
M. Bujorianu and M. Fisher (Eds.):
Workshop on Formal Methods for Aerospace (FMA)

EPTCS 20, 2010, pp. 88–94, doi:10.4204/EPTCS.20.10

c© E. Vassev & M. Hinchey
This work is licensed under the
Creative Commons Attribution License.

Developing Experimental Models for NASA Missions with
ASSL

Emil Vassev
Lero – The Irish Software Engineering Research Centre

University College Dublin, Ireland
Emil.Vassev@lero.ie

Mike Hinchey
Lero – The Irish Software Engineering Research Centre

University of Limerick, Ireland
Mike.Hinchey@lero.ie

NASA’s new age of space exploration augurs great promise for deep space exploration missions
whereby spacecraft should be independent, autonomous, and smart. Nowadays NASA increasingly
relies on the concepts of autonomic computing, exploiting these to increase the survivability of re-
mote missions, particularly when human tending is not feasible. Autonomic computing has been
recognized as a promising approach to the development of self-managing spacecraft systems that
employ onboard intelligence and rely less on control links. The Autonomic System Specification
Language (ASSL) is a framework for formally specifying and generating autonomic systems. As
part of long-term research targeted at the development of models for space exploration missions that
rely on principles of autonomic computing, we have employed ASSL to develop formal models and
generate functional prototypes for NASA missions. This helps to validate features and perform ex-
periments through simulation. Here, we discuss our work on developing such missions with ASSL.

1 Introduction

Autonomic Computing (AC) is an emerging field for the development of large-scale self-managing com-
plex systems [9]. The idea behind is that complex systems such as spacecraft can autonomously manage
themselves and deal with dynamic requirements and unanticipated threads. NASA is currently approach-
ing AC with interest, recognizing in its concepts a promising approach to developing new class of space
exploration missions, where spacecraft should be independent, autonomous, and smart. Here, AC soft-
ware makes spacecraft autonomic systems capable of planning and executing many activities onboard
the spacecraft to meet the requirements of changing objectives and harsh external conditions. Examples
of such AC-based unmanned missions are the Autonomous Nano-Technology Swarm (ANTS) concept
mission [11] and the Deep Space One mission [9]. It is important to mention though that the development
of systems implying such a large-scale automation implies sophisticated software, which requires new
development approaches and new verification techniques.

Practice has shown that traditional development methods cannot guarantee software reliability and
prevent software failures, which is very important in complex systems such as spacecraft where software
errors can be very expensive and even catastrophic (e.g., the malfunction in the control software of
Ariane-5 [1]). Thus, formal methods need to be employed in the development of autonomic spacecraft
systems. When employed correctly, formal methods have proven to be an important technique that
ensures quality of software [8]. In the course of this research, to develop models for autonomic space
exploration missions, we employ the ASSL (Autonomic System Specification Language) formal method
[3], [4]. Conceptually, ASSL is an AC-dedicated framework providing a powerful formal notation and
computational tools that help developers with problem formation, system design, system analysis and
evaluation, and system implementation.

http://dx.doi.org/10.4204/EPTCS.20.10
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

E. Vassev & M. Hinchey 89

2 Preliminaries

2.1 Targeted NASA Missions

Both NASA ANTS and NASA Voyager missions are targeted by this research. Other space-exploration
missions, such as NASA Mars Rover and ESA’s Herschel are a subject of interest as well.

2.1.1 NASA ANTS

The ANTS (Autonomous Nano-Technology Swarm concept sub-mission PAM (Prospecting Asteroids
Mission) is a novel approach to asteroid-belt resource exploration. ANTS provides extremely high au-
tonomy, minimal communication requirements to Earth, and a set of very small explorers with a few
consumables [11]. The explorers forming the swarm are pico-class, low-power, and low-weight space-
craft, yet capable of operating as fully autonomous and adaptable agents. There are three classes of
ANTS spacecraft: rulers, messengers and workers. By grouping them in certain ways, ANTS forms
teams that explore particular asteroids. The internal organization of a team depends on the task to be
performed and on the current environmental conditions. In general, each team has a group leader (ruler),
one or more messengers, and a number of workers carrying a specialized instrument. The messengers
are needed to connect the team members when they cannot connect directly.

