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Abstract

We report a globally-optimal approach to robotic path plagrunder uncertainty, based on the theory of quantitatieasures
of formal languages. A significant generalization to theglaage-measure-theoretic path planning algoritfnis presented that
explicitly accounts for average dynamic uncertaintiesestimation errors in plan execution. The notion of the natign automa-
ton is generalized to include probabilistic uncontroleatshnsitions, which account for uncertainties by modeding planning for
probabilistic deviations from the computed policy in theise of execution. The planning problem is solved by castiimgthe
form of a performance maximization problem for probahti§hite state automata. In essence we solve the followirigropation
problem: Compute the navigation policy which maximizes pihebability of reaching the goal, while simultaneously miiz-
ing the probability of hitting an obstacle. Key noveltiestbé proposed approach include the modeling of uncertsinseng the
concept of uncontrollable transitions, and the solutiothefensuing optimization problem using a highly efficieratrsa-free com-
binatorial approach to maximize quantitative measuresagbilistic regular languages. Applicability of the aljiom in various
models of robot navigation has been shown with experimeséation on a two-wheeled mobile robotic platform (SEGYWA
RMP 200) in a laboratory environment.
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1. Introduction & Motivation complexity issues arising from expensive searches, piatiy

in complicated configuration spaces. To circumvent the com-
plexity associated with graph-based planning, samplirgptha
planning methods [7] such as probabilistic roadmaps haga be
proposed. However, sampling based approaches are only prob

The objective of this paper is to report a globally-optina a
proach to path planning under uncertainty, based on theyheo
of quantitative measures of formal languages. The fieldasf tr

jectory and motion planning is enormous, with applications abilistically complete (i.e. if a feasible solution existswill

such diverse areas as industrial robots, mobile robot ativig, . ; . .
spacecraft reentrv. video aames and even drua desian Mar?e found, given enough time) but there is no guarantee of find-
b Y. 9 9 an. i|¥g a solution within a specified time, and more often than not

of the b‘?‘S'C concepts are presentediin [1] and_m recent CQ”&;'Iobal route optimality is not guaranteed. Distinct froregh
prehensive surveys|[2]. In the context of planning for mebil

robots and manipulators much of the literature on path and mogeneral approaches, _there exist reported_t_echnlquesdmiai-e

. L e - ! itly make use of physical aspects of specific problems fonpla
tion planning is concerned with finding collision-free &efo- ; ; : . ;
ries [3]. A great deal of the complexity in these problemsesi ning e.g. use of vertical wind component for generating optimal
fromh\t)h.e tc;q oloav of the robot'src):onfiyuration space caffes] trajectories for UAVs|[B], feasible collision-free trajecy gen-
C-Space \?ario%)é analytical techniql?es such gs Wélveflsont e eration for cable driven platforms [9], and the recentlyared
pansion|[4] and cellular decomposition, have been repanted approach employing angular processing [10].

recent literaturel [5], which partition th@-Space into a finite S )

number of regions with the objective of reducing the motionl.1. Potential Field-based Planning Methodology

planning problem as identification of a sequence of neighgor - Among reported deterministic approaches, methods based on
cells between the initial and final (i.e., goal) regions. ¥ apificial potential fields have been extensively investgaof-
theoretic search-based techniques have been used somewRaf referred to cumulatively as potential field methods (PFM
successfully in many wheeled ground robot path planningpro e idea of imaginary forces acting on a robot were suggested
lems and have been used for some UAV planning problems, tyRsy several authors inclding [11] and [12]. In these appreach
ically radar evasion [6]. These approaches typically sdftem  oysiacles exert repulsive forces onto the robot, while e t

o e § o th o get applies an attractive force to the robot. The resulthatio
This work has been supported in part by the U.S. Army Resdaabbra- ; ; :
tory and the U.S. Army Research Office under Grant No. W910KA-0376 forces determines the SUbsequem -dlrectlo.n and spegd{ef.tr_a
and by the Office of Naval Research under Grant No. N00014-880 One of the reasons for. the popularity of th_|5 method is its sim
*Corresponding Author plicity and elegance. Simple PFMs can be implemented gyickl
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and initially provide acceptable results without requiriany

refinements. | [13] has suggested a generalized potentidl fiel
method that combines global and local path planning. Piatent

field based techniques have been also successfully employed

in multi-robot co-operative planning scenarios|[14, 15hene
other techniques prove to be inefficient and impractical.
While the potential field principle is particularly attraet
because of its elegance and simplicity, substantial sbortc
ings have been identified that are inherent to this principte
interested reader is referred to/[16] for a systematicaisiti of

PFM-based planning, where the authors cite the underlyifng d

ferential equation based analysis as the source of thegmsl

and the fact that it combines the robot and the environmémt in
one unified system. Key problems inherent to PFMs, indepen-

dent of the particular implementation, are:
1. Trap situations due to local minima: Perhaps the best-

2.

3.

optimizes the resultant PFSA via a iterative sequence of
combinatorial operations which elementwise maximizes
the language measure vector|[19][20]. Note that although
v* involves probabilistic reasoning, the final waypoint se-
guence obtained is deterministic.

Computational efficiency: The intensive step im* is a
special sparse matrix inversion to compute the language
measure. The time complexity of each iteration step can
be shown to be linear in problem size implying significant
numerical advantage over search-based methods for high-
dimensional problems.

Global monotonicity: The solution iterations are globally
monotonic,i.e, each iteration yields a better approxima-
tion to the final optimal solution. The final waypoint se-
guence is generated essentially by following the measure
gradient which has a unique maxima at the goal.

known problem with PFMs are possible trap-situations 4- Global Optimality: It can be shown that trap-situations
[11,[17], which occur when when the robot runs into a  are a mathematical impossibility for.

dead end, due to the existence of a local extrema in the porhe optimal navigation gradient producedyis reminiscent
tential field. Trap-situations can be remedied with heurisof potential field methods[7]. However* automatically gen-
tic recovery rules, which are likely to resultin non-optima. eratesand optimizeshis gradient; no ad-hoc potential function

paths. is necessary.
. No passage between closely spaced obstaclAssevere

problem with PFMs occurs when the robot attempts tol.3. Focus of Current Work & Key Contributions

travel through narrow corridors thereby experiencing re- The key focus of this paper is extension of tie planning
pulsive forces simultaneously from opposite sides, legdin algorithm to optimally handle execution uncertaintiess Wwell

to wavy trajectories, no passage etc. recognized by domain experts that merely coming up with a
. Oscillations in the presence of obstaclesPresence of navigation plan is not sufficient; the computed plan must be
high obstacle clutter often leads to unstable motion, due texecuted in the real world by the mobile robot, which often
the complexity of the resultant potential. cannot be done exactly and precisely due to measuremest nois
. Effect of past obstaclesEven after the robot has already in the exteroceptive sensors, imperfect actuations, atedresd
passed an obstacle, the latter keeps affecting the robot mdisturbances. The idea of planning under uncertaintie®ts n
tion for a significant period of time (until the repulsive po- particularly new, and good surveys of reported methodet®gi
tential dies down). exist [21]. In chronological order, the main family of repext

These disadvantages become more apparent when the PFRProaches can be enumerated as follows:
based methods are implemented in high-speed real-time sys-e¢ Pre-image Back-chaining [22, 23,/ 24] where the plan is

tems; simulations and slow speed experiments often conceal

the issues; probably contributing to the widespread pajtula
of potential planners.

1.2. They* Planning Algorithm

Recently, the authors reported a novel path planning algo-
rithm v* [18], that models the navigation problem in the frame-
work of Probabilistic Finite State Automata (PFSA) and com-

putes optimal plans via optimization of the PFSA from a #iric
control-theoretic viewpointv* uses cellular decomposition of

the workspace, and assumes that the blocked grid locations ¢
be easily estimated, upon which the planner computes an opti
mal navigation gradient that is used to obtain the routegs Th

navigation gradient is computed by optimizing the quatitita

measure of the probabilistic formal language generatedéy t

associated navigation automaton. The key advantages can be

enumerated as:
1. v* is fundamentally distinct from a search: The search

problem is replaced by a sequential solution of sparse lin-

ear systems. On completion of cellular decompositidn,
2

synthesized by computing a set of configurations from
which the robot can possibly reach the goal, and then
propgating thispreimagerecursively backward oback-
chaining a problem solving approach originally proposed
in [25].

Approach based on sensory uncertainty fields (SUF) [26,
21,128} 28] computed over the collision-free subset of the
robot’s configuration space, which reflects expected uncer-
tainty (distribution of possible errors) in the sensed apnfi
uration that would be computed by matching the sensory
data against a known environment modet(landmark
locations). A planner then makes use of the computed SUF
to generate paths that minimize expected errors.

Sensor-based planning approaches [30,[31, 32], which
consider explicit uncertainty models of various motion
primitives to compute a feasible robust plan composed
of sensor-based motion commands in polygonal envi-
ronments, with significant emphasis on wall-following
schemes.



o Information space based approach using the Bellman prirstate-of-art carries over to this more general case; nathaty
ciple of stochastic dynamic programming|[33], which in- of significantly better computational efficiency, simptjciof
troduced key concepts such as setting up the problem in immplementation, and achieving global optimality via masmic
probabilistic framework, and demanding that the optimalsequence ofearch-free combinatorial iterative improvements
plan maximize the probability of reaching the goal. How- with guaranteed polynomial convergence. The proposed ap-
ever, the main drawback was the exponential dependengoach thus solves the inherently non-convex optimizgdah
on the dimension of the computed information space. by mapping the physical specification to an optimal control

_ : roblem for probabilistic finite state machines (the natit

e The set-mempershm approach [34]_Wh'Ch performs a Io'z}:;utomata), vF\?hich admits efficient combinatorizgl solutiﬁ

cal search, trying to deform a path into one that respectg, language-measure-theoretic approach. The sourceryf ma

uncertainty constraints imposed by arbitrarily shaped UN%ncertainties, namely modeling uncertainty, disturbanead

certainty SEIS' Each hard co_nstramt s turned _mto a SOfltJncertain localization, is averaged over (or amortized pfie-
penalty function, and the gradient descent algorithmis em

. o _ guate representation in the automaton framework. This reay b
ployed, hoping convergence to an admissible solution. viewed as a source of approximation in the proposed approach
e Probabilistic approaches based on disjunctive linear probowever we show in simulation and in actual experimentation
gramming [35/_36], with emphasis on UAV applications. that the amortization is indeed a good approach to reduce pla
The key limitation is the inability to take into account Ning complexity and results in highly robust planning deis.
exteroceptive sensors, and also the assumption that deabitus the modified language-measure-theoretic approach pre
reckoning is independent of the path executed. Later exS€nted in this paper, potentially lays the framework fomsea
tensions of this approach use particle representatiohgof t €SS integration of data-driven and physics-based modis w
distributions, implying wider applicability. the high-level decision processes; this is a crucial acgmt
and goes to address a key issue in autonomous robaticsn

¢ Adaptation of search strategies in extended spaces [37, 38, path-planning scenario with mobile robots, the optimahpa
39,140], which consider the classical search problem immay be very different for different speeds, platform cafitds
configuration spaces augmented with uncertainty informaand mission specifications. Previously reported appraatthe
tion. handle these effects using exact differential models dfqulia

« Approach based on Stochastic Motion Roadmapsdynamics results in overtly complex solutions that do net re

(SRM) [41], which combines sampling-based roadmapSpond well to modeling uncertainties, and more importatatly

representation of the configuration space, with the theor 0SS! bly nor:—sttatlc_)rrluqarytﬁnvwonment?rl] dy”if“'cs and en” glv
of Markov Decision Processes, to yield models that can b ISSion contexts. Thus the measure-theoretic approa a

subsequently optimized via value-iteration based infinite € developmentoftrLﬁy.ber-Ph_ysmaI algorlthmsforcontrol .
horizon dynamic programming, leading to plans thatof autonomous systems; algorithms that operate in the dbgic

maximize the probability of reaching the goal. dor‘f“""” Wh".e optlmally mte_gratlng, and responding to, iy
cal information in the planning process.

