
ar
X

iv
:1

00
8.

37
60

v1
 [

cs
.R

O
]

23
 A

ug
 2

01
0

Formal-language-theoretic Optimal Path Planning
For Accommodation of Amortized Uncertainties and Dynamic Effects✩

I. Chattopadhyaya,∗, A. Casconea, A. Raya

aDepartment of Mechanical Engineering, The Pennsylvnaia State University, University Park, 16802

Abstract

We report a globally-optimal approach to robotic path planning under uncertainty, based on the theory of quantitative measures
of formal languages. A significant generalization to the language-measure-theoretic path planning algorithmν⋆ is presented that
explicitly accounts for average dynamic uncertainties andestimation errors in plan execution. The notion of the navigation automa-
ton is generalized to include probabilistic uncontrollable transitions, which account for uncertainties by modelingand planning for
probabilistic deviations from the computed policy in the course of execution. The planning problem is solved by castingit in the
form of a performance maximization problem for probabilistic finite state automata. In essence we solve the following optimization
problem: Compute the navigation policy which maximizes theprobability of reaching the goal, while simultaneously minimiz-
ing the probability of hitting an obstacle. Key novelties ofthe proposed approach include the modeling of uncertainties using the
concept of uncontrollable transitions, and the solution ofthe ensuing optimization problem using a highly efficient search-free com-
binatorial approach to maximize quantitative measures of probabilistic regular languages. Applicability of the algorithm in various
models of robot navigation has been shown with experimentalvalidation on a two-wheeled mobile robotic platform (SEGWAY
RMP 200) in a laboratory environment.

Keywords:
Language Measure, Probabilistic Finite State Machines, Robotics, Path Planning, Supervisory Control

1. Introduction & Motivation

The objective of this paper is to report a globally-optimal ap-
proach to path planning under uncertainty, based on the theory
of quantitative measures of formal languages. The field of tra-
jectory and motion planning is enormous, with applicationsin
such diverse areas as industrial robots, mobile robot navigation,
spacecraft reentry, video games and even drug design. Many
of the basic concepts are presented in [1] and in recent com-
prehensive surveys [2]. In the context of planning for mobile
robots and manipulators much of the literature on path and mo-
tion planning is concerned with finding collision-free trajecto-
ries [3]. A great deal of the complexity in these problems arises
from the topology of the robot’s configuration space, calledthe
C-Space. Various analytical techniques, such as wavefront ex-
pansion [4] and cellular decomposition, have been reportedin
recent literature [5], which partition theC-Space into a finite
number of regions with the objective of reducing the motion
planning problem as identification of a sequence of neighboring
cells between the initial and final (i.e., goal) regions. Graph-
theoretic search-based techniques have been used somewhat
successfully in many wheeled ground robot path planning prob-
lems and have been used for some UAV planning problems, typ-
ically radar evasion [6]. These approaches typically suffer from

✩This work has been supported in part by the U.S. Army ResearchLabora-
tory and the U.S. Army Research Office under Grant No. W911NF-07-1-0376
and by the Office of Naval Research under Grant No. N00014-08-1-380
∗Corresponding Author

complexity issues arising from expensive searches, particularly
in complicated configuration spaces. To circumvent the com-
plexity associated with graph-based planning, sampling based
planning methods [7] such as probabilistic roadmaps have been
proposed. However, sampling based approaches are only prob-
abilistically complete (i.e. if a feasible solution existsit will
be found, given enough time) but there is no guarantee of find-
ing a solution within a specified time, and more often than not,
global route optimality is not guaranteed. Distinct from these
general approaches, there exist reported techniques that explic-
itly make use of physical aspects of specific problems for plan-
ninge.g. use of vertical wind component for generating optimal
trajectories for UAVs [8], feasible collision-free trajectory gen-
eration for cable driven platforms [9], and the recently reported
approach employing angular processing [10].

1.1. Potential Field-based Planning Methodology

Among reported deterministic approaches, methods based on
artificial potential fields have been extensively investigated, of-
ten referred to cumulatively as potential field methods (PFM).
The idea of imaginary forces acting on a robot were suggested
by several authors inclding [11] and [12]. In these approaches
obstacles exert repulsive forces onto the robot, while the tar-
get applies an attractive force to the robot. The resultant of all
forces determines the subsequent direction and speed of travel.
One of the reasons for the popularity of this method is its sim-
plicity and elegance. Simple PFMs can be implemented quickly

Preprint submitted to Elsevier August 26, 2018

http://arxiv.org/abs/1008.3760v1

and initially provide acceptable results without requiring many
refinements. [13] has suggested a generalized potential field
method that combines global and local path planning. Potential
field based techniques have been also successfully employed
in multi-robot co-operative planning scenarios [14, 15], where
other techniques prove to be inefficient and impractical.

While the potential field principle is particularly attractive
because of its elegance and simplicity, substantial shortcom-
ings have been identified that are inherent to this principle. The
interested reader is referred to [16] for a systematic criticism of
PFM-based planning, where the authors cite the underlying dif-
ferential equation based analysis as the source of the problems,
and the fact that it combines the robot and the environment into
one unified system. Key problems inherent to PFMs, indepen-
dent of the particular implementation, are:

1. Trap situations due to local minima: Perhaps the best-
known problem with PFMs are possible trap-situations
[11, 17], which occur when when the robot runs into a
dead end, due to the existence of a local extrema in the po-
tential field. Trap-situations can be remedied with heuris-
tic recovery rules, which are likely to result in non-optimal
paths.

2. No passage between closely spaced obstacles:A severe
problem with PFMs occurs when the robot attempts to
travel through narrow corridors thereby experiencing re-
pulsive forces simultaneously from opposite sides, leading
to wavy trajectories, no passage etc.

3. Oscillations in the presence of obstacles:Presence of
high obstacle clutter often leads to unstable motion, due to
the complexity of the resultant potential.

4. Effect of past obstacles:Even after the robot has already
passed an obstacle, the latter keeps affecting the robot mo-
tion for a significant period of time (until the repulsive po-
tential dies down).

These disadvantages become more apparent when the PFM-
based methods are implemented in high-speed real-time sys-
tems; simulations and slow speed experiments often conceal
the issues; probably contributing to the widespread popularity
of potential planners.

1.2. Theν⋆ Planning Algorithm
Recently, the authors reported a novel path planning algo-

rithm ν⋆ [18], that models the navigation problem in the frame-
work of Probabilistic Finite State Automata (PFSA) and com-
putes optimal plans via optimization of the PFSA from a strictly
control-theoretic viewpoint.ν⋆ uses cellular decomposition of
the workspace, and assumes that the blocked grid locations can
be easily estimated, upon which the planner computes an opti-
mal navigation gradient that is used to obtain the routes. This
navigation gradient is computed by optimizing the quantitative
measure of the probabilistic formal language generated by the
associated navigation automaton. The key advantages can be
enumerated as:

1. ν⋆ is fundamentally distinct from a search: The search
problem is replaced by a sequential solution of sparse lin-
ear systems. On completion of cellular decomposition,ν⋆

optimizes the resultant PFSA via a iterative sequence of
combinatorial operations which elementwise maximizes
the language measure vector [19][20]. Note that although
ν⋆ involves probabilistic reasoning, the final waypoint se-
quence obtained is deterministic.

2. Computational efficiency: The intensive step inν⋆ is a
special sparse matrix inversion to compute the language
measure. The time complexity of each iteration step can
be shown to be linear in problem size implying significant
numerical advantage over search-based methods for high-
dimensional problems.

3. Global monotonicity: The solution iterations are globally
monotonic,i.e, each iteration yields a better approxima-
tion to the final optimal solution. The final waypoint se-
quence is generated essentially by following the measure
gradient which has a unique maxima at the goal.

4. Global Optimality: It can be shown that trap-situations
are a mathematical impossibility forν⋆.

The optimal navigation gradient produced byν⋆ is reminiscent
of potential field methods [7]. However,ν⋆ automatically gen-
erates,and optimizesthis gradient; no ad-hoc potential function
is necessary.

1.3. Focus of Current Work & Key Contributions
The key focus of this paper is extension of theν⋆ planning

algorithm to optimally handle execution uncertainties. Itis well
recognized by domain experts that merely coming up with a
navigation plan is not sufficient; the computed plan must be
executed in the real world by the mobile robot, which often
cannot be done exactly and precisely due to measurement noise
in the exteroceptive sensors, imperfect actuations, and external
disturbances. The idea of planning under uncertainties is not
particularly new, and good surveys of reported methodologies
exist [21]. In chronological order, the main family of reported
approaches can be enumerated as follows:

• Pre-image Back-chaining [22, 23, 24] where the plan is
synthesized by computing a set of configurations from
which the robot can possibly reach the goal, and then
propgating thispreimagerecursively backward orback-
chaining, a problem solving approach originally proposed
in [25].

• Approach based on sensory uncertainty fields (SUF) [26,
27, 28, 29] computed over the collision-free subset of the
robot’s configuration space, which reflects expected uncer-
tainty (distribution of possible errors) in the sensed config-
uration that would be computed by matching the sensory
data against a known environment model (e.g. landmark
locations). A planner then makes use of the computed SUF
to generate paths that minimize expected errors.

• Sensor-based planning approaches [30, 31, 32], which
consider explicit uncertainty models of various motion
primitives to compute a feasible robust plan composed
of sensor-based motion commands in polygonal envi-
ronments, with significant emphasis on wall-following
schemes.

