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Abstract—Probabilistic sampling methods have become very
popular to solve single-shot path planning problems. Rapidly-
exploring Random Trees (RRTs) in particular have been shown
to be efficient in solving high dimensional problems. Even
though several RRT variants have been proposed for dynamic
replanning, these methods only perform well in environments
with infrequent changes. This paper addresses the dynamic
path planning problem by combining simple techniques in a
multi-stage probabilistic algorithm. This algorithm uses RRTs
for initial planning and informed local search for navigation.
We show that this combination of simple techniques provides
better responses to highly dynamic environments than the RRT
extensions.

Keywords-artificial intelligence; motion planning; RRT;
Multi-stage; local search; greedy heuristics;

I. INTRODUCTION

The dynamic path-planning problem consists in finding a
suitable plan for each new configuration of the environment
by recomputing a free-collision path using the new informa-
tion available at each time step [5]. This kind of problem can
be found for example by a robot trying to navigate through
an area crowded with people, such as a shopping mall or
supermarket. The problem has been addressed widely in its
several flavors, such as cellular decomposition of the con-
figuration space [12], partial environmental knowledge [11],
high-dimensional configuration spaces [6] or planning with
non-holonomic constraints [8]. However, simpler variations
of this problem are complex enough that cannot be solved
with deterministic techniques, and therefore they are worthy
to study.

This paper is focused on finding and traversing a collision-
free path in two dimensional space, for a holonomic robot 1,
without kinodynamic restrictions 2, in two different scenar-
ios:

• several unpredictably moving obstacles or adversaries.
• partially known environment, when at some point in

time, a new obstacle is found.

1A holonomic robot is a robot in which the controllable degrees of
freedom is equal to the total degrees of freedom.

2Kinodynamic planning is a problem in which velocity and acceleration
bounds must be satisfied

Besides from one (or few) new obstacle(s) in the second
scenario we assume that we have perfect information of the
environment at all times.

We will focus on continuous space algorithms and won’t
consider algorithms that use discretized representations of
the configuration space, such as D* [12], because for high
dimensional problems, the configuration space becomes in-
tractable in terms of both memory and computation time, and
there is the extra difficulty of calculating the discretization
size, trading off accuracy versus computational cost.

The offline RRT is efficient at finding solutions but they
are far from being optimal, and must be post-processed for
shortening, smoothing or other qualities that might be de-
sirable in each particular problem. Furthermore, replanning
RRTs are costly in terms of computation time, as well as
evolutionary and cell-decomposition approaches. Therefore,
the novelty of this work is the mixture of the feasibility
benefits of the RRTs, the repairing capabilities of local
search, and the computational inexpensiveness of greedy
algorithms, into our lightweight multi-stage algorithm.

In the following sections, we present several path planning
methods that can be applied to the problem described above.
In section II-A we review the basic offline, single-query
RRT, a probabilistic method that builds a tree along the
free configuration space until it reaches the goal state.
Afterwards, we introduce the most popular replanning vari-
ants of the RRT: ERRT in section II-B, DRRT in section
II-C and MP-RRT in section II-D. Then, in section III
we present our new hybrid multi-stage algorithm with the
experimental results and comparisons in section IV. At last,
the conclusions and further work are discussed in section V.

II. PREVIOUS AND RELATED WORK

A. Rapidly-Exploring Random Tree

One of the most successful probabilistic sampling meth-
ods for offline path planning currently in use, is the Rapidly-
exploring Random Tree (RRT), a single-query planner for
static environments, first introduced in [9]. RRTs work
towards finding a continuous path from a state qinit to a
state qgoal in the free configuration space Cfree, by building
a tree rooted at qinit. A new state qrand is uniformly sampled
at random from the configuration space C. Then the nearest
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node, qnear, in the tree is located, and if qrand and the
shortest path from qrand to qnear are in Cfree, then qrand
is added to the tree. The tree growth is stopped when a node
is found near qgoal. To speed up convergence, the search is
usually biased to qgoal with a small probability.
In [7], two new features are added to RRTs. First, the
EXTEND function is introduced, which, instead of trying
to add directly qrand to the tree, makes a motion towards
qrand and tests for collisions.

Then a greedier approach is introduced, which repeats
EXTEND until an obstacle is reached. This ensures that most
of the time, we will be adding states to the tree, instead of
just rejecting new random states. The second extension is
the use of two trees, rooted at qinit and qgoal, which are
grown towards each other. This significantly decreases the
time needed to find a path.

