicted in Table 1.

a0 a1 a2 ‖δ‖ P(x1) P(x2) P(x3)

1.666666667 0.0 0.0 2.943920289 1.666666667 1.666666667 1.666666667
1.666666667 2.0 0.0 0.816496581 -0.333333333 1.666666667 3.666666667
1.5 2.0 0.5 0.0 0.0 1.0 4.0

• “Noisy straight line data” withy values given at unevenly spacedx values (Fig.
4).

• Data from functions that exhibit the convergence problem, the classical example
of which is the Runge function (Fig. 5). Faber’s theorem establishes that the
Runge function is not the only function that exhibits this problem.

These types of data all exhibit a common problem: there is significant deviation of
the fitted polynomial from the shape of the curve suggested bythe data points. With
regard to the convergence problem, progressively adding more data points does not
lead to progressively better agreement between the fitted polynomial and the suggested
shape of the curve (c.f. Faber’s Theorem). The problem of large deviations from
ground truth at the intermediate points is usually addressed in one of two ways: either
additional information is supplied as data, or additional constraints are imposed as part
of the method of solution.

Hermite interpolation is an attempt to improve the quality of the interpolation by
using additional information (first derivatives at the datapoints), but suffers from the
fact that the additional information is local to the data points and so does not sufficiently
constrain what happens at the intermediate points. What seems to be needed are global
constraints that affect the quality of the solution over theentire interval.
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(a) interpolation on 9 points (b) approximation on data from(a)

Figure 3: Interpolation and approximation of data that is flat in some places and humped in
others.

(a) interpolation on 9 points (b) approximation on data from(a)

Figure 4: Interpolation and approximation of noisy straight line data with y values given at
unevenly spacedx values.

The difficulty with applying global constraints in interpolation is the requirement
that a perfect fit be achieved at the sample points. This requirement gives the sample
points a special status relative to the intermediate points. The fact that a constraint must
respect this special status would render it less than global, as the constraint would have
to behave differently in the vicinity of the sample points. If a perfect fit is not required,
then globalapproximationmay be used. Theory states that polynomial approximations
exist that follow closely any curve that can be described by acontinuous real-valued
function on a closed interval. Global constraints can be more easily applied to selecting
the best approximation than to finding a perfect fit.
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(a) interpolation on 5 points (b) interpolation on 9 points

(c) approximation on data from (a) (d) approximation on datafrom (b)

Figure 5: Performance on the convergence problem. Data sets were taken from the Runge
function. Comparison of (a) with (b) illustrates that interpolating with more data points does not
always give better results. Comparison of (c) and (d) illustrate convergence on the same data
using the CVB approximation algorithm presented in section2.4.

2.4 The CVB approximating algorithm

In this section, we present ourCVB approximating algorithm. This algorithm gives
better convergence than the CVB interpolation. This improvement was achieved by
exploiting the observation that the shape of a function thatfits the error vector,δ (see
Definition 2), is captured in part by the direction ofδ, together with the fact that the
direction of a Cartesian vector is invariant under scalar multiplication. We define the
shape of a function as follows:

Definition 3 (The shape of a function) Consider two continuous real-valued functions,
F1 andF2, defined on the same closed interval,I. F1 andF2 are of the same shape if
there exists a finite non-zero real scale factor,s, such thatF1 = sF2

Thus, a particular shape is denoted by the set of all the functions that are of that shape.
We will only explore in this paper the properties of this concept of shape that are
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relevant to our exposition. In the first instance, we will confine our discussion to real-
valued functions defined on the intervalI = [−1, 1].

Definition 4 (Value ratios) If two functions,F1 andF2, are of the same shape, then
for any two distinct values,x1, x2 ∈ I, such thatF1(x2) 6= 0 ( and, by extention,
F2(x2) 6= 0), it is the case thatF1(x1)

F1(x2)
= F2(x1)

F2(x2)
. That is, the ratio ofF1(x1) toF1(x2)

is the same as the ratio ofF2(x1) toF2(x2).