2

• Information space based approach using the Bellman prin-
ciple of stochastic dynamic programming [33], which in-
troduced key concepts such as setting up the problem in a
probabilistic framework, and demanding that the optimal
plan maximize the probability of reaching the goal. How-
ever, the main drawback was the exponential dependence
on the dimension of the computed information space.

• The set-membership approach [34] which performs a lo-
cal search, trying to deform a path into one that respects
uncertainty constraints imposed by arbitrarily shaped un-
certainty sets. Each hard constraint is turned into a soft
penalty function, and the gradient descent algorithm is em-
ployed, hoping convergence to an admissible solution.

• Probabilistic approaches based on disjunctive linear pro-
gramming [35, 36], with emphasis on UAV applications.
The key limitation is the inability to take into account
exteroceptive sensors, and also the assumption that dead-
reckoning is independent of the path executed. Later ex-
tensions of this approach use particle representations of the
distributions, implying wider applicability.

• Adaptation of search strategies in extended spaces [37, 38,
39, 40], which consider the classical search problem in
configuration spaces augmented with uncertainty informa-
tion.

• Approach based on Stochastic Motion Roadmaps
(SRM) [41], which combines sampling-based roadmap
representation of the configuration space, with the theory
of Markov Decision Processes, to yield models that can be
subsequently optimized via value-iteration based infinite
horizon dynamic programming, leading to plans that
maximize the probability of reaching the goal.

The current work adds a new member to the family of exist-
ing approaches to address globally optimal path planning under
uncertainties. The key novelty of this paper is the association of
uncertainty with the notion of uncontrollability in a controlled
system. The navigation automaton introduced in [18] is aug-
mented with uncontrollable transitions which essentiallycap-
tures the possibility that the agent may execute actuation se-
quences (or motion primitives) that are not coincident withthe
planned moves. The planning objective is simple:Maximize
the probability of reaching the goal, while simultaneouslymin-
imizing the probability of hitting any obstacle.Note that, in this
respect, we are essentially solving the exact same problem in-
vestigated by [41]. However our solution approach is very dif-
ferent. Instead of using value iteration based dynamic program-
ming, we use the theory of language-measure-theoretic opti-
mization of probabilistic finite state automata [20]. Unlike the
SRM approach, the proposed algorithm does not require the use
of local auxiliary planners, and also needs to make no assump-
tions on the structure of the configuration space to guarantee it-
erative convergence. The use of arbitrary penalties for reducing
the weight on longer paths is also unnecessary, which makes the
proposedν⋆ under uncertainties completely free from heuris-
tics. We show that all the key advantages thatν⋆ has over the

state-of-art carries over to this more general case; namelythat
of significantly better computational efficiency, simplicity of
implementation, and achieving global optimality via monotonic
sequence ofsearch-free combinatorial iterative improvements,
with guaranteed polynomial convergence. The proposed ap-
proach thus solves the inherently non-convex optimization[42]
by mapping the physical specification to an optimal control
problem for probabilistic finite state machines (the navigation
automata), which admits efficient combinatorial solutionsvia
the language-measure-theoretic approach. The source of many
uncertainties, namely modeling uncertainty, disturbances, and
uncertain localization, is averaged over (or amortized) for ade-
quate representation in the automaton framework. This may be
viewed as a source of approximation in the proposed approach;
however we show in simulation and in actual experimentation
that the amortization is indeed a good approach to reduce plan-
ning complexity and results in highly robust planning decisions.
Thus the modified language-measure-theoretic approach pre-
sented in this paper, potentially lays the framework for seam-
less integration of data-driven and physics-based models with
the high-level decision processes; this is a crucial advantage,
and goes to address a key issue in autonomous robotics,e.g., in
a path-planning scenario with mobile robots, the optimal path
may be very different for different speeds, platform capabilities
and mission specifications. Previously reported approaches to
handle these effects using exact differential models of platform
dynamics results in overtly complex solutions that do not re-
spond well to modeling uncertainties, and more importantlyto
possibly non-stationary environmental dynamics and evolving
mission contexts. Thus the measure-theoretic approach enables
the development of trueCyber-Physical algorithmsfor control
of autonomous systems; algorithms that operate in the logical
domain while optimally integrating, and responding to, physi-
cal information in the planning process.

The rest of the paper is organized in seven sections. Sec-
tion 2 briefly explains the language-theoretic models consid-
ered in this paper, reviews the language-measure-theoretic op-
timal control of probabilistic finite state machines and presents
the necessary details of the reportedν⋆ algorithm. Section 3
presents the modifications to the navigation model to incor-
porate the effects of dynamic uncertainties within the frame-
work of probabilistic automata. Section 4 presents the perti-
nent theoretical results and establishes the main planningal-
gorithm. Section 5 develops a formulation to identify the key
amortized uncertainty parameters of the PFSA-based naviga-
tion model from an observed dynamical response of a given
platform. The proposed algorithm is summarized with pertinent
comments in Section 6. The theoretical development is verified
in high-fidelity simulations on different navigation models and
validated in experimental runs on the SEGWAY RMP 200 in
section 7. The paper is summarized and concluded in Section 8
with recommendations for future work.

3

2. Preliminaries: Language Measure-theoretic Optimiza-
tion Of Probabilistic Automata

This section summarizes the signed real measure of reg-
ular languages; the details are reported in [43]. LetGi ≡

〈Q,Σ, δ, qi,Qm〉 be a trim (i.e., accessible and co-accessible)
finite-state automaton model that represents the discrete-event
dynamics of a physical plant, whereQ = {qk : k ∈ IQ} is the
set of states andIQ ≡ {1, 2, · · · , n} is the index set of states; the
automaton starts with the initial stateqi ; the alphabet of events
is Σ = {σk : k ∈ IΣ}, havingΣ

⋂
IQ = ∅ andIΣ ≡ {1, 2, · · · , ℓ}

is the index set of events;δ : Q×Σ→ Q is the (possibly partial)
function of state transitions; andQm ≡ {qm1, qm2, · · · , qml } ⊆ Q
is the set of marked (i.e., accepted) states withqmk = q j for
some j ∈ IQ. Let Σ∗ be the Kleene closure ofΣ, i.e., the set
of all finite-length strings made of the events belonging toΣ
as well as the empty stringǫ that is viewed as the identity of
the monoidΣ∗ under the operation of string concatenation, i.e.,
ǫs = s = sǫ. The state transition mapδ is recursively extended
to its reflexive and transitive closureδ : Q×Σ∗ → Q by defining
∀q j ∈ Q, δ(q j, ǫ) = q j and∀q j ∈ Q, σ ∈ Σ, s ∈ Σ⋆, δ(qi, σs) =
δ(δ(qi, σ), s)

Definition 1. The language L(qi) generated by a DFSA G ini-
tialized at the state qi ∈ Q is defined as: L(qi) = {s ∈
Σ
∗ | δ∗(qi, s) ∈ Q} The language Lm(qi) marked by the DFSA

G initialized at the state qi ∈ Q is defined as: Lm(qi) = {s ∈
Σ
∗ | δ∗(qi, s) ∈ Qm}

Definition 2. For every qj ∈ Q, let L(qi , q j) denote the set of
all strings that, starting from the state qi , terminate at the state
q j, i.e., Li, j = {s ∈ Σ∗ | δ∗(qi, s) = q j ∈ Q}

The formal language measure is first defined for terminating
plants [44, 45] with sub-stochastic event generation probabili-
tiesi.e. the event generation probabilities at each state summing
to strictly less than unity.

Definition 3. The event generation probabilities are specified
by the functioñπ : Σ⋆ × Q→ [0, 1] such that∀q j ∈ Q,∀σk ∈

Σ,∀s ∈ Σ⋆,

(1) π̃(σk, q j) , π̃ jk ∈ [0, 1);
∑

k π̃ jk = 1− θ, with θ ∈ (0, 1);
(2) π̃(σ, q j) = 0 if δ(q j, σ) is undefined;π̃(ǫ, q j) = 1;
(3) π̃(σks, q j) = π̃(σk, q j) π̃(s, δ(q j, σk)).

The n× ℓ event cost matrix is defined as:̃Π|i j = π̃(qi , σ j)

Definition 4. The state transition probabilityπ : Q × Q →
[0, 1), of the DFSA Gi is defined as follows:∀qi, q j ∈ Q, πi j =∑

σ∈Σ s.t. δ(qi ,σ)=qj

π̃(σ, qi) The n×n state transition probability ma-

trix is defined asΠ| jk = π(qi, q j)

The setQm of marked states is partitioned intoQ+m andQ−m,
i.e., Qm = Q+m ∪ Q−m and Q+m ∩ Q−m = ∅, whereQ+m contains
all goodmarked states that we desire to reach, andQ−m contains
all bad marked states that we want to avoid, although it may
not always be possible to completely avoid thebadstates while

attempting to reach thegoodstates. To characterize this, each
marked state is assigned a real value based on the designer’s
perception of its impact on the system performance.

Definition 5. The characteristic functionχ : Q → [−1, 1]
that assigns a signed real weight to state-based sublanguages
L(qi , q) is defined as:

∀q ∈ Q, χ(q) ∈

[−1, 0), q ∈ Q−m
{0}, q < Qm

(0, 1], q ∈ Q+m

(1)

The state weighting vector, denoted byχ = [χ1 χ2 · · · χn]T ,
whereχ j ≡ χ(q j) ∀ j ∈ IQ, is called theχ-vector. The j-th ele-
mentχ j ofχ-vector is the weight assigned to the corresponding
terminal state qj .