B. ERRT

The execution extended RRT presented in [3] introduces
two RRTs extensions to build an on-line planner: the way-
point cache and the adaptive cost penalty search, which
improves re-planning efficiency and the quality of generated
paths. The waypoint cache is implemented by keeping a
constant size array of states, and whenever a plan is found,
all the states in the plan are placed in the cache with random
replacement. Then, when the tree is no longer valid, a new
tree must be grown, and there are three possibilities for
choosing a new target state. With probability P[goal], the
goal is chosen as the target; With probability P[waypoint], a
random waypoint is chosen, and with remaining probability
a uniform state is chosen as before. Values used in [3] are
P[goal]= 0.1 and P[waypoint]= 0.6.
In the other extension — the adaptive cost penalty search —
the planner dynamically modifies a parameter β to help it
finding shorter paths. A value of 1 for β will always extend
from the root node, while a value of 0 is equivalent to the
original algorithm. Unfortunately, the solution presented in
[3] lacks of implementation details and experimental results
on this extension.

C. Dynamic RRT

The Dynamic Rapidly-exploring Random Tree (DRRT)
described in [4] is a probabilistic analog to the widely used
D* family of algorithms. It works by growing a tree from
qgoal to qinit. The principal advantage is that the root of
the tree does not have to be changed during the lifetime
of the planning and execution. Also, in some problem
classes the robot has limited range sensors, thus moving
obstacles (or new ones) are typically near the robot and
not near the goal. In general, this strategy attempts to trim
smaller branches and farther away from the root. When new
information concerning the configuration space is received,
the algorithm removes the newly-invalid branches of the
tree, and grows the remaining tree, focusing, with a certain

probability(empirically tuned to 0.4 in [4]) to a vicinity
of the recently trimmed branches, by using the a similar
structure to the waypoint cache of the ERRT. In experimental
results DRRT vastly outperforms ERRT.

D. MP-RRT

The Multipartite RRT presented in [14] is another RRT
variant which supports planning in unknown or dynamic
environments. The MP-RRT maintains a forest F of dis-
connected sub-trees which lie in Cfree, but which are not
connected to the root node qroot of T , the main tree. At the
start of a given planning iteration, any nodes of T and F
which are no longer valid are deleted, and any disconnected
sub-trees which are created as a result are placed into F .
With given probabilities, the algorithm tries to connect T
to a new random state, to the goal state, or to the root of
a tree in F . In [14], a simple greedy smoothing heuristic
is used, that tries to shorten paths by skipping intermediate
nodes. The MP-RRT is compared to an iterated RRT, ERRT
and DRRT, in 2D, 3D and 4D problems, with and without
smoothing. For most of the experiments, MP-RRT modestly
outperforms the other algorithms, but in the 4D case with
smoothing, the performance gap in favor of MP-RRT is
much larger. The authors explained this fact due to MP-RRT
being able to construct much more robust plans in the face
of dynamic obstacle motion. Another algorithm that utilizes
the concept of forests is the Reconfigurable Random Forests
(RRF) presented in [10], but without the success of MP-RRT.

III. A MULTI-STAGE PROBABILISTIC ALGORITHM

In highly dynamic environments, with many (or a few but
fast) relatively small moving obstacles, regrowing trees are
pruned too fast, cutting away important parts of the trees
before they can be replaced. This reduce dramatically the
performance of the algorithms, making them unsuitable for
these class of problems. We believe that a better performance
could be obtained by slightly modifying a RRT solution
using simple obstacle-avoidance operations on the new col-
liding points of the path by informed local search. Then, the
path could be greedily optimized if the path has reached the
feasibility condition.