2.1.2 NASA Voyager

The NASA Voyager Mission [10] was designed for exploration of the Solar System. The mission started
in 1977, when the twin spacecraft Voyager I and Voyager II were launched (cf. Figure 1). The original
mission objectives were to explore the outer planets of the Solar System. As the Voyagers flew across the
Solar System, they took pictures of planets and their satellites and performed close-up studies of Jupiter,
Saturn, Uranus, and Neptune.

Figure 1: Voyager Spacecraft [10]

After successfully accomplishing their initial mission, both Voyagers are now on an extended mis-

90 Developing Experimental Models for NASA Missions with ASSL

sion, dubbed the ”Voyager Interstellar Mission”. This mission is an attempt to chart the heliopause
boundary, where the solar winds and solar magnetic fields meet the so-called interstellar medium [2].

2.2 ASSL

The ASSL framework [3], [4] provides a powerful formal notation and suitable mature tool support that
allow ASSL specifications to be edited and validated and Java code to be generated from any valid specifi-
cation. ASSL is based on a specification model exposed over hierarchically organized formalization tiers.
This specification model is intended to provide both infrastructure elements and mechanisms needed by
an autonomic system (AS). The latter is considered as being composed of special autonomic elements
(AEs) interacting over interaction protocols, whose specification is distributed among the ASSL tiers.
Note that each tier is intended to describe different aspects of the AS in question, such as service-level
objectives, policies, interaction protocols, events, actions, etc. This helps to specify an AS at different
levels of abstraction imposed by the ASSL tiers.

The following elements represent the major tiers and sub tiers in ASSL.

I. Autonomic System (AS)

• AS Service-level Objectives
• AS Self-managing Policies
• AS Architecture
• AS Actions
• AS Events
• AS Metrics

II. AS Interaction Protocol (ASIP)

• AS Messages
• AS Communication Channels
• AS Communication Functions

III. Autonomic Element (AE)

• AE Service-level Objectives
• AE Self-managing Policies
• AE Friends
• AE Interaction Protocol (AEIP)

– AE Messages
– AE Communication Channels
– AE Communication Functions
– AE Managed Elements

• AE Recovery Protocol
• AE Behavior Models
• AE Outcomes
• AE Actions
• AE Events
• AE Metrics

As shown, the ASSL multi-tier specification model decomposes an AS in two directions:

E. Vassev & M. Hinchey 91

1. into levels of functional abstraction;

2. into functionally related tiers (sub-tiers).

With the first decomposition, an AS is presented from three different perspectives, these depicted as
three main tiers (main concepts):

• AS Tier forms a general and global AS perspective exposing the architecture topology, general
system behaviour rules, and global actions, events and metrics applied to these rules.

• ASIP Tier (AS interaction protocol) forms a communication perspective exposing a means of
communication for the AS under consideration.

• AE Tier forms a unit-level perspective, where an interacting sets of the AS’s individual components
is specified. These components are specified as AEs with their own behaviour, which must be
synchronized with the behaviour rules from the global AS perspective.

3 Research

In this section, we present our research objectives and current trends.

3.1 Objectives

This research emphasizes the ASSL formal development approach to autonomic systems (ASs). We
believe that ASSL may be successfully applied to the development of experimental models for space-
exploration missions integrating autonomic features. Thus, we use ASSL to develop experimental mod-
els for NASA missions in a stepwise manner (feature by feature) and generate a series of prototypes,
which we evaluate in simulated conditions. Here, it is our understanding that both prototyping and for-
mal modeling, which will aid in the design and implementation of real space-exploration missions, are
becoming increasingly necessary and important as the urgent need emerges for higher levels of assurance
regarding correctness.

3.2 Benefits for Space Systems

Experimental modeling of space-exploration missions can be extremely useful for the design and im-
plementation of such systems. The ability to compare features and issues with actual missions and
with hypothesized possible autonomic approaches gives significant benefit. In our approach, we develop
space-mission models in a series of incremental and iterative steps where each model includes new auto-
nomic features. This helps to evaluate the performance of each feature and gradually construct a model of
more realistic space exploration missions. Different prototypes can be tried and tested (and benchmarked
as well), and get valuable feedback before we implement the real system. Moreover, this approach helps
to discover eventual design flaws in existing missions and the prototype models.

3.3 Modeling NASA ANTS and NASA Voyager with ASSL

ASSL has been successfully used to specify autonomic features and generate prototype models for two
NASA projects - the ANTS (Autonomous Nano-Technology Swarm) concept mission (cf. Section 2.1.1)
and the Voyager mission (cf. Section 2.1.2). In both cases the generated prototype models helped to
simulate space-exploration missions and validate features through simulated experimental results.