In general, the marked languageLm(qi) consists of both good
and bad event strings that, starting from the initial stateqi, lead
to Q+m andQ−m respectively. Any event string belonging to the
languageL0

= L(qi) − Lm(qi) leads to one of the non-marked
states belonging toQ − Qm and L0 does not contain any one
of the good or bad strings. Based on the equivalence classes
defined in the Myhill-Nerode Theorem, the regular languages
L(qi) andLm(qi) can be expressed as:L(qi) =

⋃
qk∈Q Li,k and

Lm(qi) =
⋃

qk∈Qm
Li,k = L+m∪L−m where the sublanguageLi,k ⊆ Gi

having the initial stateqi is uniquely labelled by the terminal
stateqk, k ∈ IQ andLi, j ∩ Li,k = ∅ ∀ j , k; andL+m ≡

⋃
qk∈Q+m Li,k

andL−m ≡
⋃

qk∈Q−m Li,k are good and bad sublanguages ofLm(qi),
respectively. Then,L0

=
⋃

qk<Qm
Li,k andL(qi) = L0 ∪ L+m∪ L−m.

A signed real measureµi : 2L(qi) → R ≡ (−∞,+∞) is con-
structed on theσ-algebra 2L(qi) for any i ∈ IQ; interested read-
ers are referred to [43] for the details of measure-theoretic def-
initions and results. With the choice of thisσ-algebra, every
singleton set made of an event strings ∈ L(qi) is a measur-
able set. By Hahn Decomposition Theorem [46], each of these
measurable sets qualifies itself to have a numerical value based
on the above state-based decomposition ofL(qi) into L0(null),
L+(positive), andL−(negative) sublanguages.

Definition 6. Letω ∈ L(qi , q j) ⊆ 2L(qi). The signed real mea-
sureµi of every singleton string set{ω} is defined as:µi({ω}) ≔
π̃(qi, ω)χ(q j). The signed real measure of a sublanguage Li, j ⊆

L(qi) is defined as:µi, j ≔ µi(L(qi, q j)) =
(∑

ω∈L(qi ,qj) π̃(qi, ω)
)
χ j

Therefore, the signed real measure of the language of a
DFSA Gi initialized atqi ∈ Q, is defined asµi ≔ µi(L(qi)) =∑

j∈IQ
µi(Li, j). It is shown in [43] that the language measure can

be expressed asµi =
∑

j∈IQ
πi jµ j + χi . The language measure

vector, denoted asµ = [µ1 µ2 · · · µn]T , is called theµ-vector.
In vector form, we haveµ = Πµ+χ whose solution is given by
µ = (I − Π)−1χ The inverse exists for terminating plant mod-
els [44] becauseΠ is a contraction operator [43] due to the strict
inequality

∑
j Πi j < 1. The residualθi = 1−

∑
j Πi j is referred

to as the termination probability for stateqi ∈ Q. We extend
the analysis to non-terminating plants with stochastic transition
probability matrices (i.e. with θi = 0, ∀qi ∈ Q) by renormal-
izing the language measure [19] with respect to the uniform

4

termination probability of a limiting terminating model asde-
scribed next.

Let Π̃ andΠ be the stochastic event generation and tran-
sition probability matrices for a non-terminating plantGi =

〈Q,Σ, δ, qi,Qm〉. We consider the terminating plantGi(θ) with
the same DFSA structure〈Q,Σ, δ, qi,Qm〉 such that the event
generation probability matrix is given by (1−θ)Π̃with θ ∈ (0, 1)
implying that the state transition probability matrix is (1− θ)Π.

Definition 7 (Renormalized Measure). The renormalized mea-
sure νi

θ : 2L(qi (θ)) → [−1,1] for the θ-parametrized terminating
plant Gi(θ) is defined as:

∀ω ∈ L(qi(θ)), ν
i
θ({ω}) = θµ

i({ω}) (2)

The corresponding matrix form is given byνθ = θ µ = θ [I−(1−
θ)Π]−1χ with θ ∈ (0, 1). We note that the vector representation
allows for the following notational simplificationνi

θ
(L(qi(θ))) =

νθ
∣∣∣
i
The renormalized measure for the non-terminating plant Gi

is defined to belimθ→o+ ν
i
θ
.

2.1. Event-driven Supervision of PFSA

Plant models considered in this paper aredeterministicfi-
nite state automata (plant) with well-defined event occurrence
probabilities. In other words, the occurrence of events is prob-
abilistic, but the state at which the plant ends up,given a par-
ticular event has occurred, is deterministic. Since no emphasis
is placed on the initial state and marked states are completely
determined byχ, the models can be completely specified by a
sextuple as:G = (Q,Σ, δ, Π̃, χ,C)

Definition 8 (Control Philosophy). If qi −→
σ

qk, and the eventσ

is disabled at state qi , then the supervisory action is to prevent
the plant from making a transition to the state qk, by forcing it
to stay at the original state qi . Thus disabling any transition
σ at a given state q results in deletion of the original transition
and appearance of the self-loopδ(q, σ) = q with the occurrence
probability ofσ from the state q remaining unchanged in the su-
pervised and unsupervised plants. For a given plant, transitions
that can be disabled in the sense of Definition 8 are defined to
be controllable transitions. The set of controllable transitions
in a plant is denotedC . Note controllability is state-based.

2.2. Optimal Supervision Problem: Formulation & Solution

A supervisor disables a subset of the setC of controllable
transitions and hence there is a bijection between the set of
all possible supervision policies and the power set 2C . That
is, there exists 2|C | possible supervisors and each supervisor is
uniquely identifiable with a subset ofC and the language mea-
sureν allows a quantitative comparison of different policies.

Definition 9. For an unsupervised plant G= (Q,Σ, δ, Π̃, χ,C),
let G† and G‡ be the supervised plants with sets of disabled
transitions,D† ⊆ C and D‡ ⊆ C , respectively, whose mea-
sures areν† and ν‡. Then, the supervisor that disablesD†

is defined to be superior to the supervisor that disablesD‡ if
ν† ≧(Elementwise) ν

‡ and strictly superior ifν† >(Elementwise)
ν‡.

Definition 10 (Optimal Supervision Problem). Given a (non-
terminating) plant G= (Q,Σ, δ, Π̃, χ,C), the problem is to com-
pute a supervisor that disables a subsetD⋆ ⊆ C , such that
ν⋆ ≧(Elementwise) ν

† ∀D† ⊆ C whereν⋆ andν† are the mea-
sure vectors of the supervised plants G⋆ and G† underD⋆ and
D†, respectively.

Remark 1. The solution to the optimal supervision problem is
obtained in [20, 47] by designing an optimal policy for a ter-
minating plant [45] with a sub-stochastic transition probability
matrix (1 − θ)Π̃ with θ ∈ (0, 1). To ensure that the computed
optimal policy coincides with the one forθ = 0, the suggested
algorithm chooses a small value forθ in each iteration step
of the design algorithm. However, choosingθ too small may
cause numerical problems in convergence. Algorithms reported
in [20, 47] computes how small aθ is actually required, i.e.,
computes the critical lower boundθ⋆, thus solving the optimal
supervision problem for a generic PFSA. It is further shown
that the solution obtained is optimal and unique and can be
computed by an effective algorithm.

Definition 11. Following Remark 1, we note that algorithms
reported in [20, 47] compute a lower bound for the criti-
cal termination probability for each iteration of such thatthe
disabling/enabling decisions for the terminating plant coin-
cide with the given non-terminating model. We defineθmin =

mink θ
[k]
⋆ whereθ[k]

⋆ is the termination probability computed in
the kth iteration.

Definition 12. If G and G⋆ are the unsupervised and super-
vised PFSA respectively then we denote the renormalized mea-
sure of the terminating plant G⋆(θmin) asνi

: 2L(qi) → [−1, 1]
(See Definition 7). Hence, in vector notation we have:ν# =
θmin[I − (1− θmin)Π#]−1χ whereΠ# is the transition probability
matrix of the supervised plant G⋆, we note thatν# = ν[K] where
K is the total number of iterations required for convergence.

For the sake of completeness, the algorithmic approach is
shown in Algorithms 1 and 2.

2.3. Problem Formulation: A PFSA Model of Autonomous
Navigation

Figure 1:(a) shows the vehicle (marked ”R”) with the obstacle positions shown
as black squares. The Green4 dot identifies the goal(b) shows the finite state
representation of the possible one-step moves from the current position. (d)
shows uncontrollable transitions ”u” from states corresponding to blocked grid
locations to ”q⊖”

We consider a 2D workspace for the mobile agents. This
restriction on workspace dimensionality serves to simplify the
exposition and can be easily relaxed. To set up the problem, the

5

Algorithm 1 : Computation of Optimal Supervisor
input : P, χ, C

output: Optimal set of disabled transitionsD⋆

begin
SetD [0]

= ∅ ; /* Initial disabling set */

SetΠ̃[0]
= Π̃ ; /* Initial event prob. matrix */

Setθ[0]
⋆ = 0.99, Setk = 1 , SetTerminate = false;

while (Terminate == false) do
Computeθ[k]

⋆ ; /* Algorithm 2 */

SetΠ̃[k]
=

1−θ[k]
⋆

1−θ[k−1]
⋆

Π̃
[k−1];

Computeν[k] ;
for j = 1 to n do

for i = 1 to n do

Disable all controllableqi
σ
−→ qj s.t.ν[k]

j < ν
[k]
i ;

Enable all controllableqi
σ
−→ qj s.t.ν[k]

j ≧ ν[k]
i ;

Collect all disabled transitions inD [k] ;
if D [k]

== D [k−1] then
Terminate = true;

else
k = k + 1 ;