The current work adds a new member to the family of exist-
ing approaches to address globally optimal path plannimigun
uncertainties. The key novelty of this paper is the assiociatf
uncertainty with the notion of uncontrollability in a contied
system The navigation automaton introduced in_|[18] is aug-
mented with uncontrollable transitions which essentiatip- The rest of the paper is organized in seven sections. Sec-
tures the possibility that the agent may execute actuagen stion[2 briefly explains the language-theoretic models abnsi
quences (or motion primitives) that are not coincident \ilith  ered in this paper, reviews the language-measure-theati
planned moves. The planning objective is simpldaximize timal control of probabilistic finite state machines andgarmets
the probability of reaching the goal, while simultaneousiyn-  the necessary details of the reporiedalgorithm. Sectionl3
imizing the probability of hitting any obstaclIBlote that, in this  presents the modifications to the navigation model to incor-
respect, we are essentially solving the exact same proliem iporate the effects of dynamic uncertainties within the am
vestigated by |[41]. However our solution approach is vefy di work of probabilistic automata. Sectidh 4 presents theipert
ferent. Instead of using value iteration based dynamicnammg  nent theoretical results and establishes the main plareling
ming, we use the theory of language-measure-theoretie optgorithm. Sectiof5 develops a formulation to identify theg ke
mization of probabilistic finite state automatal[20]. Uelithe  amortized uncertainty parameters of the PFSA-based naviga
SRM approach, the proposed algorithm does not require the usion model from an observed dynamical response of a given
of local auxiliary planners, and also needs to make no assumjplatform. The proposed algorithm is summarized with pertin
tions on the structure of the configuration space to guagdite comments in Sectidd 6. The theoretical development is e€rifi
erative convergence. The use of arbitrary penalties fargiedy  in high-fidelity simulations on different navigation modeind
the weight on longer paths is also unnecessary, which mages tvalidated in experimental runs on the SEGWAY RMP 200 in
proposed* under uncertainties completely free from heuris-sectiorf¥. The paper is summarized and concluded in Ségtion 8
tics. We show that all the key advantages thtathas over the  with recommendations for future work.
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2. Preliminaries: Language Measure-theoretic Optimiza- attempting to reach thgoodstates. To characterize this, each
tion Of Probabilistic Automata marked state is assigned a real value based on the designer’s

. ) ) ) perception of its impact on the system performance.
This section summarizes the signed real measure of reg-

ular languages; the details are reportedlin [43]. Get=  Definition 5. The characteristic functioy : Q — [-1,1]
(Q,%,6,0,Qm be a trim (i.e., accessible and co-accessible}hat assigns a signed real weight to state-based sublaregiag
finite-state automaton model that represents the diseraet  L(qji, g) is defined as:

dynamics of a physical plant, whe@ = {qx : k € I} is the

set of states andq = {1, 2, - - -, n} is the index set of states; the [-1,0), geQy
automaton starts with the initial stagg the alphabet of events vageQ, x(meqy {0, q¢Qm 1)
isT = {0k : ke I3}, havingE N Ig = 0 andls = {1,2,--- , £} (0,11, qeQy

is the index set of events;: QxX — Qis the (possibly partial) o
function of state transitions; ar@n = {Gmy, Gy -+ » G} € Q The state Welghtlng vector, denoted py= [x1 x2 AL
is the set of marked (i.e., accepted) states wjth = q; for ~ Wherexj = x(qj) ¥ € Zq, is called they-vector. The j-th ele-
somej e To. Lety* be the Kleene closure a, i.e., the set menty of y-vector is the weight assigned to the corresponding
of all finite-length strings made of the events belongingto terminal state g

as well as the empty stringthat is viewed as the identity of
the monoidz* under the operation of string concatenation, i.e.
€S = S = Se. The state transition mapis recursively extended
to its reflexive and transitive closufe QxX* — Q by defining
Vg € Q, §(qj,€) = gj andVgj € Q,0 € £, s€ =*, §(q, 09 =

In general, the marked langualyg(q;) consists of both good
'and bad event strings that, starting from the initial stptéead
to Qf, andQ;, respectively. Any event string belonging to the
languagel® = L(q) — Lm(q;) leads to one of the non-marked
5(6(a1. 7). 9 states belonging t@ — Q, andL° does not contain any one

S of the good or bad strings. Based on the equivalence classes
Definition 1. The language (q;) generated by a DFSA G ini- defined in the Myhill-Nerode Theorem, the regular languages
tialized at the state qe Q is defined as: (q) = {s ¢ L(a) andLn(q;) can be expressed ab(q;) = Ug.q Lik and
T | 6*(. 5) € Q) The language k(q;) marked by the DFSA  Lm(G) = Ugeq, Lik = LnULy where the sublanguagex < Gi
G initialized at the stateige Q is defined as: k(g) = {s €  having the initial statey is uniquely labelled by the terminal
1 6°(Gi, ) € Qml stategy, k € IqandLijNLix=0V]j# k andLy, = Ugeqy, Lik
andLy, = Ugeo;, Lik are good and bad sublanguage&gfq;),

Defini_tion 2. For every q € Q, let (g, ;) d_enote the set of respectively. Then,? = Ugeeqn, Lik andL(q) = LOULtuL;,.
all strings that, starting from the state,derminate at the state A signed real measupe : 2-@) — R = (—o0, +o0) is cON-
gj, e, Lj={seX 6"(q,9) =0q;€Q} structed on ther-algebra 2@ for anyi € 7q; interested read-
ers are referred to_[43] for the details of measure-theodsti-
$hitions and results. With the choice of thisalgebra, every
singleton set made of an event stringe L(q;) is a measur-
Qole set. By Hahn Decomposition Theorem [46], each of these
measurable sets qualifies itself to have a numerical valseda

Definition 3. The event generation probabilities are specified®n the above state-based decomposition(af) into L°(null),
by the functior : * x Q — [0, 1] such that/g; € Q, Vo € L' (Positive), and."(negative) sublanguages.
3,VseX*r,

The formal language measure is first defined for terminatin
plants [44/| 45] with sub-stochastic event generation pudba
tiesi.e. the event generation probabilities at each state summin
to strictly less than unity.

Definition 6. Letw € L(g;,q;) € 24@). The signed real mea-

(1) 7ok Q) £ 7k € [0,1); XAk =1-6, with 6 € (0, 1); surey' of every singleton string séb} is defined asy'({w)) =
(2) #(o,q;) = 0if §(qj, o) is undefined;i(e, q;) = 1; 7(qi, w)x(q;)- The signed real measure of a sublanguaged.
(3) w(oxs, q;) = w(ow, q;) (s, 6(dj, o). L(qi) is defined asy; j = u'(L(q, q;)) = (ZwEL(qi,qj) (e w))Xj
The nx ¢ event cost matrix is defined aﬁjij = 71(q, o) Therefore, the signed real measure of the language of a

DFSAG; initialized atqg; € Q, is defined ag; = d(L(a) =
Definition 4. The state transition probability : Q x Q —  2iero# (Lij)- Itis shownin[43] that the language measure can
[0, 1), of the DFSA Gis defined as followsyq;, q; € Q,mj =  0€ €XPressed a8 = 3y, mju; + xi- The language measure

= . T i -
#(c, o) The nx n state transition probability ma- vector, denoted a8 = [uy > - pnl , is called theu-vector.
res stor)=a, In vector form, we hava = I + y whose solution is given by

trix is defined adl|y = (g, q) H= (I -1ty Tr_]e inverse e_xists for terminating plant mo_d-
els [44] becausH is a contraction operator [43] due to the strict
The setQm of marked states is partitioned in€@, andQ;, inequality >;; ITj; < 1. The residuab; = 1 - 3’; Ij; is referred
i.e.,, Qm = QLU Q,and QN Q;, = 0, whereQy, contains  to as the termination probability for state € Q. We extend
all goodmarked states that we desire to reach, @pctontains  the analysis to non-terminating plants with stochastiedition
all bad marked states that we want to avoid, although it mayprobability matricesi(e. with 6 = 0, Yq; € Q) by renormal-
not always be possible to completely avoid bael states while  izing the language measure [19] with respect to the uniform
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termination probability of a limiting terminating model de-  Definition 10 (Optimal Supervision Problem)Given a (non-

scribed next. terminating) plant G= (Q, X, 6, I, y, %), the problem is to com-
Let IT and IT be the stochastic event generation and tranpute a supervisor that disables a subset C ¥, such that
sition probability matrices for a non-terminating plaBt =  v* 2> (giementwise) ¥\ YZ' C € wherev* andv' are the mea-

(Q,%, 4,0, Qm)- We consider the terminating pla@t(d) with sure vectors of the supervised plants &d G' under2* and
the same DFSA structur®, %, 6, ¢, Qm) such that the event 97, respectively.
generation probability matrix is given by{£B)IT with 6 € (0, 1)

implying that the state transition probability matrix is{B)II. Remark 1. The solution to the optimal supervision problem is

obtained in [20] 4i7] by designing an optimal policy for a ter-
Definition 7 (Renormalized Measure)rhe renormalized mea- minating plant[45] with a sub-stochastic transition prdtikty
surev, : 2-G@ — [-1,1] for the 6-parametrized terminating matrix (1 — 6)I1 with 6 € (0,1). To ensure that the computed
plant G(6) is defined as: optimal policy coincides with the one fér= 0, the suggested
algorithm chooses a small value férin each iteration step

Yoo & LG(O)). vllwo)) = 6 () @ of the design algorithm. However, choosifigoo small may
The corresponding matrix formis giventay= 6 u = [| -(1-  cause numerical problems in convergence. Algorithms rieplor
OIT] 1y with 6 € (0, 1). We note that the vector representation in [20, 147] computes how small @is actually required, .e.,
allows for the following notational simplificatior(L(q;(6))) =  computes the critical lower bourd, thus solving the optimal

ve|, The renormalized measure for the non-terminating plant G Supervision problem for a generic PESA. It is further shown
is defined to béim,_o- v that the solution obtained is optimal and unique and can be
— 9"

computed by an effective algorithm.

2.1. Event-driven Supervision of PFSA o ] )
Definition 11. Following RemarK1l, we note that algorithms

.Plant models considered i_n this paper dEgerministicti- reported in [20,/47] compute a lower bound for the criti-
nite sta.t_el automata (plant) with well-defined event OCOWEE (g termination probability for each iteration of such thihie
probabilities In other words, the occurrence of events is prOb'disainng/enabling decisions for the terminating plantinco
abilistic, but the state at which the plant ends given a par-  4a with the given non-terminating model. We defipg =
ticular event has occurreds deterministic. Since no emphasis mine 8% whered™ is the termination probability computed in
is placed on the initial state and marked states are contuoletethe Rh*iteration. *
determined by, the models can be completely specified by a

sextuple asG = (Q. %, 6, 1L x, %) Definition 12. If G and G are the unsupervised and super-

Definition 8 (Control Philosophy) If i — g, and the event  vised PFSA respectively then we denote the renormalized mea

. . . inati ' i - ol(a) _
is disabled at state;gthen the supervisory action is to prevent Sure of the terminating plant Gfmin) asv;, : 2% — [-1,1]

the plant from making a transition to the statg fy forcing it (See Definitiof]7). 7I1|ence, in \;e_ctor ”Ota“F’T] we havg_:_:
to stay at the original state;q Thus disabling any transition minl! = (1= 6min)IT"] %y wherell” is the transition probability

o at a given state q results in deletion of the original traigsit ~ Matrix of the supervised plant'Gwe note thav = vl where

and appearance of the self-loéfr, o) = q with the occurrence K is the total number of iterations required for convergence
probability ofo- from the state q remaining unchangedinthe su- k., the sake of completeness, the algorithmic approach is
pervised and unsupervised plants. For a given plant, t#&ov$ ¢ own in Algorithm&ll andl2.

that can be disabled in the sense of Definifibn 8 are defined t
be controllable transitions. The set of controllable traimns

in a plant is denote&’. Note controllability is state-based.

3.3. Problem Formulation: A PFSA Model of Autonomous
Navigation

2.2. Optimal Supervision Problem: Formulation & Solution _
'FT" gl je— g2 <>q3)

A supervisor disables a subset of the #ebf controllable £ 42 B T><$><$
transitions and hence there is a bijection between the set « ;\Te;/z? 0(9 Gl it ks
all possible supervision policies and the power sét Zrhat S s }Xlqu
is, there exists'Z! possible supervisors and each supervisor is e%i\n\ N &
uniquely identifiable with a subset &f and the language mea- " | > . - - dj

surev allows a quantitative comparison of different policies.

Definition 9. For an unsuDerY|Sed plant G (Q’ 2,01 x, %)’ Figure 1:(a) shows the vehicle (marked "R”) with the obstacle positidmsven
let G' and G be the supervised plants with sets of disabledas black squares. The Green4 dot identifies the @mahows the finite state
transitions, 2" ¢ ¥ and 2% c ¢, respectively, whose mea- representation of the possible one-step moves from themtuposition. (d)
sures arev’ and v+, Then, the supervisor that disablea’ shows uncontrollable transitions "u” from states correstiog to blocked grid

. . . . . . locations to 45"
is defined to be superior to the supervisor that disalssif Wi id 2D K for th bil ts. Thi
V' 2 (m1ementwisey V' AN SHiCtly SUPETIOF iV > z1ementwise) e consider a workspace for the mobile agents. is

¥ restriction on workspace dimensionality serves to singplile
' exposition and can be easily relaxed. To set up the probkem, t



Algorithm 1: Computation of Optimal Supervisor

input :P, y, €
output: Optimal set of disabled transitiorg*

begin
Setgl0 = ¢ ; /+* Initial disabling set =*/
SetTIl¥ :ﬁ; /* Initial event prob. matrix =*/

end

> = gk -

setdl” = 0.99, Setk = 1, SetTerminate = falsg
while (Terminate == false) do

Computee[*k];

= 104 =
Setm = e Tilk-;

Computev!¥ ;
for j=1tondo
fori=1tondo

\; Disable all controllabley; Z g s.t. ka] <y

/* Algorithm [2] =/

Enable all controllable; 5 gj s.t. ka] > vi[k] ;

Collect all disabled transitions i[K;
if 2 == glk-1l then
| Terminate =true;

else
L k=k+1;

/* Optimal disabling set =*/

workspace is first discretized into a finite grid and hencefte

the discretized workspace. We specify a particular locatio
as the fixed goal and consider the problem of finding optimal
and feasible paths from arbitrary initial grid locationsthre
workspace. Figurgl 1(a) illustrates the basic problem satep
further assume that at any given time instant the robot desup
one particular locationi €. a particular square in Figuké 1(a)).
As shown in Figuréll, the robot has eight possible moves from
any interior location. The boundaries are handled by renwvi
the moves that take the robot out of the workspace. The possi-
ble moves are modeled as controllable transitions betwedn g
locations since the robot can "choose” to execute a paaticul
move from the available set. We note that the number of pos-
sible moves (8 in this case) depends on the chosen fidelity of
discretization of the robot motion and also on the intrinse
hicle dynamics. The complexity results presented in thizepa
only assumes that the number of available moves is significan
smaller compared to the number of grid squares, the dis-
cretized position states. Specification of inter-grid siians

in this manner allows us to generate a finite state automaton
(FSA) description of the navigation problem. Each square in
the discretized workspace is modeled as a FSA state with the
controllable transitions defining the corresponding stizt®si-

tion map. The formal description of the model is as follows:

Let Gnay = (Q, 2, 6, 1:[,)() be a Probabilistic Finite State Au-

proach developed in this paper falls under the generic oafeg tomaton (PFSA). The state sBtconsists of states that corre-

of discrete planning. The underlying theory does not requir spond to grid locations and one extra state denotegibyThe

the grid to be regular; however for the sake of clarity we Ishal necessity of this special statp, is explained in the sequel.
present the formulation under the assumption of a reguldr gr The grid squares are numbered in a pre-determined scheme
The obstacles are represented as blocked-off grid loction g ch that eacly € Q\ {go} denotes a specific square in the

Algorithm 2 : Computation of the Critical Lower Bourd],

input : P, x
output: 6,

begin

Setf, = 1, Setbeyrr = 0;
ComputeZ , Mg , M1, My;
for j=1tondo

end

fori=1tondo
if (WX), - (y/\/)] # Othen
| Ocurr = ﬁ|(9’)(). _(WX)j |
else
forr =0tondo
if (Moy); # (Mox); then
| Break;
else
L it (MoMyx), # (MoML), then
| Break;

if r == Othen
‘ P [{(Mo—2)x}i~{(Mo- 2} |
curr — 8My ’
else
if r>0ANDT < nthen
‘ oo (MM -(MoMu)j|
curr 2”3M2
else
L Oeur=1;

L 6% =min(Ox, Ocurr) ;

discretized workspace. The particular numbering scheroe ch
sen is irrelevant. In the absence of dynamic uncertaintiels a
state estimation errors, the alphabet contains one uraitatttie
eventi.e. X = X¢c [J{u} such thattc is the set of controllable
events corresponding to the possible moves of the robot. The
uncontrollable eventis defined from each of the blocked states
and leads ta@jy which is a deadlock state. All other transitions
(i.e. moves) are removed from the blocked states. Thus, if a
robot moves into a blocked state, it uncontrollably trdosg

to the deadlock statg,, which is physically interpreted to be a
collision. We further assume that the robot fails to recdram
collisions which is reflected by making, a deadlock state.
We note thatyg does not correspond to any physical grid loca-
tion. The set of blocked grid locations along with the oblgtac
stateqg is denoted afogstacie & Q. Figure[l illustrates
the navigation automaton for a nine state discretized ks
with two blocked squares. Note that the only outgoing transi
tion from the blocked statey andqg is u. Next we augment
the navigation FSA by specifying event generation prolitési
defined by the mag 7 Q x X — [0, 1] and the characteristic
state-weight vector specified gs Q — [-1, 1]. The character-
istic state-weight vector [20] assigns scalar weightséd?RSA
states to capture the desirability of ending up in each state

Definition 13. The characteristic weights are specified for the



navigation automaton as follows: Notation 2.1. For notational simplicity, we use

-1 if Qi = QG) i L i = () = Vgl
x@)={ 1 ifqisthegoal 3) vlL(@)) = va(a) ol 1
0 otherwise wherevy = Omin[l — (1 = Omin)IT7] " x

In the absence of dynamic constraints and state estimation N N
uncertainties, the robot can "choose” the particular adfatble ~ Definition 16 (v*-path) A v*-pathp(q;, q;) from state ge Q
transition to execute at any grid location. Hence we asshate t 10 Stateé g € Qs defined to be an ordered set of PFSA states

the probability of generation of controllable events isfani (Gryy =~ O} With @, € Q, VS € {1+, M},M < CARD(Q)

. . such that
over the set of moves defined at any particular state. .
O, =G (5a)
Definition 14. Since there is no uncontrollable events defined Oy = j (5b)
at any of the unblocked states and no controllable eventsetfi Vije{l - M), q, £ 0, (5¢)
at any of the blocked states, we have the following congisten Vse Lo MIVES S va(G) < ve(Gr) (5d)

specification of event generation probabilitieéy; € Q, o €

Z, We reproduce without proof the following key results per-
. L x . .
w0 = B o (foje ;C taining tov*- planning as reported in [18].
1, otherwise

Lemma 1. There exists an enabled sequence of transitions from
The boundaries are handled by "surrounding” the workspacstate g € Q\ Qogsmcie t0 0j € Q\ {go} in GY , if and only if

with blocked position states shown as "boundary obstadfes” there exists a*-pathp(q;, q;) in Gy, .

the upper part of Figuig 1(c).

Proposition 1. For the optimally supervised navigation au-

Definition 15. The navigation model id defined to have identi-
tomatonGy,,,, we have

cal connectivity as far as controllable transitions are cemed
implying that every controllable transition or movee(ievery ‘ N ok
element o) is defined from each of the unblocked states. ¥ai € Q\ Qossmcie, L) & Z¢

Corollary 1. (Obstacle Avoidance:) There exists n@*-path

_ o from any unblocked state to any blocked state in the optjmall
The above-described probabilistic finite state automato’ypervised navigation automaterf,, .
AV

(PFSA) based navigation model allows us to compute opti-

mally feasible path plans via the language-measure-ttieore Proposition 2 (Existence ob*-paths) There exists a*-path
optimization algorithm|[20] described in Sectibh 2. Keapin p(di, deoa.) from any state ge Q to the goal goa. € Q if and
in line with nomenclature in the path-planning literatunes  only if va(q;) > 0.

refer to the language-measure-theoretic algorithm*am the

sequel. For the unsupervised model, the robot is free to eX@orollary 2. (Absence of Local Maxima:) If there exists a*-

cute any one of the defined controllable events from any giveBath from g e Q to g € Q and av*-path from qto ggos. then

grid location (See Figuid 1(b)). The optimization algamithe- there exists a*-path from g to Ggon., i.€.,

lectively disables controllable transitions to ensuré tha for-

mal measure vector of the navigation automaton is elemeatwi

maximized. Physically, this implies that the supervisaubtds 4. qj € Q(le(qi’qGOAL) /\ Fea(ai. aj) = 3p(qi’qG°AL))

constrained to choose among only the enabled moves at each

state such that the probability of collision is minimizediwthe ~ 2.5. Optimal Tradeoff between Computed Path Length & Avail-

probability of reaching the goal simultaneously maximizad ability Of Alternate Routes

thoughv* is based on optimization of probabilistic finite state

machines, it is shown that an optimal and feasible path ptan ¢

be obtained that is executable in a purely deterministicssen
Let Gnay be the unsupervised navigation automaton and o @

Gy, be the optimally supervised PFSA obtainedWy We 7

note thatv;i is the renormalized measure of the terminating plant

Gy, (6min) with substochastic event generation probability ma- \

trix [T = (1 — Gmin)I1. Denoting the event generating function

(See DefinitionB) oGy, andGy,, (0min) @as7: Qx X — Q

ands?min : Q x £ — Q respectively, we have

2.4. Decision-theoretic Optimization of PFSA

vi(d;) > va(aK)

Figure 2: Tradeoff between path-length and robustnessruygemic

Atmin(g;, €) = 1 (4a) uncertainty: opw is the shortest path tqgo,, from g;; but they* plan
) - may beciw; due to the availability of larger number of feasible paths
ti € Qs Tj € 23 ﬂﬂmm(qiso-j) = (1 - 9min)7T(Qis0'j) (4b) throughqj.



Majority of reported path planning algorithms consider min We do not need to actually decompose trajectories, it is nere
imization of the computed feasible path length as the sole opa conceptual construct that gives us a theoretical bastofor
timization objective. However, the* algorithm can be shown puting the probabilities of uncontrollable transitionsrfr ob-
to achieve an optimal trade-off between path lengths anitt ava served robot dynamics (as described later in Sedilon 5, and
ability of feasible alternate routes. df is the shortest path to therefore incorporate the amortized effect of uncertagiti the
goal from stateyk, then the shortest path from staje(with navigation automaton.

ol z, 0k) is given byo,w. However, a larger number of feasi-

ble paths may be available from stage(with g; SN g;) which o _
may result in the optimat* plan to beryw;. Mathematically, R i "
SEGWAY RMP

each feasible path from statg has a positive measure which
may sum to be greater than the measure of the singlegath
from stateq. The conditionvg(q;) > v#(ax) would then imply
that the next state fromy would be computed to bg; and not ol
ok- Physically it can be interpreted that the mobile gent is bet
ter off going toq; since the goal remains reachable even if one
or more paths become unavailable. The key resulis [18] are as
follows:

-3

Lemma 2. For the optimally supervised navigation automaton I

GltlAV’ we have/q; € Q\ Qogsmacte

1- 9min

2]
CATD(ZC)) (6" (G, w))

Yw € L(qi), V:#({O)}) = 9min(

Proposition 3. For g € Q \ Qossmcie, letq — gj — --- —

JcoaL be the shortest path to the goal. If there existEQ \ -7r
QosstacLe With g SN gk for someo;, € X¢ such thatvg(qy) > Zlin o
. . N — Actual Trajecto
v#(Q;), then the number of distinct paths to goal from statesq -8 - : J ryé ;
at |eaS'[CARD(Zc) + 1.

The lower bound computed in Propositidn 3 is not tight and
if the alternate paths are longer or if there are multipl®rsh
est’ paths then the number of alternate routes requiredyis si
nificantly higher. Detailed examples can be easily presetate  3.1. The Modified Navigation Automaton
illustrate situation where* opts for a longer but more robust  The modified navigation automatdBﬁ‘R/D = (Q,3,6, ﬁ,X)
plan. is defined similar to the formulation in Sectibn 2.3, with the

exception that the alphabgts defined as follows:

Figure 3: Plan execution with SEGWAY RMP at NRSL, Pennstate

3. Generalizing The Navigation Automaton To Accommo- Y =3%cUZyc U{u (6)

date Uncertain Execution .
whereX¢ is the set of controllable moves from any unblocked

In this paper, we modify the PFSA-based navigation modehavigation state (as before), whigc is the set of uncontrol-
to explicitly reflect uncertainties arising from imperfdotal-  lable transitions that can occur as an effect of the platfdym
ization and the dynamic response of the platform to nawgati namics and oather uncertainty effects. We assume thatdbr ea
commands. These effects manifest as uncontrollableti@nsi o € Xc, we have a corresponding event in Zyc, such that
in the navigation automaton as illustrated in Figllle 4. Notebotho ando represent the same physical move from a given
while in absence of uncertainties and dynamic effects, ame ¢ navigation state; but while- is controllable and may be dis-
disable transitions perfectly, in the modified model, suigh d abled,o is uncontrollable. Although for 2D circular robots we
abling is only partial. Choosing the probabilities of theean-  have:CARD(Zc) = CARD(Zyc), in general, there can exist un-
trollable transitions correctly allows the model to incoragte  controllable moves reflecting estimation errors that carteo
physical movement errors and sensing noise in an amortizealized via a single controllable move. For example, far pl
fashion. nar rectangular robots with a non-zero minimum turn radius,

A sample run with a SEGWAY RMP at NRSL is shown in there can be an uncontrollable shift in the heading withayt a
Figure[3. Note that the robot is unable to follow the plan ex-change in thexy-positional coordinates, which may reflect er-
actly due to cellular discretization and dynamic effectsicls  rors in heading estimation, but such a move cannot be ex¢cute
effects can be conceptually modeled by decomposing taaject via controllable transitions due to the restriction on thi@im
fragments into sequential combinations of controllabléan-  mum turn radius. We will discuss these issues in more details
controllable inter-cellular moves as illustrated in Figi#(c). in the sequel.
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Figure 4: (a) shows available moves from the current statén(Gnsupervised
navigation automaton. (b) shows the enabled moves in thalby supervised
PFSA with no dynamic uncertainty, (c) illustrates the cagl dynamic uncer-
tainty, so that the robot can still uncontrollably (and renowillingly) make
the disabled transitions, albeit with a small probabilifg,, probability of tran-
sitions€,, €, €, etc. is small. (d) illustrates the concept of using uncdtatite
transitions to model dynamical response for a 2D circuloto]y is the target
cell from J7, while the actual trajectory of the robot (shown in dottee}iends
up in J4. We can model this trajectory fragment as first executingrdrobiable
move toJp and then uncontrollably moving té.

Definition 17. The coefficient of dynamic deviatip(GNoP) is
defined as follows:

YGN) = 1-max > (), o)

ouEZyc

(7)

Definition 18. The event generation probabilities f6r°P is
defined as followsYq; € Q\ {dcoaL}, Tj € Z,

l_z(ruezuc &(QI »U'u)

. No. of controllable events ai; * !f oj € Xc
(G, o7j) = (g, o), if o} € Suc
1, otherwise
and for the goal, we define as before:
7( ) No. of controlléble events aj ’ if ojeXc
Ve ,0j) = - i .
Aeoat, 7 1, otherwise

Note that we assume there is no uncontrollability at the goal
This assumption is made for technical reasons clarified @& th
sequel and also to reflect the fact that once we reach the go

a

Q. Yoy € Zyc implying thaty(GN<P) = 1, while in prac-

tice, we expecy(Gyop) < 1.

e In Definition[I7, we allowed for the possibility a{g;, o)
being dependent on the particular navigation stgtesQ.
A significantly simpler approach would be to redefine the
probability of the uncontrollable evenigd, o) as fol-
lows:

~ 1 ~
rav(oy) = WD(Q) qizE;?ﬂ(Qi»O'u)

(8)
whereray (o) is the average probability of the uncontrol-
lable eventr, being generated.