It is this invariance of value ratios across functions of thesame shape that defines our
concept of shape.

Now consider a Chebyshev polynomial,T, and its associated term vector,τ , de-
fined on a set of sample points. The ratios of the components ofτ to one another are
value ratios ofT. But these ratios also define the direction of the Cartesian vector,τ .
So that the shape ofT determines the direction ofτ . However, since the finite dimen-
sional term vectorτ cannot capture the infinity of value ratios that specify the shape of
T, the direction ofτ only partly captures the shape ofT.

If we wish to compare the shape of a Chebyshev polynomial,T, with the shape
suggested byδ, we can compare the direction of the corresponding term vector,τ , with
the direction ofδ. In particular, we look at the projection ofδ on τ and express the
projection as a scalar multiple ofτ . The scalar factor thus identified is used to adjust
the coefficient ofT in equation (1).

The main difference between the CVB approximating algorithm and the CVB in-
terpolation is an emphasis on fitting the shape of the term vectors as distinct from an
orthogonal component thereof. However, since term vectorsare not orthogonal in gen-
eral, more than one approximation may be possible. As a meansof selecting a preferred
solution, we adopt an heuristic based on fitting lower order terms first.

Like the CVB interpolation, the CVB approximation algorithm works by finding
projections of the error vector on a vector space identified by a finite number of term
vectors. It gives preference to using the term vectors associated with lower order
Chebyshev terms. The process is as follows (see Fig. 6 for thealgorithm in pseu-
docode):

• The first projection to be eliminated is the projection ofδ on τ0. Whenever the
projection ofδ on a term vector,τ , has been eliminated,τ will be referred to as
having beenvisited.

• If τj has been visited, thenτj−1 must be re-visited. This rule is applied recur-
sively to revisits untilτ0 is revisited.

• After τj has been visited and all consequent revisits have taken place, thenτj+1

is visited.

• The process terminates when the required degree of accuracyof fit has been
obtained.

Revisits are necessary in order to maintain the fit of lower order terms. More preferred
terms are revisited after lesser preferred ones in order to minimise the effect of revisits
on their fit. Thus the most preferred term is revisited last.
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1. Set all the coefficients, aj, to zero.

2. Compute the error vector, δ.

3. Set j to 0.

4. While j < n and max(|δi|) > ǫ for i = 1, · · · , m do

(a) Set aj to aj +
τj ·δ

τj ·τj
.

(b) Compute the error vector, δ.

(c) For k = (j − 1), (j − 2), . . . , 0 do

Compute the error vector, δ.

Set ak to ak + τk·δ

τk·τk
.

Compute the error vector, δ.

Endfor

(d) Set j to j + 1

EndWhile

5. Return the set of coefficients, aj.

Figure 6: The CVB approximation algorithm (see section 2.4). Computational details have
been omitted that deal with avoidance of representational and computational error.

2.4.1 Convergence of the CVB approximation algorithm

To prove convergence, we consider the general situation in which we have visited the
first p term vectors and still have a non-zero residual error vector. We note that we can
eliminate this error if we can approximate the error vector using a linear combination
of the Chebyshev polynomials that have not yet been visited.We use the real-valued
version of the Stone-Weierstrass theorem [6] to prove that this is possible.

Theorem 4 () Let X be a compact set and letC(X) denote the space of continuous
real-valued functions defined onX . Assume thatA is a subalgebra ofC(X). ThenA
is dense inC(X) in the uniform norm iffA separates points and for eachx ∈ X there
exists anf ∈ A satisfyingf(x) 6= 0.

Proof
To prove that the polynomial vector spaceP with basis set{Tn | n > p} is dense in
C(X), where X is the interval [-1,1], prove that:

1. X is compact.

2. P is a subalgebra ofC(X).

3. P separates points (for any distinct points,x1, x2 ∈ X , there is aTn, n > p s.t.
Tn(x1) 6= Tn(x2).

4. For eachx ∈ X there is aTn, n > p s.t.Tn(x) 6= 0.

12



Taking each condition in turn:

1. X is a closed and bounded interval on the real number line and istherefore
compact.

2. P is a subalgebra ofC(X) sinceP is closed for the usual multiplication and ad-
dition of functions, and for scalar multiplication by real values. This is sufficient
to ensure that the defining properties of an algebra hold for the subspace,P as
they do forC(X).