D⋆
= D [k] ; /* Optimal disabling set */

end

workspace is first discretized into a finite grid and hence theap-
proach developed in this paper falls under the generic category
of discrete planning. The underlying theory does not require
the grid to be regular; however for the sake of clarity we shall
present the formulation under the assumption of a regular grid.
The obstacles are represented as blocked-off grid locations in

Algorithm 2 : Computation of the Critical Lower Boundθ⋆
input : P, χ
output: θ⋆
begin

Setθ⋆ = 1, Setθcurr = 0;
ComputeP , M0 , M1, M2;
for j = 1 to n do

for i = 1 to n do
if

(
Pχ

)
i −

(
Pχ

)
j , 0 then

θcurr =
1

8M2

∣∣∣ (Pχ)i −
(
Pχ

)
j

∣∣∣
else

for r = 0 to n do
if

(
M0χ

)
i ,

(
M0χ

)
j then

Break;
else

if
(
M0Mr

1χ
)
i
,

(
M0Mr

1χ
)

j
then

Break;

if r == 0 then

θcurr =
|{(M0−P)χ}i−{(M0−P)χ} j |

8M2
;

else
if r > 0 AND r ≤ n then

θcurr =
|(M0M1χ)i−(M0M1χ) j |

2r+3M2
;

else
θcurr = 1 ;

θ⋆ = min(θ⋆, θcurr) ;

end

the discretized workspace. We specify a particular location
as the fixed goal and consider the problem of finding optimal
and feasible paths from arbitrary initial grid locations inthe
workspace. Figure 1(a) illustrates the basic problem setup. We
further assume that at any given time instant the robot occupies
one particular location (i.e. a particular square in Figure 1(a)).
As shown in Figure 1, the robot has eight possible moves from
any interior location. The boundaries are handled by removing
the moves that take the robot out of the workspace. The possi-
ble moves are modeled as controllable transitions between grid
locations since the robot can ”choose” to execute a particular
move from the available set. We note that the number of pos-
sible moves (8 in this case) depends on the chosen fidelity of
discretization of the robot motion and also on the intrinsicve-
hicle dynamics. The complexity results presented in this paper
only assumes that the number of available moves is significantly
smaller compared to the number of grid squares,i.e., the dis-
cretized position states. Specification of inter-grid transitions
in this manner allows us to generate a finite state automaton
(FSA) description of the navigation problem. Each square in
the discretized workspace is modeled as a FSA state with the
controllable transitions defining the corresponding statetransi-
tion map. The formal description of the model is as follows:

Let GNAV = (Q,Σ, δ, Π̃, χ) be a Probabilistic Finite State Au-
tomaton (PFSA). The state setQ consists of states that corre-
spond to grid locations and one extra state denoted byq⊖. The
necessity of this special stateq⊖ is explained in the sequel.
The grid squares are numbered in a pre-determined scheme
such that eachqi ∈ Q \ {q⊖} denotes a specific square in the
discretized workspace. The particular numbering scheme cho-
sen is irrelevant. In the absence of dynamic uncertainties and
state estimation errors, the alphabet contains one uncontrollable
eventi.e. Σ = ΣC

⋃
{u} such thatΣC is the set of controllable

events corresponding to the possible moves of the robot. The
uncontrollable eventu is defined from each of the blocked states
and leads toq⊖ which is a deadlock state. All other transitions
(i.e. moves) are removed from the blocked states. Thus, if a
robot moves into a blocked state, it uncontrollably transitions
to the deadlock stateq⊖ which is physically interpreted to be a
collision. We further assume that the robot fails to recoverfrom
collisions which is reflected by makingq⊖ a deadlock state.
We note thatq⊖ does not correspond to any physical grid loca-
tion. The set of blocked grid locations along with the obstacle
stateq⊖ is denoted asQOBSTACLE j Q. Figure 1 illustrates
the navigation automaton for a nine state discretized workspace
with two blocked squares. Note that the only outgoing transi-
tion from the blocked statesq1 andq8 is u. Next we augment
the navigation FSA by specifying event generation probabilities
defined by the map ˜π : Q × Σ → [0, 1] and the characteristic
state-weight vector specified asχ : Q→ [−1, 1]. The character-
istic state-weight vector [20] assigns scalar weights to the PFSA
states to capture the desirability of ending up in each state.

Definition 13. The characteristic weights are specified for the

6

navigation automaton as follows:

χ(qi) =

−1 if qi ≡ q⊖

1 if qi is the goal
0 otherwise

(3)

In the absence of dynamic constraints and state estimation
uncertainties, the robot can ”choose” the particular controllable
transition to execute at any grid location. Hence we assume that
the probability of generation of controllable events is uniform
over the set of moves defined at any particular state.

Definition 14. Since there is no uncontrollable events defined
at any of the unblocked states and no controllable events defined
at any of the blocked states, we have the following consistent
specification of event generation probabilities:∀qi ∈ Q, σ j ∈

Σ,

π̃(qi , σ j) =

{ 1
No. of controllable events atqi

, if σ j ∈ ΣC

1, otherwise

The boundaries are handled by ”surrounding” the workspace
with blocked position states shown as ”boundary obstacles”in
the upper part of Figure 1(c).

Definition 15. The navigation model id defined to have identi-
cal connectivity as far as controllable transitions are concerned
implying that every controllable transition or move (i.e. every
element ofΣC) is defined from each of the unblocked states.

2.4. Decision-theoretic Optimization of PFSA

The above-described probabilistic finite state automaton
(PFSA) based navigation model allows us to compute opti-
mally feasible path plans via the language-measure-theoretic
optimization algorithm [20] described in Section 2. Keeping
in line with nomenclature in the path-planning literature,we
refer to the language-measure-theoretic algorithm asν⋆ in the
sequel. For the unsupervised model, the robot is free to exe-
cute any one of the defined controllable events from any given
grid location (See Figure 1(b)). The optimization algorithm se-
lectively disables controllable transitions to ensure that the for-
mal measure vector of the navigation automaton is elementwise
maximized. Physically, this implies that the supervised robot is
constrained to choose among only the enabled moves at each
state such that the probability of collision is minimized with the
probability of reaching the goal simultaneously maximized. Al-
thoughν⋆ is based on optimization of probabilistic finite state
machines, it is shown that an optimal and feasible path plan can
be obtained that is executable in a purely deterministic sense.

Let GNAV be the unsupervised navigation automaton and
G⋆

NAV
be the optimally supervised PFSA obtained byν⋆. We

note thatνi
is the renormalized measure of the terminating plant

G⋆
NAV

(θmin) with substochastic event generation probability ma-

trix Π̃θmin = (1− θmin)Π̃. Denoting the event generating function
(See Definition 3) forG⋆

NAV
andG⋆

NAV
(θmin) asπ̃ : Q× Σ → Q

andπ̃θmin : Q× Σ→ Q respectively, we have

π̃θmin(qi , ǫ) = 1 (4a)

∀qi ∈ Q, σ j ∈ Σ, π̃
θmin(qi , σ j) = (1− θmin)π̃(qi , σ j) (4b)

Notation 2.1. For notational simplicity, we use

νi
#(L(qi)) = ν#(qi) = ν#|i

whereν# = θmin[I − (1− θmin)Π#]−1χ

Definition 16 (ν⋆-path). A ν⋆-pathρ(qi , q j) from state qi ∈ Q
to state qj ∈ Q is defined to be an ordered set of PFSA statesρ =
{qr1, · · · , qrM } with qrs ∈ Q, ∀s ∈ {1, · · · ,M},M ≤ CARD(Q)
such that

qr1 = qi (5a)

qrM = qj (5b)

∀i, j ∈ {1, · · · ,M}, qri , qr j (5c)

∀s∈ {1, · · · ,M},∀t ≦ s, ν#(qrt) ≦ ν#(qrs) (5d)

We reproduce without proof the following key results per-
taining toν⋆- planning as reported in [18].

Lemma 1. There exists an enabled sequence of transitions from
state qi ∈ Q \ QOBSTACLE to qj ∈ Q \ {q⊖} in G⋆

NAV
if and only if

there exists aν⋆-pathρ(qi, q j) in G⋆
NAV

.

Proposition 1. For the optimally supervised navigation au-
tomatonG⋆

NAV
, we have

∀qi ∈ Q \ QOBSTACLE , L(qi) j Σ⋆C

Corollary 1. (Obstacle Avoidance:) There exists noν⋆-path
from any unblocked state to any blocked state in the optimally
supervised navigation automatonG⋆

NAV
.

Proposition 2 (Existence ofν⋆-paths). There exists aν⋆-path
ρ(qi , qGOAL) from any state qi ∈ Q to the goal qGOAL ∈ Q if and
only if ν#(qi) > 0.

Corollary 2. (Absence of Local Maxima:) If there exists aν⋆-
path from qi ∈ Q to qj ∈ Q and aν⋆-path from qi to qGOAL then
there exists aν⋆-path from qj to qGOAL , i.e.,

∀qi , q j ∈ Q
(
∃ρ1(qi , qGOAL)

∧
∃ρ2(qi, q j)⇒ ∃ρ(q j, qGOAL)

)

2.5. Optimal Tradeoff between Computed Path Length & Avail-
ability Of Alternate Routes

qi

q j

qk

qGOAL

σ1

σ2

ω

ω3

ω4

ω2

ω1

ν#(q j) > ν#(qk)

Figure 2: Tradeoff between path-length and robustness under dynamic
uncertainty:σ2ω is the shortest path toqGOAL from qi ; but theν⋆ plan
may beσ1ω1 due to the availability of larger number of feasible paths
throughqj .