The averaging of the probabilities of uncontrollable tidoss

is justified in situations where we can assume that the dymami
response of the platform is not dependent on the locatiolneof t
platform in the workspace. In this simplified case, the event
generation probabilities foBN <" can be stated asiq € Q \
{deoaL}, 0j € Z,

(GNP P
~ No. of controllag\ie events af; ’ !f gj € 2C
(. o) = aav(oj), if oj € Zuc
1, otherwise

The key difficulty is allowing the aforementioned dependenc
on states is not the decision optimization that would fojlbut

the complexity of identifying the probabilities; averagine-
sults in significant simplification as shown in the sequelug;h
even if we cannot realistically average out the uncontbddlia
transition probabilities over the entire state space, wedcde-
compose the workspace to identify subregions where such an
assumption is locally valid. In this paper, we do not address
formal approaches to such decomposition, and will generall
assume that the afore-mentioned averaging is valid through
out the workspace; the explicit identification of the subioas

is more a matter of implementation specifics, and has little t
do with the details of the planning algorithm presented here
and hence will be discussed elsewhere. In Sefion 5, we will
address the computation of the probabilities of uncoreixdéd
transitions from observed dynamics. First, we will esttibthe
main planning algorithm as a solution to the performance opt
mization of the navigation automaton in the next section.

4. Optimal Planning Via Decision Optimization Under Dy-
namic Effects

The modified modet Y0P can be optimized via the measure-
Eheoretic technigue in a straightforward manner, usingrthe
dlgorithm reported in [18]. The presence of uncontrollatza-

we terminate the mission and hence such effects can be ne:

glected.

We note the following:

sitions inG Y0P poses no problem (as far as the automaton opti-
mization is concerned), since the underlying measurerétieo
optimization is already capable of handling such effec€q.[2
However the presence of uncontrollable transitions wesken

e In the idealized case where we assume platform dynansome of the theoretical results obtained|lin [18] pertairting

ics is completely absent, we hawéqg, o) = 0,Vq €

navigation, specifically the absence of local maxima. Wensho



that this causes the* planner to lose some of its crucial advan- Proof. Let ¢ be the stationary probability vector for the
tages, and therefore must be explicitly addressed via asiweu stochastic transition probability matrix correspondingthe
decomposition of the planning problem. navigation automato@mg,D, for a starting state from which a
- ) - ) feasible path to goal exists. (Note thatmay depend on the

Proposition 4 (Weaker Version of Propositidd 2)There exists starting state; Figuf@ 5 illustrates one such example. Kewe
av*-pathp(gi, geon) from any state ge Qtothe goal@oa € gnce we fix a particular starting state, the stationary vegis
Qifve(a) > 0. uniquely determined). The selective disabling of conatoli
Proof. We note that(q;) > O implies that there necessarily eventh njodifie_s the transition mat_rix andin effect_alg_ersuc_;h
exists at least one string of positive measure initiating from thatp"y is maximized|[20], wherg is the characteristic weight

g and hence there exists at least one string that terminates 80N 1-€ , xi = x(q)). Recalling thak(Geoa) = 1,x(de) =

JeoaL. The proof then follows from the definition ef-paths —1 andx(q) = 0 if g is neither the goal nor th? abgtract ob-
(See Definitiof T6). stacle stateyo, we conclude that the optimization, in effect,

maximizes the quantity:
Remark 2. Comparing with Propositiofil2, we note that the
only if part of the result is lost in the modified case. ¥ = PcoaL — 9o 9)

Remark 3. We note that under the modified model(qj) <  Also, note that the optimized navigation automaton has only
0 needs to be interpreted somewhat differently. In absence ¢Wo dump states, namely the gamdoa. and the abstract ob-
any dynamic uncertaintyz(q;) < 0 implies that no path to stacle stateg,. That the goaljgoes. is in fact a dump state
goal exists. However, due to weakening of Proposfiion 1 (Seis ensured by not having uncontrollable transitions at thal g
Propositiori4),vx(q) < 0 implies that the measure of the set of (See Definitiof_118). Hence we must have

strings reaching the goal is smaller to that of the set ofngtsi

hitting an obstacle from the state.q Yai € Q\ {dcoars o}, 9i =0 (10)

Thev*-planning algorithm is based on several abstract conimplying that
cepts such as the navigation automaton and the formal mea-
sure of symbolic strings. It is important to realize that in Pcoa + 9o =1 (11a)
spite of the somewhat elaborate framework presented tre, = ¥ =2pcoa. —1=1-2p¢ (11b)
optimization is free from heuristics, which is often not tteese
with competing approaches. In this light, the next proposis ~~ Hence it follows that the optimization maximizego.. and
critically important as it elucidates this concrete phgsiwon- ~ Simultaneously minimizege. u
nection.

No Connecting Path Remark 4. It is easy to see that Propositi@h 5 rema_ins valid if
>< ----- X(OcoaL) = xcoaL > 1. In fact, the result remains valid as long
i : as the characteristic weight of the goal is positive and thare
acteristic weight of the abstract obstacle stateig negative.

maxima can occur under the modified model. This is a seri-
ous problem for autonomous planning and must be remedied.
- 5 Ab . rollable transi { the goaly that there | The problem becomes critically important when applied to so
ijgure o: Sence or uncontrollable transitions ai e y thal ere I1s . . H :
no path in the optimally disabled navigation automaton fimosmt A to point lution of maze;, Iarge_r the number _Of ObSIaples’ _hlgheres th
B (or vice versa), since all controllable transitions witlaessarily be disabled Chance of ending up in a local maxima. While elimination of
at the goal. It follows that the stationary probability \@cmay be different  local maxima is notoriously difficult for potential basedpt
depending on whether one starts left or right to the goal. él@w note that that ning approaches;* can be modified with ease into a recursive

any two points on the same side have a path (possibly madecohtrmllable scheme that vields maxima-free plans in models with nop-zer
transitions) between them; implying that the stationamybpbility vector will y MOD P

be identical if either of them is chosen as the start location dynamic effectsi(e. with y(Gy;") < 1).

It will be shown in the sequel that for successful executibn o

the algorithm, we may need to assign a larger than unity char-

Proposition 5. Given that a feasible path exists from the start- 5cteristic weighfycoa. t0 the goalggoa. A sufficient lower
ing state to the goal, the* planning algorithm under non-  pound forygoa , With possible dependence on the recursion
trivial dynamic uncertainty (e. with y(GYQ°) < 1) maximizes  step, is given in Propositidd 6. The basic recursion scheane ¢
the probabilitypcoa. Of reaching the goal while simultaneously pe described as follows (Also see the flowchart illustration
minimizing the probabilityo of hitting an obstacle. Algorithm[3):

é . ! +— Obstacles
A : é 4.1. Recursive Problem Decomposition For Maxima Elimina-
d A B tion
i Weakening of Propositidd 1 (See Proposifibn 4) has the cru-
: @ > Goal cial consequence that Corolldty 2 is no longer valid. Local
|
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1. In the first stepi(e., at recursion stefg = 1) we execute
v*-optimization on the given navigation automat@}{O°
and obtain the measure veciaf4.

asQ (k denotes the recursion stepg,,

Q=g € Q:vsM}i >0 (12)

characteristic weights as follows:

(K

Yai € Qu x(Gi) = Xgoa (13)

and continue the recursion by going back to the first ste
and incrementing the step numtker

Algorithm 3 : Flowchart for recursive* -planning

ProalgDm:
GNAV

1. Set:ti € Qk

x(a) =x¥

2. Eliminate Uncont.

Initialize:
k=0, Qo ={qdcoar}

transitions from | 5| Executey* Setk=k+1
all g € Qk
Define:
v Q= (g € Q: vl > 0}
#

Proposition 6. If 6 is the critical termination probability

(See Definitioi 1) for the* -optimization in the R recursion
step of Algorithmi3, then the following condition

Y

is sufficient to guarantee that the following statementdrare:

CARD(Zc)
1-64

min

(K]

GOAL

(14)

1. If there exists a statej g Q \ Qx from which at least one

state ¢ € Qy is reachable in one hop, thep|; > 0.

The recursion terminates in at mdShRD(Q) steps.

For the K" recursion step, either 2 Q«-1 or no feasible
path exists to go.. from any state ge Q \ Qk-_1.

@
. X
B - 1_9min
e
\ ‘/—'
; ’A \‘\
VN, -

- |
Figure 6: lllustration for Propositionl 6. Uncontrollableeats and strings are
shown in dashed.

2.
3.

(1 - Hmin) CARg(zC)

L= 7))

11

Proof. Statement 1:
We first consider the first recursion stege., the case where
k = 0 andQx = {dcoa.} (See AlgorithnB). We note that the

. We denote the set of states with strictly positive measuré0al dcoa achieves the maximum measure on account of the

fact that onlygsea. has a positive characteristic weighg,, we
have

Vg € Q, V#[1]|GOAL 2 V#[1]|i (15)

. If Q = Qk-1, the recursion terminates; else we update thet follows that all controllable transitions from the goalliw

be disabled in the optimized navigation automaton obtaated
the end of the first recursion step (See Definifibn 8 and Algo-
rithms[d &[2), which in turn implies that the non-renormatize
measure of the goal (at the end of the first recursion step) is

%iven by xGoa Klin-

The Hahn Decomposition Theorem [46], allows us to write:
vali = va(L™ (@) + va(L™(a0)) (16)

whereL*(q;), L(qi) are the sets of strings initiating from state
g that have positive and negative measures respectively.

Letqg € Q\ {dcoa.} Such thafgea. is reachable frong; in
one hop. We note that since it is possible to reach the goal in
one hop frong;, we have:

¥(1 = Omin)
CARD(Zc)

where the first term arises due to renormalization (See Defini
tion[7), the second term denotes the probability of the ttiams
leading to the goal and the third term is the non-renormdlize
measure of the goal itself (as argued above). Since it ioolsvi
that the goal achieves the maximum measure, the transdion t
the goal will obviously be enabled in the optimized automato
which justifies the second term. It is clear that there areyman
more strings of positive measured. arising due to the self
loops at the statg; that correspond to the disabled controllable
events that do not transition to the goal fraggh which are not
considered in the above inequality (which contributes t&-ma
ing the left hand side even larger); therefore guarantetiag
correctness of the lower bound stated in [E].(17).

Next, we compute a lower bound feg(L™(qg;)). To that ef-
fect, we consider an automat@i identical to the navigation
automaton at hand in ever respect, but the fact thatithe,
has zero characteristic. We denote the state correspotwling
gi in this hypothesized automaton gs and the set of al states
in G’ asQ’. We claim that, after a measure-theoretic optimiza-
tion (i.e. after applying AlgorithmEll arld 2), the measurejof
denoted as*(q), satisfies:

vi(g) 2 -(1-7) (18)

To prove the claim in Eq[{18), we first note that denoting the
renormalized measure vector f8f before any optimization as
v/, the characteristic vector g5 and for any termination prob-
ability 6 € (0, 1), we have:

X GoaL

V(L™ (ah) 2 Omin X (17)

Gmin

1 lleo = 16[L — (1 — )]~y lleo
<O -(1-0I Heox1=1 (19)

which follows from the following facts:



1. For allg € (0,1], 6[I — (1L — O)I1]~* is a row-stochastic
matrix and therefore has unity infinity norm [19]

2. l¥'lle = 1, since all entries of’ are 0 except for the state
corresponding to the obstacle state in the navigation au-
tomaton, which has a characteristic¢f.

Since the only non-zero characteristic-s, it follows that no
state inG’ can have a positive measure and we conclude from

Eq. (19) that:

R ~ 1,02
vq] € Q ’ V(q]) € [_1’ 0] (20)
Note thato is not blocked itself (since we chosggesuch that a )

feasible 1-hop path to the goal exists frgg. Next, we sub-

jectG’ to the measure-theoretic optimization (See Algorithins 1 _ _ _

& m which disables all controllable transitions to the died Figure 7: lllustration for Statement 1 of Propositidh 6. &lthat even ifQy
tat ! | der t ¢ | b d th timi as multiple statesy;, , gj,, gj,, the measure of any string (say10102) from

states. [n order to compute a lower bound on tne OpliMIZEg s the same as iy was directly connected to the gagbos. with all con-

measure for the statg, (denoted by* (/) ), we consider the trollable events disabled ggoa. . The bottom plate illustrates this by showing

worst case scenario where all neighboring states that can e hypothetical scenario whegeis connected t@igon. by o andoy, o2 are

reached fr0m:|’ in single hOpS are blocked Denoting the Setcontrollable events disabled @t . Note that for this argument to work, we

i .