3. Let x1, x2 ∈ [−1, 1] such thatx1 6= x2 andTn(x1) = Tn(x2) . Given that
Tn(x) = cos(n cos−1(x)), letx1 = cos(θ1) andx2 = cos(θ2) with θ1 > θ2 and
θ1, θ2 ∈ [0, π]. If Tn(x1) = Tn(x2) , we getcos(nθ1) = cos(nθ2). This implies
that eithernθ1 (mod 2π) = nθ2 (mod 2π) or −(nθ1 (mod 2π) = 2π − (nθ2
(mod 2π)), which gives

θ1 − θ2 =
2πN

n
for some integer,N (8)

Sinceθ1, θ2 ∈ [0, π] andθ1 > θ2, it follows from (8) that:

0 <
N

n
<

1

2
(9)

Now,Tn+1(x1) = cos((n+ 1)θ1). So that from (8):

(n+ 1)θ1 = 2π

(

N +
N

n

)

+ (n+ 1)θ2 (10)

From (9) and (10) we can conclude thatcos((n + 1)θ1) 6= cos((n + 1)θ2). So
thatTn+1 separates the points.

4. The zeroes ofTn are given byζ(n)j = cos
(

(2j−1)π
2n

)

for j = 1, . . . , n. So that

Tn

(

ζ
(n)
j

)

= 0. Let θ(n)j = (2j−1)π
2n so thatζ(n)j = cos

(

θ
(n)
j

)

. If ζ(n)j is also

a zero ofTn+1 thenTn+1

(

ζ
(n)
j

)

= cos
(

(n+ 1)θ
(n)
j

)

= 0. This implies that

θ
(n)
j is a multiple ofπ. However, by definition, this is not the case. Soζ

(n)
j

cannot also be a zero ofTn+1. Therefore, for anyx ∈ [−1, 1], if Tn(x) = 0,
thenTn+1(x) 6= 0 and the result follows.

�

Since we are solving the problem in the Cartesianm-space identified by them
sample points, we must prove that the subspace identified by the set ofτn, wheren > p,
contains term vectors a linear combination of which will yield a vector arbitrarily close
to the error vector.
Proof
Since the term vectors are derived from the Chebyshev polynomials and the subspace
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P is dense inC(X), it follows that there is a linear combination of Chebyshev polyno-
mials in this subspace that is arbitrarily close to a function passing through the points
of the error vector. This will identify a linear combinationof term vectors that is arbi-
trarily close to the error vector. There will therefore always be at least one more term
vector that reduces the magnitude of the error vector.

�

As for the rate of convergence, it is a well-known result in approximation theory
that if m is the number of sample points, good results can be obtained by placing your
sample points at the zeroes ofTm+1. This yieldsm orthogonal term vectors. For
these points, the CVB approximation algorithm yields the same solution as the CVB
interpolation algorithm. Furthermore, the quality of the approximation is consistent
with the shape fitting properties of the CVB approximation algorithm.

Since we were using noisy data, we did not exploit this resultin our application.
Instead, we used heavy sampling of the particular area of interest (the region of the
workspace that the robot can actually reach) with minimal sampling of points at the
limits of the x and y intervals (i.e. the corners of the rectangular workspace). In general,
because the norm of the residual error vector decreases as new terms are fitted, and in
most cases only a component of the error vector is removed with each term visited,
convergence slows down as the algorithm progresses.