7

Majority of reported path planning algorithms consider min-
imization of the computed feasible path length as the sole op-
timization objective. However, theν⋆ algorithm can be shown
to achieve an optimal trade-off between path lengths and avail-
ability of feasible alternate routes. Ifω is the shortest path to
goal from stateqk, then the shortest path from stateqi (with

qi
σ2
−−→ qk) is given byσ2ω. However, a larger number of feasi-

ble paths may be available from stateq j (with qi
σ1
−−→ q j) which

may result in the optimalν⋆ plan to beσ1ω1. Mathematically,
each feasible path from stateq j has a positive measure which
may sum to be greater than the measure of the single pathω

from stateqk. The conditionν#(q j) > ν#(qk) would then imply
that the next state fromqi would be computed to beq j and not
qk. Physically it can be interpreted that the mobile gent is bet-
ter off going toq j since the goal remains reachable even if one
or more paths become unavailable. The key results [18] are as
follows:

Lemma 2. For the optimally supervised navigation automaton
G⋆

NAV
, we have∀qi ∈ Q \ QOBSTACLE ,

∀ω ∈ L(qi), ν
i
#({ω}) = θmin

(1− θmin

CARD(ΣC)

)|ω|
χ(δ#(qi , ω))

Proposition 3. For qi ∈ Q \ QOBSTACLE , let qi
σ1
−−→ q j → · · · →

qGOAL be the shortest path to the goal. If there exists qk ∈ Q \

QOBSTACLE with qi
σ2
−−→ qk for someσ2 ∈ ΣC such thatν#(qk) >

ν#(q j), then the number of distinct paths to goal from state qk is
at leastCARD(ΣC) + 1.

The lower bound computed in Proposition 3 is not tight and
if the alternate paths are longer or if there are multiple ’short-
est’ paths then the number of alternate routes required is sig-
nificantly higher. Detailed examples can be easily presented to
illustrate situation whereν⋆ opts for a longer but more robust
plan.

3. Generalizing The Navigation Automaton To Accommo-
date Uncertain Execution

In this paper, we modify the PFSA-based navigation model
to explicitly reflect uncertainties arising from imperfectlocal-
ization and the dynamic response of the platform to navigation
commands. These effects manifest as uncontrollable transitions
in the navigation automaton as illustrated in Figure 4. Note,
while in absence of uncertainties and dynamic effects, one can
disable transitions perfectly, in the modified model, such dis-
abling is only partial. Choosing the probabilities of the uncon-
trollable transitions correctly allows the model to incorporate
physical movement errors and sensing noise in an amortized
fashion.

A sample run with a SEGWAY RMP at NRSL is shown in
Figure 3. Note that the robot is unable to follow the plan ex-
actly due to cellular discretization and dynamic effects. Such
effects can be conceptually modeled by decomposing trajectory
fragments into sequential combinations of controllable and un-
controllable inter-cellular moves as illustrated in Figure 4(c).

We do not need to actually decompose trajectories, it is merely
a conceptual construct that gives us a theoretical basis forcom-
puting the probabilities of uncontrollable transitions from ob-
served robot dynamics (as described later in Section 5, and
therefore incorporate the amortized effect of uncertainties in the
navigation automaton.

0 1 2 3 4
−8

−7

−6

−5

−4

−3

−2

−1

0

Plan

Actual Trajectory

1.4 1.6 1.8

−6.4

−6.2

−6

−5.8

−5.6

−5.4

XY Scale in meters

Experimental Run
at NRSL with

SEGWAY RMP

Figure 3: Plan execution with SEGWAY RMP at NRSL, Pennstate

3.1. The Modified Navigation Automaton
The modified navigation automatonGMOD

NAV
= (Q,Σ, δ, Π̃, χ)

is defined similar to the formulation in Section 2.3, with the
exception that the alphabetΣ is defined as follows:

Σ = ΣC ∪ ΣUC ∪ {u} (6)

whereΣC is the set of controllable moves from any unblocked
navigation state (as before), whileΣUC is the set of uncontrol-
lable transitions that can occur as an effect of the platformdy-
namics and oather uncertainty effects. We assume that for each
σ ∈ ΣC, we have a corresponding eventσu in ΣUC, such that
bothσ andσu represent the same physical move from a given
navigation state; but whileσ is controllable and may be dis-
abled,σu is uncontrollable. Although for 2D circular robots we
have:CARD(ΣC) = CARD(ΣUC), in general, there can exist un-
controllable moves reflecting estimation errors that cannot be
realized via a single controllable move. For example, for pla-
nar rectangular robots with a non-zero minimum turn radius,
there can be an uncontrollable shift in the heading without any
change in thexy-positional coordinates, which may reflect er-
rors in heading estimation, but such a move cannot be executed
via controllable transitions due to the restriction on the mini-
mum turn radius. We will discuss these issues in more details
in the sequel.

8

C RL

F

RF

B

LF

RBLB

e1

e5

e3

e7
e2

e4

e6

e8

(a)

C RL

F

RF

B

LF

RBLB

e1

e7

e8

e2, e3, e4,
e5, e6

(b)

PSfrag replacements

J0J4

J7Trajectory

Controllable
Move

Uncontrollable
Move

(c)

C RL

F

RF

B

LF

RBLB
e′

5

e′
3

e′
2

e′
4

e′
6

e1

e7

e8

{
Partially
Disabled

(d)

Figure 4: (a) shows available moves from the current state (C) in unsupervised
navigation automaton. (b) shows the enabled moves in the optimally supervised
PFSA with no dynamic uncertainty, (c) illustrates the case with dynamic uncer-
tainty, so that the robot can still uncontrollably (and hence unwillingly) make
the disabled transitions, albeit with a small probability,i.e., probability of tran-
sitionse′2,e

′
3,e
′
4 etc. is small. (d) illustrates the concept of using uncontrollable

transitions to model dynamical response for a 2D circular robot: J0 is the target
cell from J7, while the actual trajectory of the robot (shown in dotted line) ends
up in J4. We can model this trajectory fragment as first executing a controllable
move toJ0 and then uncontrollably moving toJ4.

Definition 17. The coefficient of dynamic deviationγ(GMOD
NAV

) is
defined as follows:

γ(GMOD
NAV

) = 1−max
qi∈Q

∑

σu∈ΣUC

π̃(qi , σu) (7)

Definition 18. The event generation probabilities forGMOD
NAV

is
defined as follows:∀qi ∈ Q \ {qGOAL }, σ j ∈ Σ,

π̃(qi, σ j) =

1−
∑
σu∈ΣUC

π̃(qi ,σu)

No. of controllable events atqi
, if σ j ∈ ΣC

π̃(qi, σ j), if σ j ∈ ΣUC

1, otherwise

and for the goal, we define as before:

π̃(qGOAL , σ j) =

{ 1
No. of controllable events atqi

, if σ j ∈ ΣC

1, otherwise

Note that we assume there is no uncontrollability at the goal.
This assumption is made for technical reasons clarified in the
sequel and also to reflect the fact that once we reach the goal,
we terminate the mission and hence such effects can be ne-
glected.

We note the following:

• In the idealized case where we assume platform dynam-
ics is completely absent, we have ˜π(qi, σu) = 0,∀qi ∈

Q,∀σu ∈ ΣUC implying thatγ(GMOD
NAV

) = 1, while in prac-
tice, we expectγ(GMOD

NAV
) < 1.

• In Definition 17, we allowed for the possibility of ˜π(qi , σu)
being dependent on the particular navigation statesqi ∈ Q.
A significantly simpler approach would be to redefine the
probability of the uncontrollable events ˜π(qi, σu) as fol-
lows:

π̃AV(σu) =
1

CARD(Q)

∑

qi∈Q

π̃(qi , σu) (8)

whereπ̃AV(σu) is the average probability of the uncontrol-
lable eventσu being generated.

The averaging of the probabilities of uncontrollable transitions
is justified in situations where we can assume that the dynamic
response of the platform is not dependent on the location of the
platform in the workspace. In this simplified case, the event
generation probabilities forGMOD

NAV
can be stated as:∀qi ∈ Q \

{qGOAL }, σ j ∈ Σ,

π̃(qi , σ j) =

γ(GMOD
NAV

)
No. of controllable events atqi

, if σ j ∈ ΣC

π̃AV(σ j), if σ j ∈ ΣUC

1, otherwise

The key difficulty is allowing the aforementioned dependence
on states is not the decision optimization that would follow, but
the complexity of identifying the probabilities; averaging re-
sults in significant simplification as shown in the sequel. Thus,
even if we cannot realistically average out the uncontrollable
transition probabilities over the entire state space, we could de-
compose the workspace to identify subregions where such an
assumption is locally valid. In this paper, we do not address
formal approaches to such decomposition, and will generally
assume that the afore-mentioned averaging is valid through-
out the workspace; the explicit identification of the sub-regions
is more a matter of implementation specifics, and has little to
do with the details of the planning algorithm presented here,
and hence will be discussed elsewhere. In Section 5, we will
address the computation of the probabilities of uncontrollable
transitions from observed dynamics. First, we will establish the
main planning algorithm as a solution to the performance opti-
mization of the navigation automaton in the next section.

4. Optimal Planning Via Decision Optimization Under Dy-
namic Effects

The modified modelGMOD
NAV

can be optimized via the measure-
theoretic technique in a straightforward manner, using theν⋆-
algorithm reported in [18]. The presence of uncontrollabletran-
sitions inGMOD

NAV
poses no problem (as far as the automaton opti-

mization is concerned), since the underlying measure-theoretic
optimization is already capable of handling such effects [20].
However the presence of uncontrollable transitions weakens
some of the theoretical results obtained in [18] pertainingto
navigation, specifically the absence of local maxima. We show

9

that this causes theν⋆ planner to lose some of its crucial advan-
tages, and therefore must be explicitly addressed via a recursive
decomposition of the planning problem.