A. Problem Formulation

At each time-step, the proposed problem could be defined
as an optimization problem with satisfiability constraints.
Therefore, given a path our objective is to minimize an
evaluation function (i.e. distance, time, or path-points), with
the Cfree constraint. Formally, let the path ρ = p1p2 . . . pn
a sequence of points, where pi ∈ Rn a n-dimensional point
(p1 = qinit, pn = qgoal), Ot ∈ O the set of obstacles
positions at time t, and eval : Rn × O 7→ R an evaluation
function of the path depending on the object positions. Then,
our ideal objective is to obtain the optimum ρ∗ path that



minimize our eval function within a feasibility restriction
in the form

ρ∗ = argmin
ρ

[eval(ρ,Ot)] with feas(ρ,Ot) = Cfree (1)

where feas(·, ·) is a feasibility function that equals to
Cfree iff the path ρ is collision free for the obstacles Ot.
For simplicity, we use very naive eval(·, ·) and feas(·, ·)
functions, but this could be extended easily to more complex
evaluation and feasibility functions. The used feas(ρ,Ot)
function assumes that the robot is a punctual object (dimen-
sionless) in the space, and therefore, if all segments −−−−→pipi+1

of the path do not collide with any object oj ∈ Ot, we
say that the path is in Cfree. The eval(ρ,Ot) function will
be the points count of ρ, assuming that similar paths with
less points are shorter. This could be easily changed to the
euclidean distance, time, smoothness, clearness or several
other optimization criterions.

B. A Multi-stage Probabilistic Strategy

If solving equation 1 is not a simple task in static
environments, solving dynamic versions turns out to be even
more difficult. In dynamic path planning we cannot wait
until reaching the optimal solution because we must deliver
a “good enough” plan within some time quantum. Then, a
heuristic approach must be developed to tackle the on-line
nature of the problem. The heuristic algorithms presented
in sections II-B, II-C and II-D, extend a method developed
for static environments, which produce a poor response to
highly dynamic environments and an unwanted complexity
of the algorithms.

We propose a multi-stage combination of three simple
heuristic probabilistic techniques to solve each part of the
problem: feasibility, initial solution and optimization.

1) Feasibility: The key point in this problem is the hard
constraint in equation 1 which must be met before even
thinking about optimizing. The problem is that in highly
dynamic environments a path turns rapidly from feasible to
unfeasible — and the other way around — even if our path
does not change. We propose a simple informed local search
to obtain paths in Cfree. The idea is to randomly search for
a Cfree path by modifying the nearest colliding segment of
the path. As we include in the search some knowledge of the
problem, the informed term is coined to distinguish it from
blind local search. The details of the operators used for the
modification of the path are described in section III-C.

2) Initial Solution: The problem with local search algo-
rithms is that they repair a solution that it is assumed to
be near the feasibility condition. Trying to produce feasible
paths from scratch with local search (or even with evolution-
ary algorithms [13]) is not a good idea due the randomness
of the initial solution. Therefore, we propose feeding the
informed local search with a standard RRT solution at the
start of the planning, as can be seen in figure 1.

Figure 1. A Multi-stage Strategy for Dynamic Path Planning. This
figure describes the life-cycle of the multi-stage algorithm presented here.
The RRT, informed local search, and greedy heuristic are combined to
produce an expensiveness solution to the dynamic path planning problem.

3) Optimization: Without an optimization criteria, the
path could grow infinitely large in time or size. Therefore,
the eval(·, ·) function must be minimized when a (tempo-
rary) feasible path is obtained. A simple greedy technique
is used here: we test each point in the solution to check if
it can be removed maintaining feasibility, if so, we remove
it and check the following point, continuing until reaching
the last one.

C. Algorithm Implementation

Algorithm 1. Main()
Require: qrobot ← is the current robot position
Require: qgoal ← is the goal position

1: while qrobot 6= qgoal do
2: updateWorld(time)
3: process(time)

The multi-stage algorithm proposed in this paper works
by alternating environment updates and path planning, as



can be seen in Algorithm 1. The first stage of the path
planning (see Algorithm 2) is to find an initial path using a
RRT technique, ignoring any cuts that might happen during
environment updates. Thus, the RRT ensures that the path
found does not collide with static obstacles, but might collide
with dynamic obstacles in the future. When a first path
is found, the navigation is done by alternating a simple
informed local search and a simple greedy heuristic as is
shown in Figure 1.

Algorithm 2. process(time)

Require: qrobot ← is the current robot position
Require: qstart ← is the starting position
Require: qgoal ← is the goal position
Require: Tinit ← is the tree rooted at the robot position
Require: Tgoal ← is the tree rooted at the goal position
Require: path ← is the path extracted from the merged

RRTs
1: qrobot ← qstart
2: Tinit.init(qrobot)
3: Tgoal.init(qgoal)
4: while time elapsed < time do
5: if first path not found then
6: RRT(Tinit, Tgoal)
7: else
8: if path is not collision free then
9: firstCol ← collision point closest to robot

10: arc(path, firstCol)
11: mut(path, firstCol)
12: postProcess(path)

Figure 2. The arc operator. This operator draws an offset value ∆ over
a fixed interval called vicinity. Then, one of the two axises is selected to
perform the arc and two new consecutive points are added to the path. n1 is
placed at a ±∆ of the point b and n2 at ±∆ of point c, both of them over
the same selected axis. The axis, sign and value of ∆ are chosen randomly
from an uniform distribution.