92 Developing Experimental Models for NASA Missions with ASSL

SELF_PROTECTING {
FLUENT inSecurityCheck {
INITIATED_BY { EVENTS.privateMessageIsComming }
TERMINATED_BY { EVENTS.privateMessageSecure,

EVENTS.privateMessageInsecure }}
MAPPING {
CONDITIONS { inSecurityCheck}
DO_ACTIONS { ACTIONS.checkPrivateMessage }}}

Figure 2: Self-managing Policy

EVENT privateMessageIsComming {
ACTIVATION { SENT { AEIP.MESSAGES.privateMessage }}}

EVENT privateMessageInsecure {
GUARDS { NOT METRICS.thereIsInsecureMsg }
ACTIVATION { CHANGED { METRICS.thereIsInsecureMsg }}}

EVENT privateMessageSecure {
GUARDS { METRICS.thereIsInsecureMsg }
ACTIVATION { CHANGED { METRICS.thereIsInsecureMsg }}}

Figure 3: Policy Events

ACTION checkPrivateMessage { GUARDS { } ENSURES { }
DOES { senderIdentified = call ACTIONS.checkSenderCertificate; }
ONERR_DOES { } TRIGGERS { } ONERR_TRIGGERS { } }

Figure 4: Action

In our endeavor to develop NASA missions with ASSL, we emphasized modeling ANTS self-
managing policies [7] of self-configuring, self-healing and self-scheduling and the Voyager image-
processing autonomic behavior [5]. In addition, we proposed a specification model for the ANTS safety
requirements. In general, a complete specification of these autonomic properties requires a two-level
approach. They need to be specified at the individual spacecraft level (AE tier) and at the level of the
entire system (AS tier). Here, to specify the self-managing policies we used four base ASSL elements:

• a self-managing policy structure - which describes the self-managing policy under consideration.
We use a set of special ASSL constructs such as fluents and mappings to specify such a policy [3].
With fluents we express specific situations, in which the policy is interested, and with mappings
we map those situations to actions.

• actions - a set of actions that can be undertaken by ANTS in response to certain conditions, and
according to that policy.

• events - a set of events that initiate fluents and are prompted by the actions according to the policies.

• metrics - a set of metrics [3] needed by the events and actions.

Figure 2, Figure 3, and Figure 4 present a partial specification of a self-protecting policy employed by
one of the prototype models we built for the NASA ANTS concept mission. Note that ASSL events (cf.
Figure 3) and actions (cf. Figure 4) may be specified with a special GUARDS clause stating preconditions
that must be met before an event may be raised or an action may be undertaken. In addition, events
(cf. Figure 3) are specified with a special ACTIVATION clause and actions may be specified with an
ENSURES clause to state post-conditions that must be met after the action execution. Actions may
call other actions in their DOES or ONERR DOES clauses. Finally, actions (cf. Figure 4) may trigger
events specified in special TRIGGERS and ONERR TRIGGERS clauses. Note that the ONERR DOES
and ONERR TRIGGERS clauses specify the action execution path in case of an error [3].

3.4 Formal Verification

Safety is a major concern to NASA missions, where both reliability and maintainability form an essen-
tial part. In that context, the ASSL framework toolset provides verification mechanisms for automatic
reasoning about a specified AS. The base validation approach in ASSL comes in the form of consis-
tency checking. The latter is a mechanism for verifying ASSL specifications by performing exhaustive
traversal to check for both syntax and consistency errors (type consistency, ambiguous definitions, etc.).

E. Vassev & M. Hinchey 93

In addition this mechanism checks whether a specification conforms to special correctness properties,
defined as ASSL semantic definitions. Although considered efficient, the ASSL consistency checking
mechanism cannot handle logical errors (specification flaws) and thus, it is not able to assert safety (e.g.,
freedom from deadlock) or liveness properties.

Currently, a model-checking validation mechanism able to handle such errors is under development
[6]. The ASSL model-checking mechanism is the next generation of the ASSL consistency checker
based on automated reasoning. By allowing for automated system analysis and evaluation, this mecha-
nism completes the AS development process with ASSL. The ability to verify the ASSL specifications
for design flaws can lead to significant improvements in both specification models and generated ASs.
Subsequently, ASSL can be used to specify, validate and generate better prototype models for current
and future space-exploration systems.