. . must eliminate uncontrollable transitions from all stateQx.
of all such neighboring states gfby N(q), we have:

v (d) = Z ITv(gj) =2 -1x Z I = -1x (1-v) We first claim that
qEN(a) aiEN(d)

(21) Yaj € Qe O ¢ Qu, vild]; > M|, (25)

whereTI! is the probability of the uncontrollable transition Which immediately follows from the fact that the optimal eon
from ¢ to the neighboring state/. Note that we can write figuration (of transitions from states i) at the end of the
Eq. [21) in the worst case scenario where each stané(if) v*-optimization at thek™ step would be to have all control-
is blocked, since all controllable transitions frafrwill be dis-  lable transitions from stateg; € Qg enabled if and only if
abled in the optimized plant under such a scenario, and baly t the transition goes to some state@g, since in that case ev-
uncontrollable transitions will remain enabled; and theba-  ery string initiating fromg; terminates on a state having char-
bilities of all uncontrollable transitions defined at stgtsums  acteristicygoa. (Since there is no uncontrollability from states
to 1 - y. It is obvious that the lower bound computed in within Q, by construction), whereas if a transitign pew—

Eq. (21) also reflects a lower bound fa(L"(q)), since addi- ¢ whereq; € Qk, - ¢ Qk allows strings which endcap?nazgro—
tion of state(s) with positive characteristic or elimimatiobsta-

; ! ' characteristic states and also (via uncontrollable ttems) on
cles cannot possibly make strings more negative. Furthermo negative-characteristic states.

recalling that the goalgoa. is actually reachable from statp Eq. (25) implies that no enabled string ex@s. It therefore

by a single hop, it follows that not all neighbors qfin the  ¢6)10ws that every stringrw starting from the state;, with w €
navigation automaton are blocked, and hence we have the Str'zé ands(g, o) € Qk (i.e, o leads to some state withidy)

inequality: has exactly the same measure ag ifs directly connected to

va(L™(@)) > —(1 - ) (22)  Yeoa andall controllable transitions are disabledig.. (See
o ~ FigurelT for an illustration). This conceptual reductiorplias
Combining Eqns. [(17) and_{22), we note that the followingthat Eq. [I7) is valid whe@x 2 {don. } since the lower bound

condition is sufficient for guaranteeingj; > 0. for v(L*(q;)) can be computed exactly as already done for the
V(1 = Ormin) case withQx = {dcoa}. The argument for obtaining the lower
TD(EC) X YcoaL > 1-y (23)  bound forvy(L™(qg)) is the same as before, thus completing the

_ ) ) ) proof for Statement 1 for all recursion steps of Algorithim 3 .
which after a straightforward calculation yields the boundstatement 2:

state_d in Ed:|]4, and the Statement 1 is proved for the first rg-g Q4 C Qbe the set of states from which a feasible path to the
cursion stepi.e. for Qc = {goa }- _ goal exists. IICARD(QR) = 1, then we must hav®r = {qcoa. }
To extend the argument to later recursion steps of Algoand the recursion terminates in one step. In general, fok'the

rithm[3,i.e, for k>0, we argue as follows. Le@ 2 {deoa}l  recursion step, I€EARD(QK) < CARD(QR). Since there exists
and we have eliminated all uncontrollable transitions frain 5t |east one state, not @y, from which a feasible path to the

aj € Q (a.S.require_d in Algorithrai3). Fur_ther, _Iqt € Q\Q«  goal exists, it follows that there exists at least one gipfeom
such that _|t is possible to reach somes Q in a single control-  \yhich it is possible to reach a state @ in one hop. Using
lable hopj.e. Statement 1, we can then conclude:

G controllable 4. 9 < Q (24) Qi1 # Q= CARD(Qk+1) 3 CARD(Qk) +1
12



= CARD(Qks1) =2 k+1 (26)

which immediately implies that the recursion must ternmeriat
at mostCARD(Q) steps.

Statement 3:

Follows immediately from the argument used for proving &tat
ment 2. O

Remark 5. The generality of EqfI4) is remarkable. Note that
the lower bound is not directly dependent on the exact siract
of the navigation automaton; what only matters is the number
of controllable moves available at each state, the coefftaé
dynamic deviationy(G)MoP) and the critical termination prob-
ability 6min. Although the exact automaton structure and the
probability distribution of the uncontrollable transitis are not
directly important, their effect enters, in a somewhat tiavial
fashion, through the value of the critical termination paddil-

ity. The reader might want to review AlgoritHmh 2 (See also
[19,120]) which computes the critical termination probatyilin
each step of the*-optimization for a better elucidation of the
aforementioned connection between the structure of the nav
gation automaton anglcon, -

The dependencies of the acceptable lower bound &g,
with the coefficient of dynamic deviatiop(Gy<-), as com-
puted in Propositiofl6, is illustrated in Figufes 8(a) any (b
The key points to be noted are:

1. Asy(GMOP) - 0%, ygoa — +oo; Which reflects the phys-
ical fact that if no events are controllable, then we cannot
optimize the mission plan no matter how larggoa. is

chosen.
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2. As ,}/(GMOD) — 1, xcoa. — 0; which implies that in the Figure 8: Variation of the acceptable lower boundjfgg,. With y(GMS/D). (a)

NAvV
absence of dynamic effects any positive valueygfa.

suffices. This reiterates the result obtained wigh,, = 1
in [18].

3. As the number of available controllable moves increases

(See Figuré1B(a)), we need a larger value/gha, ; sim-
ilarly if the critical termination probabilityn,n is large,
then the value ofcon. required is also large (See Fig-
ure8(b)).

4. The functional relationships in Figurlgs 8(a) and (b)lesta
lish the fact that for relatively smaller number of control-
lable moves, a large value 9{GY/°P) and a small termi-
nation probability, a constant value)a(f;oAL = 1 may be
sufficient.

4.2. Plan Assembly & Execution Approach

The plan vectors,¥ (Say, there ar& of them,i.e, k €
{1,---,K}) obtained via the recursive planning algorithm de-
scribed above, can be used for subsequent mission exeaution
two rather distinct ways:

1. (The Direct Approach:)

e At any point during execution, if the current state
g € Q« for somek € {1,---,K}, then use the gra-
dient defined by the plan vectos!{ to decide on

13

The set of controllable moves is expanded frOmRD(Zc) = 4to CARD(Zc) =
100 while holdingdmin = 0.01 (b) The critical termination probabilit§min is
varied from 0001 to 01 while holding CARD(Ec) = 8. Note the lines are
almost coincident in this case.

the next moveij.e, g; is an acceptable next state if
vyM|; > v,M|; and for states, that can be reached
from the current statg; via controllable events, we
havev.M|; > v,l4,.

e if Yk e {1, K}, g ¢ Qk, then terminate operation
because there is no feasible path to the goal.

o Note that this entails keepir§ vectors in memory.

2. (The Assembled Plan Approach:)

e UseryM ke (1,--- K}to obtain the assembled plan
vectorvy” following Algorithm[4, which assigns a
real valuev;"|; to each state; in the workspace. We
refer to this map as the assembled plan.

e Make use of the gradient defined iy to reach the
goal, by sequentially moving to states with increas-
ing values specified by the assembled piaa,. if
the current state ig; € Q, thenq; is an acceptable
next state ifvs*|; > v+*| and for stateg), that can
be reached from the current stagevia controllable
events, we have|; = v,



Algorithm 4 : Assembly of Plan Vectors sincedj € Q-1 A G € Q, it follows from Algorithm[4, that
input 7N k=1 K vilj = 1+ v > 0. It follows that the same argument can be

1 (Plan Vectors)output: v4* (Assembled Plan) used recursively to fina*-pathsp(dj. ds,), - - - . o(dj. deoad) if
2 begin and only ifvs|; > 0.
3 Setv,A = 0; /+ Zero vector */ To complete the proof, we still need to show that if there
4 fork=1:Kdo exists a feasible path from a stajeto the goalggoa., then
5 forie Qdo there exists a*-pathp(q;, gcoa.). We argue as follows: Let
6 V™R = 0; 0 =01— 02—+ — 0,, = O, = Jeoa be a feasible path
7 if| V#[k;;gli > (ithen from the state; to ggoa. . Furthermore, assume if possible that
8 v, i=14
9 else ! vk <0 (27)
10 if v{¥|; > 0then
11 | v;’“”h = v, l¥);: i.e., there exists no*-path fromg; to ggoa. W.I.t v, We
12 endif observe that since it is possible to reagty,. from gy, , in
13 endif one hop, using Propositigh 6 we have:
14 endfor
15 Vit = v + V;mp; V#[l]|rm >0=0,, €Q (28)
10 endfor We further note:
17 end
V#[l]|r,w2 >0= O, € Q (29)
e We show in the sequel that¥”|; < 0, then no fea- vill,, £0=>vP ,>0=0,,€Q (30)

sible path exists to the goal. )
ence, we conclude eithey,_, € Qz orq,,, € Q1. It fol-

H

Before we can pr_oceed further, we need to formally establis_tpb\,vS by straightforward induction that eithef € Qm.1 or
some key properties of _the assemp_led plan approach. Ir<|:4part|q1 € Qm_», which contradicts the statement in EGJ(27). There-
ular, we have the following proposition: fore, we conclude that if a feasible path to the goal existsfr
Proposition 7. 1. For a state ¢ € Q, a feasible path to the any stateg;, then av*-path p(qi, dgoac) (W.I.t v4*) exists as

goal exists from the state,df and only ifv"|; > 0. well. This completes the proof of Statement 1.

2. The assembled plam” is free from local maxima,e., if ~ Statement 2:

there exists a*-path (w.r.t. tovs") fromq e Qtog e Q  Given statesy,g; € Q, assume that we have the-paths

and av*-path from G to ggoa. then there exists @ -path  01(0i, deoa) @ndp2(d;, g;). We observe that:

from g t0 Qgoac, i-€.,

Fo1(0f, Geoar) = vi'|i > O (See Statement 1) (31a)

Y0, q; € Q(le(Qi, dcoaL) /\ Jp2(ai, 9j) = Fo(q;. QGOAL)) Fp2(0i. ) = vilj Z v (See Definition[18) (31b)

3. If a feasible path to the goal exists from the statetiogen = v*lj > 0= J0(qj, doont) (See Statement 1)  (31c)
the agent can reach the goal optimally by following the .
gradient ofv,”, where the optimality is to be understood which proves Statement 2.

o o , ., Statement 3:
as maximizing the probability of reaching the goal while : .
simultaneously minimizing the probability of hitting an-ob Statements 1 and 2 guarantee that if a feasible path to tHe goa

stacle (ie. in the sense stated in Propositigh 5). exists frqm a statg; < Q, thin an ager_1t can reach th_e goal
by following av*-path (w.r.tv”*) from g, i.e., by sequentially

Proof. Statement 1: moving to states which have a better measure as compared to
Let the plan vectors obtained by the recursive procedutedsta the current state.

in the previous section beM (Say, there ar& of them,i.e, We further note that a*-pathw w.r.t vz* from any state

k € {1,---,K}) and further let the current statp € Qc for ¢ to ggoa. can be represented as a concatenated sequence
somek € {1,---,K}. We observe that on account of Propo- o w, - - w; - - - wm Wherew; is av*-path from some interme-
sition[4, if k = 1, thenv¥|; > 0 is sufficient to guaran- djate stateg; € Qs, for somes € {1,---,K}, to some state

tee that there exists & -pathp(q;, deoa) W.It the plan vec- g, € Q. ;. Since the recursive procedure optimizes all such
tor v4tl. We further note that;™|; <= 0 = ¢ ¢ Qi (See intermediate plans, and since the outcome “reached gaal fro
Eq. (12)), implying thaw,!1|; > 0 is also necessary for the ex- g can be visualized as the intersection of the mutually inde-
istence ofo(qj, deoa ). Extending this argument, we note that, pendent outcomes “reach€d from ¢ € Qs_1", “reachedQs,1
for k > 1, av*-pathp(q;, ;) with qj € Qe exists (with re-  fromgj € Qs”, -+ , “reachedigoa. froma, € Qy”, the overall

spect to the plan vector¥) if and only if vsM}; > 0. Not-  path must be optimal as well. This completes the proof. (I
ing thatvyM|, > 0 & v*; > 0, (See Algorithni}4) we con-

clude that ar*-pathp(q;, q;) with ; € Q-1 exists (with re- We compute the set of acceptable next states from the fol-
spect to the plan vector) if and only if v4*; > 0. Also, lowing definition.
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Definition 19. Given the current state; g Q, Qnext iS the set 2. Localization errors: Estimation errors arising fromsan

of states satisfying the strict inequality: noise, and the limited time available for post-processing
exteroceptive data for a moving platform. Even if we as-
Qrext={0) € Q1 v} > vili} (32) sume that the platform is capable of processing sensor data
to eventually localize perfectly for a static robot, thetfac
We note that Propositidd 7 implies th@tex:is empty if and that we have to get the estimates while the robot pose is
only if the current state is the goal or if no feasible pathhe t changing in real time, implies that the estimates lag the
goal exists from the current state. actual robot configuration. Thus, this effect cannot be ne-

glected even for the best case scenario of a 2D robot with
an accurate global positioning system (unless the platform

5. Computation of Amortized Uncertainty Parameters . I
speed is sufficiently small).

’ X RNEPR e & Loshaia In our approach, we do not distinguish between the differ-
WL/ WY P Uncertainty } ent sources of uncertainty, and attempt to represent thalbve
®'\’/‘®'\’/‘@ N\ amortized effect as uncontrollability in the navigation@ua-

g .vov ) % \ o % ton. The rationale for this approach is straightforward wee-

, “ “ 7 N @ a alize actuation errors as the uncontrollable executionaofsi-

@/’\:@/’\,@ > § tions before the controllable planned move can be execated,
e e S I ® for localization errors, we assume that any controllabéeaped
‘ v v e move is followed by an uncontrollable transition to the attu

: “ “ v % | 95 | o configuration. Smaller is the probability of the unconiablie
@é@é@ transitions in the navigation automatare,, larger is the coef-
TN A TN Grid Decomposition ficient of dynamic deviation for each state, smaller is the un

) ) ’ Trajectory certainty in navigation. From a history of observed dynamic
@ or from prior knowledge, one can compute the distribution of

the robot pose around the estimated configuration (in an-amor
tized sense). Then the probability of uncontrollable titaorss

can be estimated by computing the probabilities with whiteh t
robot must move to the neighboring cells to approximate this
distribution. The situation for a 2D circular robot is iltusted

in Figure[9(a), where we assume that averaging over the ob-
servations lead to a distribution with zero mean-errer; the
distribution is centered around the estimated locatiohértbn-
figuration space. For more complex scenarios (as we show in
the simulated examples), this assumption can be easilyetla
We call this distribution theleviation contou(D) in the sequel.
The amortization or averaging is involved purely in estimgt

the deviation contour from observed dynamics (or from prior
Figure 9: (a) Model for 2D circular robot(b) Numerical intaion technique ~ knowledge); a simple methodology for which will be preseinte

for computing the dynamic parameters for the case of a @ircobot modetg.  in the sequel. However, we first formalize the computation of
a SEGWAY RMP 200 the uncertainty parameters from a knowledge of the deviatio
contour.