3 The bivariate CVB approximation algorithm

We use a bivariate version of the CVB approximation algorithm to map image pixels
onto object locations. The bivariate approximation problem is defined as follows:

Definition 5 (The bivariate polynomial approximation probl em) Find a polynomial
P(x, y) that fits a set ofm sample points(xi, yi, zi); wherei = 1, 2, . . . ,m and the
ordered pairs(xi, yi) are distinct; such that:

m
max
i=1

|zi − P(xi, yi)| ≤ ǫ, for ǫ ≥ 0

Thus:

P(x, y) =

n−1
∑

i=0

n−1
∑

j=0

ai,jTi(x)Tj(y) (11)

whereTk is the (k+1)th Chebyshev polynomial of the first kind;x, y ∈ [−1, 1]; ai,j =
0 if i + j ≥ n (i.e. the coefficients form a triangular array). As defined,P(x, y) is a
bivariate polynomial of degreen− 1.

Casting this problem in Cartesian vector space, we define thebivariate CVB poly-
nomial approximation problem as follows:

Definition 6 (The bivariate CVB polynomial approximation pr oblem) Given

• a set of points,(xi, yi, zi) ∈ R
3, i = 1, . . . ,m;
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• a set ofm-dimensional Cartesian vectors,τj,k, for j + k < n and j, k =
0, . . . , n − 1, such that thei’th component ofτj,k is equal toTj(xi)Tk(yi),
for i = 1, . . . ,m;

• a Cartesian vector,γ such that thei’th component ofγ is equal tozi, for i =
1, . . . ,m;

• a real valueǫ (ǫ > 0);

find values for a set of scalar quantities,aj,k, such that

• ρ =
∑

aj,kτj,k for j + k < n andj, k = 0, . . . , n− 1;

• δ = γ − ρ;

• |δi| ≤ ǫ for each component,δi, of δ (i = 1, . . . ,m).

So that the bivariate CVB polynomial approximation probleminvolves a search for
a linear combination ofm-dimensional Cartesian vectors; wherem is the number of
sample points. Once the problem has been cast as a CVB problem, the coefficients of
the solution are found through a progressive reduction of the residual error vector as
for the univariate CVB polynomial approximation problem.

In the univariate version of the CVB approximation algorithm, terms were visited in
order of increasing degree of the corresponding Chebyshev polynomial. In the bivariate
case, it is not immediately obvious how to define the order of preference of terms, since
several terms can be of the same degree. The following preferencing rules produce
acceptable results for our application:

Let 〈i, j〉 denote the term with coefficientai,j :

• The term〈a, b〉 is visited before term〈c, d〉 if a + b < c + d. That is,i + j is
used as a primary measure of the “preference” for fitting one term over another.

• If a+b = c+d, then〈a, b〉 is visited before term〈c, d〉 if min(a, b) < min(c, d).
That is,min(i, j) is used as a secondary heuristic preference metric.

• If a + b = c + d andmin(a, b) = min(c, d), then〈a, b〉 is visited before term
〈c, d〉 if a < c. This is an arbitrary ordering rule to sequence terms of equal
preference.

• After term〈i, j〉 is visited, only terms〈a, b〉 wherea ≤ i andb ≤ j are revisited
and revisits take place in reverse order to visits.

Informally, when visiting, these rules give preference to aterm that is of lower degree
in the first instance, or if of equal degree, has a component that is of lower degree
than any component of a lesser preferred term. When revisiting, the same preferences
are observed, but revisits are restricted to terms with components no greater than the
corresponding components of the last visited term. So that in general, preference is
given to lower order terms. Proof of convergence is similar to that for the univariate
case given in section 2.4.1.
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3.1 Using the bivariate CVB approximation algorithm

Fig. 1 (a) shows a deliberately severe misalignment of the camera. The image of the
workspace appears to be rotated in a clockwise direction. The camera also produces a
pincushion distortion that is reportedly imperceptible tomost observers but is signifi-
cant with respect to locating objects on the workspace. If uncorrected, distortion results
in an error of as much as eight millimetres in the location of an object (corresponding
to a misplacement of four pixels in the location of an image point).