The second stage is the informed local search, which
is a two step function composed by the arc and mutate
operators (Algorithms 3 and 4). The first one tries to build a
square arc around an obstacle, by inserting two new points

Figure 3. The mutation operator. This operator draws two offset values
∆x and ∆y over a vicinity region. Then the same point b is moved in both
axises from b = [bx, by ] to b′ = [bx ±∆x, by ±∆y ], where the sign and
offset values are chosen randomly from an uniform distribution.

between two points in the path that form a segment colliding
with an obstacle, as is shown in Figure 2. The second step
in the function is a mutation operator that moves a point
close to an obstacle to a random point in the vicinity, as
is graphically explained in Figure 3. The mutation operator
is inspired by the ones used in the Adaptive Evolutionary
Planner/Navigator(EP/N) presented in [13], while the arc
operator is derived from the arc operator in the Evolutionary
Algorithm presented in [1].

Algorithm 3. arc(path, firstCol)

Require: vicinity ← some vicinity size
1: randDev ← random(−vicinity, vicinity)
2: point1 ← path[firstCol]
3: point2 ← path[firstCol+1]
4: if random()%2 then
5: newPoint1 ← (point1[X]+randDev,point1[Y])
6: newPoint2 ← (point2[X]+randDev,point2[Y])
7: else
8: newPoint1 ← (point1[X],point1[Y]+randDev)
9: newPoint2 ← (point2[X],point2[Y]+randDev)

10: if path segments point1-newPoint1-newPoint2-point2
are collision free then

11: add new points between point1 and point2
12: else
13: drop new point2

The third and last stage is the greedy optimization
heuristic, which can be seen as a post-processing for path
shortening, that eliminates intermediate nodes if doing so
does not create collisions, as is described in the Algorithm
5.

IV. EXPERIMENTS AND RESULTS

The multi-stage strategy proposed here has been devel-
oped to navigate highly-dynamic environments, and there-
fore, our experiments should be aimed towards that purpose.



Algorithm 4. mut(path, firstCol)

Require: vicinity ← some vicinity size
1: path[firstCol][X] + = random(−vicinity, vicinity)
2: path[firstCol][Y] + = random(−vicinity, vicinity)
3: if path segments before and after path[firstCol] are

collision free then
4: accept new point
5: else
6: reject new point

Algorithm 5. postProcess(path)

1: i ← 0
2: while i < path.size()-2 do
3: if segment path[i] to path[i+2] is collision free then
4: delete path[i+1]
5: else
6: i ← i+1

Therefore, we have tested our algorithm in two highly-
dynamic situations, both of them over a map representing an
office building or shopping mall (i.e. with some static walls).
Also, we have ran the DRRT and MP-RRT algorithms over
the same situations in order to compare the performance of
our proposal.

A. Experimental Setup

Figure 4. The dynamic environment. The green square is our robot,
currently at the start position. The blue squares are the moving obstacles.
The blue cross is the goal.

The first environment for our experiments consists on a
map with 30 moving obstacles the same size of the robot,
with a random speed between 10% and 55% the speed
of the robot. This dynamic environment is shown in figure 4.

Figure 5. The partially know environment. The green square is our robot,
currently at the start position. The black squares are the suddenly appearing
obstacles. The blue cross is the goal.

The second environment uses the same map, but with
six obstacles, three to four times the size of the robot,
appearing at a predefined time and position. This partially
known environment is shown in figure 5.

The three algorithms were ran a hundred times in each
environment. The cutoff time was five minutes for the first
environment and one minute for the second, after which, the
robot was considered not to have reached the goal.

B. Implementation Details

The algorithms where implemented in C++ using a
framework 3 developed by the same authors.