In general, model checking provides an automated method for verifying finite state systems by re-
lying on efficient graph-search algorithms. The latter help to determine whether or not system behavior
described with temporal correctness properties holds for the system’s state graph. In ASSL, the model-
checking problem is: given autonomic system A and its ASSL specification a, determine in the system’s
state graph g whether or not the behavior of A, expressed with the correctness properties p, meets the
specification a. Formally, this can be presented as a triple (a, p,g) where: a is the ASSL specification
of the autonomic system A, p presents the correctness properties specified in FOLTL, and g is the state
graph constructed from the ASSL specification in a labeled transition system (LTS) [1] format.

However, due to the so-called state-explosion problem [1], model checking cannot efficiently handle
logical errors in large ASSL specifications. Therefore, to improve the detection of errors introduced not
only with the ASSL specifications, but also with the supplementary coding, the automatic verification
provided by the ASSL tools is augmented by appropriate testing. Currently, a novel test generator tool
based on change-impact analysis is under development. This tool helps the ASSL framework automati-
cally generate high-quality test suites for self-managing policies. The test generator tool accepts as input
an ASSL specification comprising sets of policies that need to be tested and generates a set of tests each
testing a single execution path of a policy.

4 Conclusion

In this research, we place emphasis on modeling autonomic properties of space-exploration missions
with ASSL. With ASSL we model such properties through the specification of self-managing policies
and service-level objectives. Formal verification handles consistency flaws and operational Java code is
generated for valid models. Generated code is the basis for functional prototypes of space-exploration
missions employing self-managing features. Those prototypes may be extremely useful when undertak-
ing further investigation based on practical results and help developers test the autonomic behavior under
simulated conditions.

References

[1] C. Baier, J.-P. Katoen (2008): Principles of Model Checking. MIT Press.
[2] California Institute of Technology (2009). NASA Jet Propulsion Laboratory: Voyager - The Interstellar

Mission. Available at http://voyager.jpl.nasa.gov/mission/interstellar.html.
[3] E. Vassev (2009): ASSL: Autonomic System Specification Language - A Framework for Specification and

Code Generation of Autonomic Systems. LAP Lambert Academic Publishing.

http://voyager.jpl.nasa.gov/ mission/interstellar.html

94 Developing Experimental Models for NASA Missions with ASSL

[4] E. Vassev and M. G. Hinchey (2009): ASSL - A Software Engineering Approach to Autonomic Computing.
IEEE Computer 42(6), pp. 106–109.

[5] E. Vassev and M. Hinchey (2009): Modeling the Image-processing Behavior of the NASA Voyager Mission
with ASSL. In: Proceedings of the 3rd IEEE International Conference on Space Mission Challenges for
Information Technology (SMC-IT’09), IEEE Computer Society, pp. 246–253.

[6] E. Vassev, M. Hinchey and A. Quigley (2009): Model Checking for Autonomic Systems Specified with ASSL.
In: Proceedings of the First NASA Formal Methods Symposium (NFM 2009), NASA, pp. 16–25.

[7] E. Vassev, M. Hinchey, and J. Paquet (2008): Towards an ASSL Specification Model for NASA Swarm-Based
Exploration Missions. In: Proceedings of the 23rd Annual ACM Symposium on Applied Computing (SAC
2008) - AC Track, ACM, pp. 1652–1657.

[8] J. P. Bowen and M. G. Hinchey (1995): Ten Commandments of Formal Methods. IEEE Computer 28(4), pp.
56–63.

[9] R. Murch (2004): Autonomic Computing: On Demand Series. IBM Press, Prentice Hall.
[10] The Planetary Society (2009). Space topics: Voyager - The Story of the Mission. Available at http://

planetary.org/explore/topics/space_missions/voyager/objectives.html.
[11] W. Truszkowski, M. Hinchey, J. Rash, and C. Rouff (2004): NASA’s Swarm Missions: The Challenge of

Building Autonomous Software. IT Professional 6(5), pp. 47–52.

http://planetary.org/explore/topics/space_missions/voyager/objectives.html
http://planetary.org/explore/topics/space_missions/voyager/objectives.html

	1 Introduction
	2 Preliminaries
	2.1 Targeted NASA Missions
	2.1.1 NASA ANTS
	2.1.2 NASA Voyager

	2.2 ASSL

	3 Research
	3.1 Objectives
	3.2 Benefits for Space Systems
	3.3 Modeling NASA ANTS and NASA Voyager with ASSL
	3.4 Formal Verification

	4 Conclusion