In comparison, Fig. 1 (b) shows the results of using the bivariate CVB approxi-
mation algorithm to rectify the image shown in Fig. 1 (a). Therectified image shows
a rectangular border to the workspace with edges that are better aligned horizontally
and vertically, as can be seen by comparing their alignment with the superimposed
grid. In practice, the misalignment will also be imperceptible, but both distortion and
misalignment are sufficient to cause errors in locating objects on the workspace.

No attempt was made to ensure that the key points in the test pattern were evenly
spaced, or placed according to the zeros of a Chebyshev polynomial. Instead, all but
two of the key points1 were used to sample the region of the workspace that is within
reach of the robot. The two extra points were used primarily to fix the corners of the
workspace for illustrative purposes.

An even spacing of the key points in the test pattern is of questionable utility since
this does not guarantee an even spacing of their images due todistortion and misalign-
ment. Fig. 4 illustrates the stability of approximations ascompared to interpolations
when unevenly spaced points are used. This characteristic of approximations was ex-
ploited here.

As for using the zeroes of a Chebyshev polynomial, there is the question of which
Chebyshev polynomial to use, since, for the CVB approximation algorithm, it is not
predetermined how many Chebyshev terms will be included in the approximation. For
the rectification depicted in Fig. 1, the CVB approximation algorithm yielded a so-
lution with 27 bivariate Chebyshev terms. This yields a polynomial of degree7. A
bivariate polynomial of degreen can have up to12 (n + 1)(n + 2) terms. Given that
twenty sample points were used and a bivariate polynomial ofdegree202 = 400 can
have up to80601 terms, this represents a significant saving in computational overhead.

4 Summary and conclusions

We have developed what we believe to be a novel algorithm for global polynomial
approximation. We call this algorithm the Cartesian VectorBased approximation algo-
rithm, or CVB approximation algorithm. This algorithm has several desirable features:

• It does not require one to fix the degree of the approximating polynomial ahead
of time. The algorithm is capable of progressively adding polynomial terms until
the required precision of fit is achieved (or some specified limit on resources is
reached).

1The key points are the centres of the solid circles in the testpattern shown in Fig. 1.
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• Since the algorithm progressively converges on a “closest fitting function”, an
approximate solution is available after each iteration. The longer the algorithm
runs, the better the fit.

• The algorithm yields better results on the type of data that usually presents diffi-
culties for global polynomial interpolation.

It has been proven that the algorithm will yield an approximation that is withinǫ of a
perfect fit, whereǫ > 0 and the uniform norm is used as the distance metric. The rate
of convergence depends on the choice of data points.

Our focus has been on presenting the CVB approximation algorithm and we use
image rectification to illustrate its use. We show how globalpolynomial approximation
can be used to calibrate the vision component of a visually guided pick-and-place robot.
Calibration problems are sufficiently prevalent within thefield of robotics to render this
example relevant.

There are, however, other types of mappings within the field of robotics to which
the algorithm may not be directly applicable. For instance,in time series analysis a
study is made of a time-varying information-carrying signal for the purpose of predict-
ing its future behaviour. Since time series analysis attempts to predict future events,
there is an emphasis on extrapolation. Our algorithm is based on interpolation rather
than extrapolation. It is an open question whether it can be adapted for time series
analysis.

Systems identification is another area that uses function approximation [9]. For
instance, ARMAX/NARMAX models are parametrised models of systems consisting
of time-varying input values and output values, where the assumption is that the output
values depend in some way on current and past input values. System identification
involves finding an instantiation of the parameters that yields a predictor of system be-
haviour. If a parametrised system model can be contrived that is polynomial in form
with the parameters appearing as coefficients, and the data can be transformed to repre-
sent points on this polynomial, then any polynomial approximation method (including
ours) may be used to estimate the parameters.

In a case where several approximations exist, there is the question of how the char-
acteristics of the approximation relate to the adequacy of the resulting system model.
More specifically, it may be necessary to minimise some domain specific cost function
that includes more than the error in the approximation and the contribution of higher
order polynomial terms. By limiting the scope of this paper to the details of the CVB
approximation algorithm per se, we leave such domain specific questions open for fu-
ture discussion.

§§§
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