There are several variations that can be found in the liter-
ature when implementing RRTs. For all our RRT variants,
the following are the details on where we departed from the
basics:

• We always use two trees rooted at qinit and qgoal.
• Our EXTEND function, if the point cannot be added

without collisions to a tree, adds the mid point between
the nearest tree node and the nearest collision point to
it.

• In each iteration, we try to add the new randomly
generated point to both trees, and if successful in both,
the trees are merged, as proposed in [7].

• We found that the success rate was somewhat lower
if we allow the robot to advance towards the node
nearest to the goal when the trees are disconnected, as
proposed in [14]. The problem is that the robot would
become stuck if it enters a small concave zone of the

3MoPa homepage: https://csrg.inf.utfsm.cl/twiki4/bin/view/CSRG/MoPa



environment(like a room in a building) while there are
moving obstacles inside that zone. Therefore our robot
only moves when the trees are connected.

In MP-RRT, the forest was handled simply replacing the
oldest tree in it if the forest had reached the maximum size
allowed.

Concerning the parameter selection, the probability for
selecting a point in the vicinity of a point in the waypoint
cache in DRRT was set to 0.4 as suggested in [4]. The
probability for trying to reuse a sub tree in MP-RRT was set
to 0.1 as suggested in [14]. Also, the forest size was set to
25 and the minimum size of a tree to be saved in the forest
was set to 5 nodes.

C. Dynamic Environment Results

The results in table I show that it takes our algorithm
around a third of the time it takes the DRRT and MP-RRT to
get to the goal, with far less collision checks. It was expected
that nearest neighbor lookups would be much lower in the
multi-stage algorithm than in the other two, because they
are only performed in the RRT phase, not during navigation.
However, the multi-stage algorithm seems to be slighty less
dependable, as it arrived to the goal 98 out of 100 times,
while the other two managed to arrive always.

Table I
DYNAMIC ENVIRONMENT RESULTS. AVERAGE RESULTS OVER 100

RUNS, WITH 5 MINUTES CUTOFF

Algorithm Success % Coll. Checks Nearest Neigh. Time[s]
Multi-stage 98 24364 1468 7.08

DRRT 100 92569 4536 19.81
MP-RRT 100 97517 4408 21.53

D. Partially Known Environment Results

The results in table II show that our multi-stage algorithm
is very undependable, though faster than the other two when
it actually reaches the goal. Due to the simplicity of our local
search, and that it basically just avoids obstacles by stepping
to the side or letting the obstacle move out of the way, when
the changes to the environment are significant and obstacles
do not move, it is very prone to getting stuck.

Table II
PARTIALLY KNOWN ENVIRONMENT RESULTS. AVERAGE RESULTS

OVER 100 RUNS, WITH 1 MINUTE CUTOFF

Algorithm Success % Coll. Checks Nearest Neigh. Time[s]
Multi-stage 44 4856 673 5.95

DRRT 100 9845 1037 7.25
MP-RRT 98 17029 1156 8.13

V. CONCLUSIONS

The new multi-stage algorithm proposed here has a very
good performance in very dynamic environments. It behaves
particularly well when several small obstacles are moving

around seemingly randomly. It’s major shortcoming is that
it gets easily stuck when significant changes to the environ-
ment are made, such as big static obstacles appearing near
the robot, a situation usually considered as a partially known
environment.

A. Future Work

There are several areas of improvement for the work
presented in this paper. First of all, the multi-stage algorithm
must recognize a situation where it is stuck, and restart
an RRT from the current location, before continuing with
the navigation phase. The detection could be as simple as
recognizing that the robot has not moved out of a certain
vicinity for a given period of time, or that the next collision
in the planned path has been against the same obstacle
during a given period of time, meaning that the local search
has been unable to find a path around it. This will yield
a much more dependable algorithm in different kinds of
environments.

A second area of improvement is to experiment with
different on-line planners such as the EP/N presented in
[13], a version of the EvP([1] and [2]) modified to work in
continuous configuration space or a potential field navigator.
Also, the local search presented here, could benefit from the
use of more sophisticated operators.

A third area of research that could be tackled is extending
this algorithm to other types of environments, ranging from
totally known and very dynamic, to static partially known or
unknown environments. An extension to higher dimensional
problems would be one logical way to go, as RRTs are know
to work well in higher dimensions.

Finally, as RRTs are suitable for kinodynamic planning,
we only need to adapt the on-line stage of the algorithm to
have a new multi-stage planner for problem with kinody-
namic constraints.
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