Proposition 4 (Weaker Version of Proposition 2). There exists
a ν⋆-pathρ(qi , qGOAL) from any state qi ∈ Q to the goal qGOAL ∈

Q if ν#(qi) > 0.

Proof. We note thatν#(qi) > 0 implies that there necessarily
exists at least one stringω of positive measure initiating from
qi and hence there exists at least one string that terminates on
qGOAL . The proof then follows from the definition ofν⋆-paths
(See Definition 16).

Remark 2. Comparing with Proposition 2, we note that the
only if part of the result is lost in the modified case.

Remark 3. We note that under the modified model,ν#(qi) <
0 needs to be interpreted somewhat differently. In absence of
any dynamic uncertainty,ν#(qi) < 0 implies that no path to
goal exists. However, due to weakening of Proposition 1 (See
Proposition 4),ν#(qi) < 0 implies that the measure of the set of
strings reaching the goal is smaller to that of the set of strings
hitting an obstacle from the state qi .

Theν⋆-planning algorithm is based on several abstract con-
cepts such as the navigation automaton and the formal mea-
sure of symbolic strings. It is important to realize that in
spite of the somewhat elaborate framework presented here,ν⋆-
optimization is free from heuristics, which is often not thecase
with competing approaches. In this light, the next proposition is
critically important as it elucidates this concrete physical con-
nection.

PSfrag replacements

No Connecting Path

Goal

A

B

Obstacles

Figure 5: Absence of uncontrollable transitions at the goalimply that there is
no path in the optimally disabled navigation automaton frompoint A to point
B (or vice versa), since all controllable transitions will necessarily be disabled
at the goal. It follows that the stationary probability vector may be different
depending on whether one starts left or right to the goal. However, note that that
any two points on the same side have a path (possibly made of uncontrollable
transitions) between them; implying that the stationary probability vector will
be identical if either of them is chosen as the start locations.

Proposition 5. Given that a feasible path exists from the start-
ing state to the goal, theν⋆ planning algorithm under non-
trivial dynamic uncertainty (i.e. with γ(GMOD

NAV
) < 1) maximizes

the probability℘GOAL of reaching the goal while simultaneously
minimizing the probability℘⊖ of hitting an obstacle.

Proof. Let ℘ be the stationary probability vector for the
stochastic transition probability matrix corresponding to the
navigation automatonGMOD

NAV
, for a starting state from which a

feasible path to goal exists. (Note that℘ may depend on the
starting state; Figure 5 illustrates one such example. However,
once we fix a particular starting state, the stationary vector ℘ is
uniquely determined). The selective disabling of controllable
events modifies the transition matrix and in effect alters℘, such
that℘Tχ is maximized [20], whereχ is the characteristic weight
vector,i.e. , χi = χ(qi). Recalling thatχ(qGOAL) = 1, χ(q⊖) =
−1 andχ(qi) = 0 if qi is neither the goal nor the abstract ob-
stacle stateq⊖, we conclude that the optimization, in effect,
maximizes the quantity:

ψ = ℘GOAL − ℘⊖ (9)

Also, note that the optimized navigation automaton has only
two dump states, namely the goalqGOAL and the abstract ob-
stacle stateq⊖. That the goalqGOAL is in fact a dump state
is ensured by not having uncontrollable transitions at the goal
(See Definition 18). Hence we must have

∀qi ∈ Q \ {qGOAL , q⊖}, ℘i = 0 (10)

implying that

℘GOAL + ℘⊖ = 1 (11a)

=⇒ ψ = 2℘GOAL − 1 = 1− 2℘⊖ (11b)

Hence it follows that the optimization maximizes℘GOAL and
simultaneously minimizes℘⊖.

Remark 4. It is easy to see that Proposition 5 remains valid if
χ(qGOAL) = χGOAL > 1. In fact, the result remains valid as long
as the characteristic weight of the goal is positive and the char-
acteristic weight of the abstract obstacle state q⊖ is negative.

4.1. Recursive Problem Decomposition For Maxima Elimina-
tion

Weakening of Proposition 1 (See Proposition 4) has the cru-
cial consequence that Corollary 2 is no longer valid. Local
maxima can occur under the modified model. This is a seri-
ous problem for autonomous planning and must be remedied.
The problem becomes critically important when applied to so-
lution of mazes; larger the number of obstables, higher is the
chance of ending up in a local maxima. While elimination of
local maxima is notoriously difficult for potential based plan-
ning approaches,ν⋆ can be modified with ease into a recursive
scheme that yields maxima-free plans in models with non-zero
dynamic effects (i.e. with γ(GMOD

NAV
) < 1).

It will be shown in the sequel that for successful execution of
the algorithm, we may need to assign a larger than unity char-
acteristic weightχGOAL to the goalqGOAL . A sufficient lower
bound forχGOAL , with possible dependence on the recursion
step, is given in Proposition 6. The basic recursion scheme can
be described as follows (Also see the flowchart illustrationin
Algorithm 3):

10

1. In the first step (i.e., at recursion stepk = 1) we execute
ν⋆-optimization on the given navigation automatonGMOD

NAV

and obtain the measure vectorν#[k].
2. We denote the set of states with strictly positive measure

asQk (k denotes the recursion step),i.e.,

Qk = {qi ∈ Q : ν#
[k] |i > 0} (12)

3. If Qk = Qk−1, the recursion terminates; else we update the
characteristic weights as follows:

∀qi ∈ Qk, χ(qi) = χ
[k]
GOAL

(13)

and continue the recursion by going back to the first step
and incrementing the step numberk.

Algorithm 3 : Flowchart for recursiveν⋆-planning

PSfrag replacements

Problem:
GMOD

NAV

Executeν⋆

Qk = Qk−1? Terminate

Setk = k+ 1

Save vector
ν#

[k]

1. Set:∀qi ∈ Qk

χ(qi) = χ
[k]
GOAL

2. Eliminate Uncont.
transitions from

all qi ∈ Qk

No Yes

Define:
Qk = {qi ∈ Q : ν#[k] |i > 0}

Initialize:
k = 0, Q0 = {qGOAL}

Proposition 6. If θ[k]
min is the critical termination probability

(See Definition 11) for theν⋆-optimization in the kth recursion
step of Algorithm 3, then the following condition

χ
[k]
GOAL

>
CARD(ΣC)

1− θ[k]
min

(
1
γ
− 1

)
(14)

is sufficient to guarantee that the following statements aretrue:

1. If there exists a state qi ∈ Q \ Qk from which at least one
state qℓ ∈ Qk is reachable in one hop, thenν#[k] |i > 0.

2. The recursion terminates in at mostCARD(Q) steps.
3. For the kth recursion step, either Qk % Qk−1 or no feasible

path exists to qGOAL from any state qi ∈ Q \ Qk−1.
PSfrag replacements

qGOAL

qi 1− θmin

(1− γ)(1− θmin)

(1− θmin)
γ

CARD(ΣC)

qj

qk

q⊖

Figure 6: Illustration for Proposition 6. Uncontrollable events and strings are
shown in dashed.

Proof. Statement 1:
We first consider the first recursion step,i.e., the case where
k = 0 andQk = {qGOAL } (See Algorithm 3). We note that the
goal qGOAL achieves the maximum measure on account of the
fact that onlyqGOAL has a positive characteristic weight,i.e., we
have

∀qi ∈ Q, ν#
[1] |GOAL ≧ ν#

[1] |i (15)

It follows that all controllable transitions from the goal will
be disabled in the optimized navigation automaton obtainedat
the end of the first recursion step (See Definition 8 and Algo-
rithms 1 & 2), which in turn implies that the non-renormalized
measure of the goal (at the end of the first recursion step) is
given byχGOAL

1
θmin

.
The Hahn Decomposition Theorem [46], allows us to write:

ν#|i = ν#(L+(qi)) + ν#(L−(qi)) (16)

whereL+(qi), L−(qi) are the sets of strings initiating from state
qi that have positive and negative measures respectively.

Let qi ∈ Q \ {qGOAL } such thatqGOAL is reachable fromqi in
one hop. We note that since it is possible to reach the goal in
one hop fromqi , we have:

ν#(L+(qi)) ≧ θmin ×
γ(1− θmin)
CARD(ΣC)

×
χGOAL

θmin
(17)

where the first term arises due to renormalization (See Defini-
tion 7), the second term denotes the probability of the transition
leading to the goal and the third term is the non-renormalized
measure of the goal itself (as argued above). Since it is obvious
that the goal achieves the maximum measure, the transition to
the goal will obviously be enabled in the optimized automaton,
which justifies the second term. It is clear that there are many
more strings of positive measure (e.g. arising due to the self
loops at the stateqi that correspond to the disabled controllable
events that do not transition to the goal fromqi) which are not
considered in the above inequality (which contributes to mak-
ing the left hand side even larger); therefore guaranteeingthe
correctness of the lower bound stated in Eq.(17).