Specific numerical values of the uncertainty parametegs, . . .
For that purpose, we consider the current state in the naviga

the probability of uncontrollable transitions in the naatign . " ton to ba:. Recall tha A t of iol
automaton can be computed from a knowledge of the averag}!é)n automaton to bg;. Recall thaty maps to a set of possible

uncertainty in the robot localization and actuation in thefig- conflgu(;attlons mtt 2? Workspéi_ce.t FOIP? fﬁ]cwczlatr robator-
uration space. For simplicity of exposition, we assume ai2D ¢ responads to a set od—y coordinates that the robot can occupy,

cular robot; however the proposed techniques are appéicabl w_h|le for a rectangl_JIar robog m_aps_to a set oy, ) coor
more general scenarios. The complexity of this identifioais dma_tes. T_he footprint of the nawgz_mon _automaton statabe
related to the dynamic model assumed for the platfam €ir- conﬂgurgtlon space can_be specified via the haQ — 2°,
cular robot in a 2D space, rectangular robot with explicidhe Wh‘?fec Is the configuration space o-f the robot. In general, for
ing in the configuration etc.), the simplifying assumptiamesde a given current statg;, we can identify the set/(q)) < Q of

for the possible errors, and tllegree of averaginthat we are neighboring state§ that the robot can transition tq in oneemo
willing to make. Uncertainties arise from two key sources: The current statg; is also included inv(g)) for notational sim-
plicity. In case of the 2D circular robot model considered in

1. Actuation errors: Inability of the robot to execute pladn this paper, the cardinality a¥/(q;) is 8 (provided of course that
motion primitives exactly, primarily due to the dynamic q; is not blocked and is not a boundary state). For a position
response of the physical platform. s € &(q;) of the robot, we denote a neighborhood of radias
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the positiorsin the configuration space #&,. The normalized these models. Note, in absence of uncertainty, the 4D imple-
“volume” intersections ofBs, with the footprints of the states mentation is superfluousXrevious Yprevious Xcurrent Yeurren) Nas
included inN(q;) in the configuration space can be expressedo more information tharyrrent, Yeurrent) in that case.

as:
Controllable

[, dx 15 Move
Fi(sr) = ————.Va; € N(a) (33)
dx .
Lq,Aj Available
! Controllable— |
Transitions Ty
whereA; = Bs, ﬂg(qj) and c is the appropriate Lebesgue "EJncontrollabIe
measure for the continuous configuration space. ./ Move
We observe that the expected or the average probability of
the robot deviating to a neighboring statg € N(q;) from a
locations € £(q;) is given by:
fo Fj(& r)]Ddr (34) Figure 10: A rectangular robot unable to execute zero-gatitns. There exists

uncontrollable transitions that alter heading in placeicivieflects uncertain-
ties in heading estimation, although there are no conbiglanoves that can

SR A
Hence, the probabllltﬂij of uncontrollably transitioning to a achieve this transition

neighboring statey; from the current statey; is obtained by

considering the integrated effect of all possible pos#iohthe Next, we present a methodology for computing the relevant
robot within&(q;), i.e. we have: uncertainty parameters as a function of the robot dynaries.

- assume a modular plan execution framework, in which the low-

f f Fi(s r)Ddrds level continuous controller on-board the robotic platfasmse-

e = &a) YO (35) guentially given a target cell (neighboring to the curresit)do
! Z “ go to, as it executes the plan. The robot may be able to reach th

Fj(s r)Ddrds : ]
) Je) Jo cell and subsequently receives the next target, or may eind up

JEN(qi . . . .
%N a different cell due to dynamic constraints, when it receie

where d, ds are appropriate Lebesgue measures on the contirtext target from this deviated cell as dictated by the corput
uous configuration space of the robot. It is important to notélan. The inherent dynamical response of the particulaotrob
that the above formulation is completely general and makes ndetermines how well the patform is able to stick to the plae. W

assumption on the structure of the configuration spagethe  formulate a framework to compute the probabilities of urcon
calculations can be carried out for 2D circular robots,aret  trollable transitions that best describe these deviations

gular robots or platforms with more complex kinematic con-pefinition 20. The raw deviatiomg(t) as a function of the op-
straints eq_ually well. Flg_uré_EIlS(a)—(c) illustrate thenputa-  oration time t is defined as follows:
tion for a circular robot with eight controllable movesg., the

situation for a SEGWAY RMP. The 2D circular case is however Ar(t) = O(p(t), £(1) (36)

the simplest, y\{here any state that can be reached by an UNcQlhere [{t) is the current location of the robot in the workspace
trollable transition, can also be reached by a controllatdge.

coordinates/(t) is the location of the point within the current
{(érget cell which is nearest to the robot positioft)q(See Fig-
ure[11), andd(., -) is an appropriate distance metric in the con-
figuration space.

ample, in the rectangular model, with constraints on mimmu
turn radius, the robot may not be able to move via a contriadlab
transition from &y, hy) to (x,y, hp), whereh;,i = 1,2 is the
heading in the initial and final configurations. Howeverréhe  The robot will obviously take some time to reach the target
most likely will be an uncontrollable transition that casisieis  cell, assuming it is actually able to do so. We wish to elirténa
change, reflecting uncertainty in the heading estimatiae (S the effect of this delay from our calculations, since a jlatf
Figure[10). Also, one can reduce the averaging effect by corthat is able to sequentially reach each target cell, albift w
sidering more complex navigation automata. For example, fosome delay, does not need the plan to be modified. Further-
a 2D circular robot, the configuration state can be define@to bmore, unless velocity states are incorporated in the ntgiga
(Xprevious Yprevious Xcurrens Yeurrend), 1.€. €ssentially considering a automata, the plan cannot be improved for reducing thisydela
4D problem. The identification of the uncertainty paranmgeter We note that the raw deviatioki(t) incorporates the effect of

on such a model will capture the differences in the uncontrolthis possibly variable delay and needs to be corrected fa. W
lable transition probabilities arising from arriving at &&n  do so by introducing the delay corrected deviatiqt) as fol-
state from different directions. While the 2D model avesage lows:

out the differences, the 4D model will make it explicit in the
specification of the navigation automaton (See Figufe 18). |
the sequel, we will present comparative simulation redolts Ag(t, ) = O(p(t + n(t)), £(1) (37)
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Definition 21. The delayed deviatiofg(t, n) is defined as:
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Figure 11: lllustration for computation of amortized dyriamncertainty pa-
rameters

wherer(t) is some delay function satisfyivg € R, n(r) > 0.

Definition 22. The delay corrected deviatiax(t) as a function
of the operation time t is defined as:

Vte R, A(t) = arginf lAaat.m)||  (38)
Ag(t,n) : YT eR,n(r) =20

Note that Definitio 2R incorporates the possibility that th
delay may vary in the course of mission executioie will
make the assumption that although the delay may vary, it do

so slowly enough to be approximated as a constant functioHi

over relatively short intervals.

If we further assume that we can make observations only
discrete intervals, we can approximately compt(8 over a
shortinterval = [tinit, tfina] as follows:

VtelLA()=  argmin  ||@(pt+n).Z1)]  (39)
O(p(t+7).£(t)):7eNU{0}

Furthermore, the approximately constant average dglayver
the intervall can be expressed as:

7" = argmin||e(p(t + 1), )| (40)
7eNU{0}

Since the delay may vary slowly, the computed valug*ofay
vary from one observation interval to another. For eaclrwale

Ik € {l1,---,Im}, One can obtain the approximate probability
distribution of the delay corrected deviatiaift), which is de-
noted ashM. Therefore, from a computational point of view,
DM is just a histogram constructed from thé) values for the
interval I, (for a set of appropriately chosen histogram bins or
intervals). For a sufficiently large number of observation i
tervals{ly,-- -, I}, one can capture the deviation dynamics of
the robotic platform by computing the expected distribuoitid
A(t), i.e. computingD, which can be estimated simply by:

M

1
_1 [
D_M§D (41)

k=1

Once the distribution for the delay corrected deviationtheen
computed, we can proceed to estimate the probabilitieseof th
uncontrollable transitions, as described before. Deteaution

of the uncertainty parameters in the navigation model then a
lows us to use the proposed optimization to compute optimal
plans which the robot can execute. We summarize the sequen-
tial steps in the next section.

6. Summarizingv* Planning & Subsequent Execution

The complete approach is summarized in Algorifim 5. The
planning and plan assembly steps (Lines 2 & 3) are to be done
either offline or from time to time when deemed necessary in
the course of mission execution. Replanning may be negessar
if the dynamic model changes either due to change in the en-
vironment or due to variation in the operational paramebérs
the robot itself,e.g., unforeseen faults that alter or restrict the
kinematic or dynamic degrees of freedom. Onwards from Line
4 in Algorithm[3 is the set of instructions needed for mission
execution. Line 5 computes the set of states to which thetrobo
can possibly move from the current state. We select one state
from the set of possible next states which have a strictliadiig
measure compared to the current state in the computed plan.
It is possible that the set of such sta@sx: (See Line 6) has
more than one entry. Choice of any elemen@ix as the next
desired state is optimal in the sense of Proposffion 5 . Hewev
one may use some additional criteria to aid this choice tlolyie
plans suited to the application at haed., to minimize change

eof current direction of travel. For example one may choose th
sstate fromQnex: that requires least deviation from the current
rection of movement, to minimize control effort. In geakr

we can penalize turning using a specified penglty [0, 1] as
aftollows:

Definition 23. Given a turning penaltg € [0, 1], the turn pe-
nalized measure values on the set of possible next statgs Q
is computed as follows:

¥Q € Qnext ¥ (0) = (1 - A" (0) + B cosh(a)) (42)

where K{q) is the heading correction required for transitioning
to q € Qnexy Which for 2D circular robots is calculated as the
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Figure 12: Effect of increasing turning penaliyon making turns in choice of local transitions pe3t-optimization. Note that thpotential gradients identical
in all four cases. The start state is {8) as shown. The gradient shown (by the arrows) is for thepeed measure vecter”, and hence is identical for all four
cases

angular correction between the line joining the center af th a non-positive measure (due to uncertainties and execetion
current state to that of g, and the line joining the centertef t rors), then execution is terminated and the mission is degla
last state with that of the current one. the direction of thstl unfeasible from that point (See Line 14).

state. The robot then chooseggas the state G Qnext Which It is important to note that if a particular configuration rsap
has the maximum value fof (). to a navigation state with non-positive measure, then nsifea

o ) ] ] ble path to goal exists from that configuratiamespective of
The effect of penalizing turns is shown in the Figure 12. Notencertainty effects This underscores the property of the pro-

that for maximum turn penalty, the computed plan is almosfosed algorithm that it finds optimal feasible paths; evehef
completely free from kinks. Also, note that th& optimization 4y feasible path is very unsafe, it still is thely feasible path;
ensures that all these plans have the same probability 0€s8C g js therefore the optimal course of action (See Propoghi

and collision. Statement 3).
As stated in Line 8, the robot may not be successful to actu-

ally transition to the next chosen state due to dynamic &ffec

In particular, if the state that the robot actually ends upas . .
P y p 7. Verification & Validation

Algorithm 5: Summarized Planning & Mission Execution In this section we validate the proposed planning algorithm
input : Model GNP via detailed high fidelity simulation studies and in expezim
1 begin tal runs on a heavily instrumented SEGWAY RMP 200 at the
/x - Planning & Plan Assembly — /i robotic testbed at the Networked Robotics & Systems Labora-
2 ggmpztz :zgzmg;zedlp'i@/ *; /A g ilrgiotrhlmtg a :; tory (NRSL), Pennstate. The results of these experiments ad
/x i Mission Execﬁtzﬂn; g Y equately verify the theoretical formulations and the keyirok
4 while true do made in the preceding sections.
5 Find set of neighborsN(qp) = {q € Q : Ao € ¢ st. g > q;
6 ComputeQnext = {gj € N(q) : Yok € N(G), v#*lj > v I Remark 6. In depicting simulation results in the sequel, we re-
; (Afgooset E’”e S“"“‘?EX‘ f“_’r;‘ Se;lQnex;; . fer to “computed paths/plans”. It is important to clarify,hat
L empLIo MOVe Mhnex: £ Hay be unsnecessty we mean by such a computed or simulated path. The computed
9 Read current staiy; /« Possibly 0 # Ohext ny path is the sequence of configuration states that the robotdvo
10 if Gi == dgoa then _ enter, if the uncertainties do not force it to deviatas,ithe
i; e!seMlSSlon SuccessfuTerminate Loop; path depicts the best case scenario under the uncertaindgmo
13 if A < Othen Thus, the depictions merely give us a feel for the kind ofgath
14 | Mission FailedTerminate Loop; the robot would take; in actual implementation, the trages
15 endif would differ between runs. Also, when we refer to lengthsef t
16 endif computed paths, we are referring to the lengths of the paths i
i; end endw the best case scenariogi, the tight lower bound on the path

length that will actually be encountered.
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Figure 14: Simulation results with a circular robot moded aifferent values of the coefficient of dynamic deviatig(Gy ,

gradient ag/(GNOP) is decreased.

). Note the response of the navigation

7.1. Simulation Results for Circular Robots per,left) to the goal (4®0) (down,right). We note that the “po-
The recursive version of the modifiedf planning algorithm  tential field” defined by the measure gradient convergeshas
presented in this paper (See Algorithin 5) is first validated i an unique sink) at the goal. Also, note that the coefficientyof
a detailed simulation example as illustrated in Figlrdei3( namic deviatiory(G“,\l"g,D) is decreased, the algorithm responds
andI%(a-c). The workspace is chosen to be & 30 grid, with by altering the optimal route to the goal. In particular, tpei-
obstacles placed at shaded locations, as illustrated. ifa@s  mal path for smaller values g{G\OP) stay further away from
the workspace is chosen to correspond with the size of the athe obstacles. The key point to note here is that the the pro-
tual test-bed, where experimental runs on the roboticqiatf posed algorithm guarantees that this lengthening of thieitou
would be performed subsequently. Plates (a)-(c) in Figdlie 1  account for dynamic uncertainty @ptimal i.e., further length-
lustrates the gradient of the optimized measure vectorlfbyts ening by staying even further from the obstacles yields no ad
arrows) and a sample optimal path from location,® (up- vantage in a probabilistic sense. This point has a directios
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implication; one that can be verified experimentally ascie8. Deviation Contour
Let us assume that we have a real-world robot equipped with
on-board reactive collision avoidance, by which we can ensu |
that the platform does netctually collidewith obstacles under ' .
dynamic uncertainty, but executes corrections dictateldts ‘ /
reactive avoidance. Then, the preceding result would irtigay :
a using the correct value of dynamic deviation (for the djeci
platform) in the planning algorithm would result in routésit
require the least number of local corrections; which in t®ma
sures minimum time route traversals on the average.