Next, we compute a lower bound forν#(L−(qi)). To that ef-
fect, we consider an automatonG′ identical to the navigation
automaton at hand in ever respect, but the fact that theqGOAL

has zero characteristic. We denote the state correspondingto
qi in this hypothesized automaton asq′i , and the set of al states
in G′ asQ′. We claim that, after a measure-theoretic optimiza-
tion (i.e. after applying Algorithms 1 and 2), the measure ofq′i ,
denoted asν⋆(q′i), satisfies:

ν⋆(q′i) ≧ −(1− γ) (18)

To prove the claim in Eq. (18), we first note that denoting the
renormalized measure vector forG′ before any optimization as
ν′, the characteristic vector asχ′ and for any termination prob-
ability θ ∈ (0, 1), we have:

||ν′||∞ = ||θ[I − (1− θ)Π]−1χ′||∞

≦ ||θ[I − (1− θ)Π]−1||∞ × 1 = 1 (19)

which follows from the following facts:

11

1. For all θ ∈ (0, 1], θ[I − (1 − θ)Π]−1 is a row-stochastic
matrix and therefore has unity infinity norm [19]

2. ||χ′||∞ = 1, since all entries ofχ′ are 0 except for the state
corresponding to the obstacle state in the navigation au-
tomaton, which has a characteristic of−1.

Since the only non-zero characteristic is−1, it follows that no
state inG′ can have a positive measure and we conclude from
Eq. (19) that:

∀q′j ∈ Q′, ν(q′j) ∈ [−1, 0] (20)

Note thatq′i is not blocked itself (since we choseqi such that a
feasible 1-hop path to the goal exists fromqi). Next, we sub-
jectG′ to the measure-theoretic optimization (See Algorithms 1
& 2), which disables all controllable transitions to the blocked
states. In order to compute a lower bound on the optimized
measure for the stateq′i , (denoted byν⋆(q′i)), we consider the
worst case scenario where all neighboring states that can be
reached fromq′i in single hops are blocked. Denoting the set
of all such neighboring states ofqi byN(q′i), we have:

ν⋆(q′i) =
∑

q′j∈N(q′i)

Π
u
i jν(q

′
j) ≧ −1×

∑

q′j∈N(q′i)

Π
u
i j = −1× (1− γ)

(21)

whereΠu
i j is the probability of the uncontrollable transition

from q′i to the neighboring stateq′j . Note that we can write
Eq. (21) in the worst case scenario where each state inN(q′i)
is blocked, since all controllable transitions fromq′i will be dis-
abled in the optimized plant under such a scenario, and only the
uncontrollable transitions will remain enabled; and the proba-
bilities of all uncontrollable transitions defined at stateqi sums
to 1 − γ. It is obvious that the lower bound computed in
Eq. (21) also reflects a lower bound forν#(L−(qi)), since addi-
tion of state(s) with positive characteristic or eliminating obsta-
cles cannot possibly make strings more negative. Furthermore,
recalling that the goalqGOAL is actually reachable from stateqi

by a single hop, it follows that not all neighbors ofqi in the
navigation automaton are blocked, and hence we have the strict
inequality:

ν#(L−(qi)) > −(1− γ) (22)

Combining Eqns. (17) and (22), we note that the following
condition is sufficient for guaranteeingν#|i > 0.

γ(1− θmin)
CARD(ΣC)

× χGOAL > 1− γ (23)

which after a straightforward calculation yields the bound
stated in Eq. 14, and the Statement 1 is proved for the first re-
cursion step,i.e. for Qk = {qGOAL }.

To extend the argument to later recursion steps of Algo-
rithm 3, i.e., for k > 0, we argue as follows. LetQk % {qGOAL }

and we have eliminated all uncontrollable transitions fromall
q j ∈ Qk (as required in Algorithm 3). Further, letqi ∈ Q \ Qk

such that it is possible to reach someq j ∈ Q in a single control-
lable hop,i.e.

qi
σ

−−−−−−−−→
controllable

q j, q j ∈ Qk (24)

PSfrag replacements

qi

qi

σ

σ

σ1σ1
σ2

σ1, σ2

Qk

q j1

q j2q j3

qGOAL

Figure 7: Illustration for Statement 1 of Proposition 6. Note that even ifQk

has multiple states,qj1 , qj2 ,qj3 , the measure of any string (sayσσ1σ1σ2) from
qi is the same as ifqi was directly connected to the goalqGOAL with all con-
trollable events disabled atqGOAL . The bottom plate illustrates this by showing
the hypothetical scenario whereqi is connected toqGOAL by σ andσ1, σ2 are
controllable events disabled atqGOAL . Note that for this argument to work, we
must eliminate uncontrollable transitions from all statesin Qk.

We first claim that

∀q j ∈ Qk, qr < Qk, ν#
[k] | j > ν#

[k] |r (25)

which immediately follows from the fact that the optimal con-
figuration (of transitions from states inQk) at the end of the
ν⋆-optimization at thekth step would be to have all control-
lable transitions from statesq j ∈ Qk enabled if and only if
the transition goes to some state inQk, since in that case ev-
ery string initiating fromq j terminates on a state having char-
acteristicχGOAL (since there is no uncontrollability from states

within Qk by construction), whereas if a transitionq j
σ

−−−−−−−−→
controllable

qr , whereq j ∈ Qk, qr < Qk allows strings which end up in zero-
characteristic states and also (via uncontrollable transitions) on
negative-characteristic states.

Eq. (25) implies that no enabled string exitsQk. It therefore
follows that every stringσω starting from the stateqi, with ω ∈
Σ
⋆
C andδ(qi, σ) ∈ Qk (i.e., σ leads to some state withinQk)

has exactly the same measure as ifqi is directly connected to
qGOAL and all controllable transitions are disabled atqGOAL (See
Figure 7 for an illustration). This conceptual reduction implies
that Eq. (17) is valid whenQk % {qGOAL } since the lower bound
for ν#(L+(qi)) can be computed exactly as already done for the
case withQk = {qGOAL }. The argument for obtaining the lower
bound forν#(L−(qi)) is the same as before, thus completing the
proof for Statement 1 for all recursion steps of Algorithm 3 .
Statement 2:
Let QR $ Qbe the set of states from which a feasible path to the
goal exists. IfCARD(QR) = 1, then we must haveQR = {qGOAL}

and the recursion terminates in one step. In general, for thekth

recursion step, letCARD(Qk) < CARD(QR). Since there exists
at least one state, not inQk, from which a feasible path to the
goal exists, it follows that there exists at least one stateq j from
which it is possible to reach a state inQk in one hop. Using
Statement 1, we can then conclude:

Qk+1 , Qk ⇒ CARD(Qk+1) ≧ CARD(Qk) + 1

12

⇒ CARD(Qk+1) ≧ k+ 1 (26)

which immediately implies that the recursion must terminate in
at mostCARD(Q) steps.
Statement 3:
Follows immediately from the argument used for proving State-
ment 2.

Remark 5. The generality of Eq.(14) is remarkable. Note that
the lower bound is not directly dependent on the exact structure
of the navigation automaton; what only matters is the number
of controllable moves available at each state, the coefficient of
dynamic deviationγ(GMOD

NAV
) and the critical termination prob-

ability θmin. Although the exact automaton structure and the
probability distribution of the uncontrollable transitions are not
directly important, their effect enters, in a somewhat non-trivial
fashion, through the value of the critical termination probabil-
ity. The reader might want to review Algorithm 2 (See also
[19, 20]) which computes the critical termination probability in
each step of theν⋆-optimization for a better elucidation of the
aforementioned connection between the structure of the navi-
gation automaton andχGOAL .

The dependencies of the acceptable lower bound forχGOAL

with the coefficient of dynamic deviationγ(GMOD
NAV

), as com-
puted in Proposition 6, is illustrated in Figures 8(a) and (b).
The key points to be noted are:

1. Asγ(GMOD
NAV

)→ 0+, χGOAL → +∞; which reflects the phys-
ical fact that if no events are controllable, then we cannot
optimize the mission plan no matter how largeχGOAL is
chosen.

2. As γ(GMOD
NAV

) → 1, χGOAL → 0; which implies that in the
absence of dynamic effects any positive value ofχGOAL

suffices. This reiterates the result obtained withχGOAL = 1
in [18].

3. As the number of available controllable moves increases
(See Figure 8(a)), we need a larger value ofχGOAL ; sim-
ilarly if the critical termination probabilityθmin is large,
then the value ofχGOAL required is also large (See Fig-
ure 8(b)).

4. The functional relationships in Figures 8(a) and (b) estab-
lish the fact that for relatively smaller number of control-
lable moves, a large value ofγ(GMOD

NAV
) and a small termi-

nation probability, a constant value ofχGOAL = 1 may be
sufficient.

4.2. Plan Assembly & Execution Approach

The plan vectorsν#[k] (Say, there areK of them, i.e., k ∈
{1, · · · ,K}) obtained via the recursive planning algorithm de-
scribed above, can be used for subsequent mission executionin
two rather distinct ways:

1. (The Direct Approach:)

• At any point during execution, if the current state
qi ∈ Qk for somek ∈ {1, · · · ,K}, then use the gra-
dient defined by the plan vectorν#[k] to decide on

Figure 8: Variation of the acceptable lower bound forχGOAL with γ(GMOD
NAV

). (a)
The set of controllable moves is expanded fromCARD(ΣC) = 4 toCARD(ΣC) =
100 while holdingθmin = 0.01 (b) The critical termination probabilityθmin is
varied from 0.001 to 0.1 while holding CARD(ΣC) = 8. Note the lines are
almost coincident in this case.

the next move,i.e., q j is an acceptable next state if
ν#

[k] | j > ν#
[k] |i and for statesqℓ that can be reached

from the current stateqi via controllable events, we
haveν#[k] | j ≧ ν#[k] |ℓ.

• if ∀k ∈ {1, · · · ,K}, qi < Qk, then terminate operation
because there is no feasible path to the goal.