It is important to note that the assumption of a circular tobo Figure 15: Non-symmetric deviation contours arising fromplieit dependence
poses no critical restrictions. Similar results can be iolegy ~ ©n the last discrete position for the robot
for more complex models as wellle. rectangular platform with
constrained turn radius. However, extension to multi-baay
tion planning would require addressing the algorithmic eom
plexity issues that become important even for the recunsive
for very large configuration spaces, and is a topic of future
work.

Trajectory

Deviation Contour

b) (©

* Trajectory | Trajectory (
a

7.2. Simulation Results for Non-symmetric Uncertainty

As stated in the course of the theoretical development, it is
possible to choose the degree of amortization or averabatg t
one is willing to allow in the specification of the navigatian-
tomaton. As a specific example, one may choose to compute the
probabilities of uncontrollable transitions with respersome
length of trajectory history; the simplest case is usinggte
vious state information to yield nhon-symmetric deviatiame
tours (See Figule 15). The particular type of deviation corg
illustrated in Figuré_I5 is obtained if the platform has ayéar
stopping distance and inertia, and the heading and poaition
estimates ?re more or less a.Ccuram" the uncqntrollability in Figure 16: Comparative pathlengths for the chosen initi@ goal configura-
the model Is_a str_onger function OT the dynamlc_reSponSherat tions: 65 steps for 2D model, 51 steps for 4D model, 36 stepthéocase with
than the estimation errors. A typical scenario is the SEGWAYno uncertainty
RMP 200 with good global positioning capability, in whiclkcfa
toring in the dynamic response is important due to the ieeert
pendulum two-wheel kinematics. For this simulation, we aise
navigation automaton obtained from discretizing an essént
4D underlying continuous configuration space. Each state (e
cept the obstacle state) in the navigation automaton mags to' - Hle Y 2T
discretized pair of locations, reflecting the current roloog- " the currentdirection of travel is significantly more coangd
tion and the one from which it transitioned to the currenaloc (© that of deviating to left or righti.e, the contours are re-
tion. We call this the4D Modelto distinguish it from the the 2lly narrow ellipses. Under such a scenario, the platform is
significantly smaller and simpler 2D model. Note that the 2DMOr€ capable of navigating narrow corridors as compareeto t
model can be obtained from the 4D model by merging Stategmqrﬂzed 2D counterpart. This is reflected in th_e paths show
with the same current location via averaging the probagsiit " Figurel16, where the path for the 4D model is shorter, and
of uncontrollable transitions over all possible previotates.  90€S through some of the narrow bottlenecks, while the path
Also note that (as stated earlier), in the absence of uringrta for the 2D model takes a safer path. Note, the path for the no-

the 4D formulation adds nothing new; explicitly encoding th Uncertainty case is even more aggressive, and shorterat pr
previous location in the automaton state gives us no new-info lical implementation, when the uncontrollable probaietitare

mation. Table[1L enumerates the comparative model sizes.  'dentified from observed dynamics or pre-existing contirgio
models, the differences in the two cases are often signtfican

Comparisons of computed plans for a particular set of initia
and goal configurations is shown in Figlrd 16. To accentuate
the differences in the computed plans, the deviation castou
were chosen so that the probability of uncontrollable fitaors

less.
Table 1: Comparison of 4D and 2D Models
Map Size| No. of States| Alphabet Size 7.3. Simulation Results for Rectangular Robots
2D Model || 40x 40 1600 8 The proposed planning algorithm is next applied to the case
4D Model || 40x40 | 256x10° 8 of rectangular robots, specifically ones that have a minimum

non-zero turn radius. We further impose the constraintttieat
20



platform cannot travel backwards, which is a good assumptiothere are two opposing effects in play here; while a longér pa
for robots that have no ranging devices in the rear, and also f that stays away from the obstacles influences to decrease the
aerial vehicles (UAVs). Even assuming planar operatiois, th collision probability, the very fact that the path is londs an
problem is essentially 3D, with the navigation automaton re increasing influence arising from the increased probgtitiat
flecting the underlying configuration states of the fosgy(h)  an uncontrollable sequence would execute from some point in
whereh is the current heading, which can no longer be ne-the path that leads to a collision. At relatively high valads
glected due to the inability of the patform to turn in place. Ay(GMgD), the first effect dominates and we can effectively de-
visual comparison of the models for the circular and reatang crease the collision probability by staying away from the ob
lar cases is shown in Figukell7(e). The heading is disciktizestacles thereby increasing the path length. However, at low
at 15 intervals, implying we have 24 discrete headings. Thisvalues ofy(GMg/D), the latter effect dominates, implying that
also means that for the same planar workspace, the number ioicreased path lengths are no longer advantageous. This in-
states in the rectangular model is about 24 times largenthe n  teresting phenomenon is illustrated in Figlré 20(b), wiese
ber of states for the circular model. Also, while in the clesu clearly see that the path lengths peak in m@“N"g,D) = 0.72
case, we had 8 neighbors, the number of neighboring configurao y(GN°°) = 0.85 range (for the maze considered in Fig-
tions increases to824+ 24 = 216 However, not all neighbors ure[20(a)). Also note that the configuration space has to be
can be reached via controllable transitions due to theicgstt  sufficiently complex to actually see this effect; which isywh
on the turn radius; we assume a maximum ture4%° in the  we do not see this phenomenon in the simulation results pre-
model considered for the simulation. As explained earéiélr, sented in Figurds14(a-c).
the neighbors may be reachable via uncontrollable tramsiti
which reflects uncertainties in estimation (See Figute 10). :

We test the algorithm with different values pfGM°P) as il- 7.5. Experimental Runs on SEGWAY RMP 200

lustrated in Figuré17(a-d). Note the trajectoriest)VecomEam The proposed algorithm is validated on a SEGWAY RMP
rounded and less aggressive (as expected) as the ungeigaint 200 which is a two-wheeled robot with significant dynamic un-
increased. Also note that the heading at the goal is diffdoen  certainty. In particular, the inverted-pendulum dynanpes-
the different cases. This is because, in the model , we spécifi vents the platform from halting instantaneously, and mgkin
as goals any state that maps to the goal location in the planaharp turns at higher velocities. At low velocities, howetee
grid irrespective of the headinge., the problem was solved platform can make zero radius turns. The global positioxal fi
with essentially 24 goals. Although for simplicity, the the is provided via an (in-house developed) over-head muttiera
retical development was presented assuming a single ¢@al, tvision system, which identifies the position and orientatid
results can be trivially shown to extend to such scenarite T the robot in the testbed. The vision system yields a position
trajectories however, will be significantly different if vilesist ~ accuracy of+7.5 cm, and a heading accuracy @0.1 rad for
on having a particular heading at the goal (See Figure 18).  a stationary robot. The accuracy deteriorates signifigdotla

In the simulations for the rectangular model, we delibdyate mobile target, but noise correction is intentionally nopkgxd
assume that any neighbor that cannot be reached via a coto simulate a high noise uncertain work environment. Furthe
trolled move is not reachable by an uncontrollable tramsiti more, the cameras communicate over a shared wireless hetwor
as well. Although this is not what we expect to encounter inand randomly suffers from communication delays from time to
field, the purpose of this assumption is to bring out an istere time, leading to delayed positional updates to the platfdm
ing consequence that we illustrate in Figureb 19(a-b). As exthe experimental runs conducted at NRSL the workspace dis-
plained above, this assumption implies that we have littheacd  cretized into a 53 29 grid. Each grid location is about 4 sq.
uncertainty in local heading estimations (since the rolaot-c ft. allowing the SEGWAY to fit completely inside each such
not turn in place, so there is no uncontrollable transitivatt discretized positional state which justifies the simplifoédu-
alters heading in place). It therefore follows, that undes t lar robot modeling. The runs are illustrated in Figlrd 22. The
scenario, the platform would find it relatively safe to natsy robot was run at various allowed top speedg ranging from
narrow passages. This is exactly what we see in Figure 19(bd,5 mph to over 225 mph. Only the extreme cases are illus-
where the circular robot with same coefficient of dynamic un-trated in the figure. For each speed, the uncertainty pasmet
certainty, really goes out of way to avoid the narrow passagevere estimated using the formulation presented in Sefiion 5

while the rectangular robot goes through. The sequence of computational steps for the low velocitg cas
_ . (Vmax = 0.5 mph) are shown in Figure_13. Note the coefficient
7.4. Simulation Results for Mazes of dynamic deviation for the low velocity case turns out to be

We simulate planning in a maze of randomly placed static/®" = 0.973. For the high velocity case/(ax = 2.25mph), the
obstacles. A sample case with optimal paths computed for difcoefficient is computed to have a valuey¥®" = 0.93 (calcula-
ferent coefficients of dynamic deviation is illustrated ilg+ tion not shown). Also, the robot is equipped with an on-board
ure[20(a). A key point to note is that the optimal path is lbéAgt low-level reactive collision avoidance algorithm, whiafseres
ens first aSy(Gm/D) is decreased, and then starts shorteninghat the platform does natctually collide due path deviations;
again, which may seem paradoxical at first sight. Howeverbut executes local reactive corrections when faced with site
this is exactly what we expect. Recall that the proposed aluations. The platform is equipped with multiple high freqgag
gorithm minimizes the probability of collision. Also noteat  sonars, infra-red range finders and a high-precision SICKSLM
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Figure 17: Comparative trajectories for rectangular model

200 laser range finder. The data from these multiple rangtag d ments of O1l. The expectation is that using the correct coef-

vices, mounted at various key locations on the platform,tmusficient of dynamic deviation (as computed above for the two

be fused to obtain correct situational awareness. In thigipa chosen speeds) for the given speed, would result in the mini-
we skip the details of this on-board information processarg mum number of local corrections, leading to minimum average
the sake of brevity. The overall scheme is illustrated in-Fig traversal times over thirty laps.

ure(2] The results are summarized in plates (c) (for the low ve-

In the experimental runs, we choose two waypoints (markedbcity case) and (f) (for the high velocity case) in Figlré 22
A andB) in Figure[22 (plates a,b,d,e), and the mission is toNote the fitted curve in both cases attain the minimal poing ve
plan and execute the optimal routes in sequence fAoim B, close to the corresponding computedalues, namely, 97 for
back toA and repeat the sequence a specified number of timegnax = 0.5 mph and Q92 for vmax = 2.25 mph. A visual com-
(thirty). This particular mission is executed for each tpped  parison of the trajectories in the plates (a) and (d) cleasly
for a range ofy values, namely withy € [0.75, 1] with incre-  veal that the path execution has significantly more uncsits
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illustrate the effect of different ertainty assumptions: (a) Trajectories in the

in the high velocity case. Also note, that the higher averag@ath lengths. Although the experimental runs were not done f
speed leads to repeated loss of position fix information in losmaller values of, we can say from the experience with maze

cations aroundrpw = 20, column= 35). Plates (b) and (e)
illustrate the sequence of waypoints invoked by the robdtén

simulations (See Secti@n ¥.4), that the execution timdsteitt
reducing again ag is further reduced.

two cases, being the centers of the states in the navigation a These results clearly show that the approach presentei$in th

tomaton that the robot visits during mission execution. eNot
that in the high velocity case, the variance of the trajeetois

paper successfully integrates amortized dynamical uaicéyt
with autonomous planning, and establishes a computalyonal

higher leading to a larger set of waypoints been invokedeNot efficient framework to cyber-physical motion planning.
that three distinct zones (denoted as Zone A, Zone B and Zone

C) can be identified in the plates (e) and (f) of Figure 22. Zon
A reflects the operation whenis (incorrectly assumed to be)
too large, leading to too many corrections, and hence eixeacut
time can be reduced by reducifng In Zone B, reducing in-

creases execution time, since now the trajectories becames

% Summary & Future Research

The recently proposed PFSA-based path planning algorithm
v* is generalized to handle amortized dynamic uncertaimies i
plan execution, arising from the physical limitations ofisieg

necessarily safé,e. stays away from obstacles way more thanand actuation, and the inherent dynamic response of thé-phys

necessary leading to longer than required paths and hence

ial platforms. The key to this generalization is the intrctchn

creased execution time. Zone C represents a sort of saturati of uncontrollable transitions in the modified navigatiotcama-

zone where reducinghas no significant effect, arising from the
fact that the paths cannot be made arbitrarily safe by istmga
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ton, and showing that* can be implemented in a recursive
fashion to guarantee plan optimality under such circunt&sn
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The theoretical algorithmic results is verified in detaitégh-
fidelity simulations and subsequently validated in experital
runs on the SEGWAY RMP 200 at NRSL, Pennstate.

8.1. Future Work

Future work will extend the language-measure theoretic

planning algorithm to address the following problems:

1. Multi-robot coordinated planning: Run-time complex-

the whole problem at once; however care must be taken to
ensure that the computed solution is not too far from the
optimal one. One the areas of current research is an al-
gorithmic decomposition of the configuration space such
that individual blocks are solved in parallel on communi-
cating processors, with the interprocessor communication
ensuring close-to-global optimality. We envision such an
approach to be ideaally suited to scenarios involving multi
ple agents distributed over a large workspace which coop-
eratively solve the global planning problem in an efficient
resource-constrained manner.

. Handling partially observable dynamic events: In this

paper all uncontrollable transitions are assumed to be per-
fectly observable. Physical errors and onboard senser fail
ures may need to be modeled as unobservable transitions
and will be addressed in future publications. A generaliza-
tion of the measure-theoretic optimization technique unde
partial observation has been already repoited [48]. The fu-
ture goal in this direction is to incorporate the modifica-
tions to allowv* handle loss of observation and feedback
information.

ity grows exponentially with the number of agents if one References
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2. Hierarchical implementation to handle very large

[1] J.-C. Latombe, Robot Motion Planning, Internationati€gin Engineer-

ing and Computer Science; Robotics: Vision, Manipulatiod &ensors,
Kluwer Academic Publishers, Boston, MA, U.S.A., 1991, 654@s.

[2] S. M. LaValle, Planning Algorithms, Cambridge UniveysPress, Cam-

(3]

workspaces: Large workspaces can be solved more effi-
ciently if planning is done when needed rather than solving

24

bridge, U.K., 2006, available at http://planning.cs.uaai/.

K. Kondo, Motion planning with six degrees of freedom byilirstrate-
gicbidirectional heuristic free-space enumeration, |EE&nsactions on
Robotics and Automation 7 (3) (1991) 267-277.



B e

i
B

2107 ‘ ‘ ‘ B Mean Runtime | ‘
—— Smooth Spline
205
Zone
200 A
195
=190
& Zone
QE) 185 B
" 180 " ‘ ‘ ‘ S ‘
.9 0.93 095 0.97 099
(E v E——

Nav

(e)

Time(sec)—— >

N
o
N
al

(d)

175 T T T T _ T
[ ) Mean Runtime
—— Smooth Spline

170

165

[y
(o2}
o

=
a1
a1

=
a
o

14%75 08 085 09

()

Figure 22: Experimental runs on SEGWAY RMP 200: (a)-(c) Le@eed runs and (d)-(f) High speed runs: Plates (a) and (d)sHworace of the robot positions

as read by the overhead vision system at NRSL for the low agid $ppeed runs respectively. (b) and (e) shows the waypaintked by the robot in course of

executing the specified mission in the low and high speedsaaspectively. Plates (c) and (f) illustrate the variatibthe mean mission execution times with the
coefficient of dynamic deviation used fro planning in the lamd high speed cases respectively.

[4] J.Borenstein, Y. Koren, The vector field histogram-falsstacle avoidance for mobiteirabots; 10.1016/5.robot .2009.07.028.

[5] T.Lozano-Perez, A simple motion-planning algorithnm éeneral robot

(6]

Robotics and Automation, IEEE Transactions on 7 (3) (200/3-288.
doi:10.1109/70.88137.
URLhttp://dx.doi.org/10.1109/70.88137

manipulators, |IEEE Transactions on Robotics and Automa8o(3)
(1987) 224-238.

D. A. Anisi, J. Hamberg, X. Hu, Nearly time-optimal patfe a ground
vehicle, Journal of Control Theory and Applications.

[7] J. Barraquand, B. Langlois, J.-C. Latombe, Robot mopamning with

many degrees of freedom and dynamic constraints, MIT Pr@am-
bridge, MA, USA, 1990.

[8] J. Langelaan, Tree-based trajectory planning to ekpishospheric en-

ergy, in: American Control Conference, 2008, 2008, pp. 22333.
doi:10.1109/ACC.2008.4586839.

[9] S. Lahouar, E. Ottaviano, S. Zeghoul, L. Romdhane, M. ddec

(10]

relli, Collision free path-planning for cable-driven pleh robots,
Robotics and Autonomous Systems 57 (11) (2009) 1083 — 1093.
doi:DOI:10.1016/7j.robot.2009.07.006.

L. M. Ortega, A. J. Rueda, F. R. Feito, A solution to the
path planning problem using angle preprocessing, Robotics
and Autonomous Systems In Press, Corrected Proof (2009) -.

25

[12]

[13]

[14]

[15]

[16]

[11] J. R. Andrews, N. Hogan, Impedance Control as a FramevdarIm-

plementing Obstacle Avoidance in a Manipulator, ASME, BastMA,
1983, pp. 243-251.

O. Khatib, Real-time obstacle avoidance for maniprgtand mobile
robots, in: IEEE International Conference on Robotics antbAation,
\ol. 2, St. Louis, MI, 1985, pp. 500-505.

B. H. Krogh, A generalized potential field approach tcstaltle avoid-
ance control, in: International Robotics Research ConfareBethlehem,
1984.

M. Kumar, D. Garg, R. Zachery, Multiple mobile agentsitrol via artifi-
cial potential functions and random motion, in: Proceesliofthe ASME
International Mechanical Engineering Congress and ExipasiASME,
Seattle, WA, 2007 doi :PaperNo.IMECE2007-41521l

S. Sarkar, E. Halland, M. Kumar, Mobile robot path plan-
ning using support vector machines, in: ASME Dynamic Sys-
tems and Control Conference, ASME, Ann Arbor, Michigan, 00
doi:PaperNo.DSCC2008-2200.

J. Borenstein, Y. Koren, Potential field methods andrtimherent lim-
itations for mobile robot navigation, in: Proceedings c¢ 1991 IEEE
International Conference on Robotics and Automation, 1991 1398—
1404.


http://dx.doi.org/10.1109/70.88137
http://dx.doi.org/10.1109/70.88137
http://dx.doi.org/10.1109/70.88137
http://dx.doi.org/10.1109/ACC.2008.4586839
http://dx.doi.org/DOI: 10.1016/j.robot.2009.07.006
http://dx.doi.org/DOI: 10.1016/j.robot.2009.07.028
http://dx.doi.org/Paper No. IMECE2007-41521
http://dx.doi.org/Paper No. DSCC2008-2200

[17]

(18]

(19]
[20]

[21]

(22]

(23]

(24]

[25]
(26]

(27]

(28]

[29]
(30]

(31]

(32]

(33]

R. Tilove, Local obstacle avoidance for mobile robotsséd on the
method of artificial potentials, Robotics and Automatior§9Q. Pro-
ceedings., 1990 IEEE International Conference on (1990581
vol.1doi:10.1109/ROBOT.1990.126041.

I. Chattopadhyay, G. Mallapragada, A. Ray, : a robot path planning
algorithm based on renormalized measure of probabiligtigular lan-
guages, International Journal of Control 82 (5) (2008) &6~

I. Chattopadhyay, A. Ray, Renormalized measure oflegganguages,
Int. J. Control 79 (9) (2006) 1107-1117.

I. Chattopadhyay, A. Ray, Language-measure-thepogiiimal control of
probabilistic finite-state systems, Int. J. Control.

J. M. O'kane, B. Tovar, P. Cheng, S. M. Lavalle, Algonth for plan-
ning under uncertainty in prediction and sensing, in: Céaf8 in Au-
tonomous Mobile Robots: Sensing, Control, Decision-Mgkiand Ap-
plications, Marcel Dekker, 2005, pp. 501-547.

T. Lozano-Perez, M. T. Mason, R. H. Taylor, Automatic
Synthesis of Fine-Motion Strategies for Robots, The
national Journal of Robotics Research 3 (1) (1984)
doi1:10.1177/027836498400300101,

A. Lazanas, J. Latombe, Landmark-based robot nawgatMol. 92,
AAAI Press, San Jose, California, 1992, pp. 816-822.

T. Fraichard, R. Mermond, Path planning with uncettaifor car- like
robots, in Proc. of the IEEE Intl. conf. on Robotics & Autonoat(1998)
27-32.

N. J. Nilsson, Principles of Artificial Intelligence,idga, 1980.

H. Takeda, J.-C. Latombe, Sensory uncertainty fieldrfobile robot nav-
igation, in Proc. of the IEEE Intl. conf. on Robotics & Autotite (1992)
2465-2472.

P. E. Trahanias, Y. Komninos, Robot motion planning: lf\Aisensory
uncertainty fields enhanced with obstacle avoidance, iroc.Pof the
IEEE/RSJ Intl. conf. on Intelligent Robots and Systems 6199

N. A. Vlassis, P. Tsanakas, A sensory uncertainty fielsdet for un-
known and non-stationary mobile robot environments, imcBedings of
the IEEE Intl. conf. on Robotics & Automation, 1998.

N. Roy, S. Thrun, Coastal navigation with mobile rohats Advances in
Neural Information Processing, Systems (NIPS, 1999.

R. Alami, T. Simeon, Planning robust motion strategies a mobile
robot, in: Proc. of the IEEE Intl. conf. on Robotics & Autoritat, 1994.
B. Bouilly, T. Simeon, R. Alami, A numerical techniquerfplan- ning
motion strategies of a mobile robot in presence of uncegytain: Proc.
of the IEEE Intl. conf. on Robotics & Automation, 1995.

M. Khatib, B. Bouilly, T. Simeon, R. Chatila, Indoor nigation with un-
certainty using sensor-based motions, in Proc. of the IEEEdonf. on
Robotics & Automation 4 (1997) 3379-3384.

J. Barraquand, P. Ferbach, Motion planning with uraety: The infor-
mation space approach, in: Proc. of the |IEEE Intl. conf. obd®cs &

26

Inter-
3-24.

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

Automation, 1995.

L. A. Page, A. C. Sanderson, Robot motion planning farsse-based
control with uncertainties, Vol. 2, Nagoya, Japan, 1995,1333-1340.
L. Blackmore, H. Li, B. Williams, A probabilistic appezh to optimal ro-
bust path planning with obstacles, in: Proceedings of thedGuidance,
Navigation and Control ConferenceNavigation and Controhf€rence,
2006.

L. Blackmore, A probabilistic particle control appidato optimal, robust
predictive control, in: Proceedings of the AIAA Guidanceavigation
and Control ConferenceNavigation and Control Confere®0eg.

A. Lambert, N. L. Fort-Piat, Safe task planning inte@rg uncertainties
and local maps federations, International Journal of RobdResearch,
volume 19 (2000) 597-611.

A. Lambert, D. Gruyer, Safe path planning in an uncer@onfiguration
space, in: Robotics and Automation, 2003. Proceedings AlGR.
IEEE International Conference on, Vol. 3, 2003, pp. 4185041
doi:10.1109/ROBOT.2003.1242246

J. P. Gonzalez, A. T. Stentz, Planning with uncertaintyosition: An
optimal and efficient planner, in Proc. of the IEEE/RSJ lotinf. on In-
telligent Robots and Systems (2005) 2435-2442.

J. P. Gonzalez, A. Stentz, Planning with uncertaintypasition using
high-resolution maps, in: Proc, of the IEEE Intl. conf. onbRtics &
Automation, Rome, Italy, 2007.

R. Alterovitz, T. Siméon, K. Y. Goldberg, The stochashotion roadmap:
A sampling framework for planning with markov motion uneénty, in:

Robotics: Science and Systems, 2007.

P. Singla, T. Singh, A novel coordinate transformationobstacle avoid-
ance and optimal trajectory planning, in: 2008 AAS/AIAA Asdynam-
ics Specialist Conference and Exhibit, 2008.

A. Ray, Signed real measure of regular languages farelis-event su-
pervisory control, Int. J. Control 78 (12) (2005) 949-967.

V. Garg, An algebraic approach to modeling probabdistiscrete event
systems, Proceedings of 1992 IEEE Conference on DecisiCantrol
(Tucson, AZ, December 1992) 2348-2353.

V. Garg, Probabilistic Inaguages for modeling of DED®pceedings
of 1992 IEEE Conference on Information and Sciences (PiamceNJ,
March 1992) 198-203.

W. Rudin, Real and Complex Analysis, 3rd ed., McGrawl,HNlew York,
1988.

I. Chattopadhyay, Quantitative control of probaliéisliscrete event sys-
tems, PhD Dissertation, Dept. of Mech. Engg. Pennsylvatate &Jniver-
sity, http:// etda.libraries.psu.edu / theses / approwabridWidelndex /
ETD-1443.

I. Chattopadhyay, A. Ray, Optimal control of infiniterfmon partially ob-
servable decision processes modeled as generatorsobpistizaregular
languages, International Journal of Control In Press.


http://dx.doi.org/10.1109/ROBOT.1990.126041
http://dx.doi.org/10.1177/027836498400300101
http://dx.doi.org/10.1109/ROBOT.2003.1242246

	1 Introduction & Motivation
	1.1 Potential Field-based Planning Methodology
	1.2 The bold0mu mumu  Planning Algorithm
	1.3 Focus of Current Work & Key Contributions

	2 Preliminaries: Language Measure-theoretic Optimization Of Probabilistic Automata
	2.1 Event-driven Supervision of PFSA
	2.2 Optimal Supervision Problem
	2.3 Problem Formulation: A PFSA Model of Autonomous Navigation
	2.4 Decision-theoretic Optimization of PFSA
	2.5 Optimal Tradeoff between Computed Path Length & Availability Of Alternate Routes

	3 Generalizing The Navigation Automaton To Accommodate Uncertain Execution
	3.1 The Modified Navigation Automaton

	4 Optimal Planning Via Decision Optimization Under Dynamic Effects
	4.1 Recursive Problem Decomposition For Maxima Elimination
	4.2 Plan Assembly & Execution Approach

	5 Computation of Amortized Uncertainty Parameters
	6 Summarizing bold0mu mumu  Planning & Subsequent Execution
	7 Verification & Validation
	7.1 Simulation Results for Circular Robots
	7.2 Simulation Results for Non-symmetric Uncertainty
	7.3 Simulation Results for Rectangular Robots
	7.4 Simulation Results for Mazes
	7.5 Experimental Runs on SEGWAY RMP 200

	8 Summary & Future Research
	8.1 Future Work