• Note that this entails keepingK vectors in memory.

2. (The Assembled Plan Approach:)

• Useν#[k] , k ∈ {1, · · · ,K} to obtain the assembled plan
vectorν#A following Algorithm 4, which assigns a
real valueν#A |i to each stateqi in the workspace. We
refer to this map as the assembled plan.

• Make use of the gradient defined byν#A to reach the
goal, by sequentially moving to states with increas-
ing values specified by the assembled plan,i.e.,. if
the current state isqi ∈ Q, thenq j is an acceptable
next state ifν#A | j > ν#

A |i and for statesqℓ that can
be reached from the current stateqi via controllable
events, we haveν#A | j ≧ ν#A |ℓ.

13

Algorithm 4 : Assembly of Plan Vectors

input : ν#[k] , k = 1, · · · ,K
(Plan Vectors)output: ν#A (Assembled Plan)1

begin2

Setν#A
= 0; /* Zero vector */3

for k = 1 : K do4

for i ∈ Q do5

ν#
tmp|i = 0;6

if ν#[k−1]|i > 0 then7

ν
tmp

#
|i = 1;8

else9

if ν#[k] |i > 0 then10

ν
tmp

#
|i = ν#

[k] |i ;11

endif12

endif13

endfor14

ν#
A
= ν#

A
+ ν

tmp

#
;15

endfor16

end17

• We show in the sequel that ifν#A |i < 0, then no fea-
sible path exists to the goal.

Before we can proceed further, we need to formally establish
some key properties of the assembled plan approach. In partic-
ular, we have the following proposition:

Proposition 7. 1. For a state qi ∈ Q, a feasible path to the
goal exists from the state qi , if and only ifν#A |i > 0.

2. The assembled planν#A is free from local maxima, i.e., if
there exists aν⋆-path (w.r.t. toν#A) from qi ∈ Q to qj ∈ Q
and aν⋆-path from qi to qGOAL then there exists aν⋆-path
from qj to qGOAL , i.e.,

∀qi, q j ∈ Q
(
∃ρ1(qi, qGOAL)

∧
∃ρ2(qi , q j)⇒ ∃ρ(q j, qGOAL)

)

3. If a feasible path to the goal exists from the state qi , then
the agent can reach the goal optimally by following the
gradient ofν#A , where the optimality is to be understood
as maximizing the probability of reaching the goal while
simultaneously minimizing the probability of hitting an ob-
stacle (i.e. in the sense stated in Proposition 5).

Proof. Statement 1:
Let the plan vectors obtained by the recursive procedure stated
in the previous section beν#[k] (Say, there areK of them,i.e.,
k ∈ {1, · · · ,K}) and further let the current stateqi ∈ Qk for
somek ∈ {1, · · · ,K}. We observe that on account of Propo-
sition 4, if k = 1, thenν#[k] |i > 0 is sufficient to guaran-
tee that there exists aν⋆-pathρ(qi, qGOAL) w.r.t the plan vec-
tor ν#[1] . We further note thatν#[1] |i <= 0 ⇒ qi < Q1 (See
Eq. (12)), implying thatν#[1] |i > 0 is also necessary for the ex-
istence ofρ(qi , qGOAL). Extending this argument, we note that,
for k > 1, a ν⋆-pathρ(qi , q j) with q j ∈ Qk−1 exists (with re-
spect to the plan vectorν#[k]) if and only if ν#[k] |i > 0. Not-
ing thatν#[k] |i > 0 ⇔ ν#A |i > 0, (See Algorithm 4) we con-
clude that aν⋆-pathρ(qi , q j) with q j ∈ Qk−1 exists (with re-
spect to the plan vectorν#[k]) if and only if ν#A |i > 0. Also,

sinceq j ∈ Qk−1 ∧ qi ∈ Qk, it follows from Algorithm 4, that
ν#

A | j ≧ 1+ ν#A |i > 0. It follows that the same argument can be
used recursively to findν⋆-pathsρ(q j, qℓ1), · · · , ρ(q j, qGOAL) if
and only ifν#A |i > 0.

To complete the proof, we still need to show that if there
exists a feasible path from a stateqi to the goalqGOAL , then
there exists aν⋆-pathρ(qi, qGOAL). We argue as follows: Let
qi = qr1→ qr2→ · · · → qrm−1 → qrm = qGOAL be a feasible path
from the stateqi to qGOAL . Furthermore, assume if possible that

∀k ν#
[k] |i ≦ 0 (27)

i.e., there exists noν⋆-path fromqi to qGOAL w.r.t ν#A . We
observe that since it is possible to reachqGOAL from qrm−1 in
one hop, using Proposition 6 we have:

ν#
[1] |rm−1 > 0⇒ qrm−1 ∈ Q1 (28)

We further note:

ν#
[1] |rm−2 > 0⇒ qrm−2 ∈ Q1 (29)

ν#
[1] |rm−2 ≦ 0⇒ ν#[2] |rm−2 > 0⇒ qrm−2 ∈ Q2 (30)

Hence, we conclude eitherqrm−2 ∈ Q2 or qrm−2 ∈ Q1. It fol-
lows by straightforward induction that eitherq1 ∈ Qm−1 or
q1 ∈ Qm−2, which contradicts the statement in Eq. (27). There-
fore, we conclude that if a feasible path to the goal exists from
any stateqi, then aν⋆-path ρ(qi , qGOAL) (w.r.t ν#A) exists as
well. This completes the proof of Statement 1.
Statement 2:
Given statesqi , q j ∈ Q, assume that we have theν⋆-paths
ρ1(qi, qGOAL) andρ2(qi, q j). We observe that:

∃ρ1(qi , qGOAL)⇒ ν#A |i > 0 (See Statement 1) (31a)

∃ρ2(qi , q j)⇒ ν#A | j ≧ ν#
A |i (See Definition 16) (31b)

⇒ ν#
A | j > 0⇒ ∃ρ(q j, qGOAL) (See Statement 1) (31c)

which proves Statement 2.
Statement 3:
Statements 1 and 2 guarantee that if a feasible path to the goal
exists from a stateqi ∈ Q, then an agent can reach the goal
by following aν⋆-path (w.r.tν#A) from qi , i.e., by sequentially
moving to states which have a better measure as compared to
the current state.

We further note that aν⋆-pathω w.r.t ν#A from any state
qi to qGOAL can be represented as a concatenated sequence
ω1ω2 · · ·ωr · · ·ωm whereωr is a ν⋆-path from some interme-
diate stateq j ∈ Qs, for somes ∈ {1, · · · ,K}, to some state
qℓ ∈ Qs−1. Since the recursive procedure optimizes all such
intermediate plans, and since the outcome “reached goal from
qi” can be visualized as the intersection of the mutually inde-
pendent outcomes “reachedQs from qi ∈ Qs−1”, “reachedQs+1

from q j ∈ Qs” , · · · , “reachedqGOAL from qℓ ∈ Q1”, the overall
path must be optimal as well. This completes the proof.

We compute the set of acceptable next states from the fol-
lowing definition.

14

Definition 19. Given the current state qi ∈ Q, Qnext is the set
of states satisfying the strict inequality:

Qnext= {q j ∈ Q : ν#A | j > ν#
A |i} (32)

We note that Proposition 7 implies thatQnext is empty if and
only if the current state is the goal or if no feasible path to the
goal exists from the current state.

5. Computation of Amortized Uncertainty ParametersPSfrag replacements

Actuation & Localization
Uncertainty

Grid Decomposition

R

Trajectory

q1

q1

q2

q2

q3
q3

q4

q4

q5

q5

q6

q6

q7
q7

q8

q8

Q

(a)

PSfrag replacements
Actuation & Localization

Uncertainty

Grid Decomposition

R

Trajectory

q1

q2

q3

q4

q5

q6

q7

q8

Q

X

YA

B

C

D

J0

J1

J1

J2

J2

J3
J3

J4

J4

J5

J5

J6

J6

J7

J7

J8

J8

Discretization

Deviation
Contour(D)→

(b)

Figure 9: (a) Model for 2D circular robot(b) Numerical integration technique
for computing the dynamic parameters for the case of a circular robot modele.g.
a SEGWAY RMP 200

Specific numerical values of the uncertainty parameters,i.e.
the probability of uncontrollable transitions in the navigation
automaton can be computed from a knowledge of the average
uncertainty in the robot localization and actuation in the config-
uration space. For simplicity of exposition, we assume a 2D cir-
cular robot; however the proposed techniques are applicable to
more general scenarios. The complexity of this identification is
related to the dynamic model assumed for the platform (e.g. cir-
cular robot in a 2D space, rectangular robot with explicit head-
ing in the configuration etc.), the simplifying assumptionsmade
for the possible errors, and thedegree of averagingthat we are
willing to make. Uncertainties arise from two key sources:

1. Actuation errors: Inability of the robot to execute planned
motion primitives exactly, primarily due to the dynamic
response of the physical platform.

2. Localization errors: Estimation errors arising from sensor
noise, and the limited time available for post-processing
exteroceptive data for a moving platform. Even if we as-
sume that the platform is capable of processing sensor data
to eventually localize perfectly for a static robot, the fact
that we have to get the estimates while the robot pose is
changing in real time, implies that the estimates lag the
actual robot configuration. Thus, this effect cannot be ne-
glected even for the best case scenario of a 2D robot with
an accurate global positioning system (unless the platform
speed is sufficiently small).

In our approach, we do not distinguish between the differ-
ent sources of uncertainty, and attempt to represent the overall
amortized effect as uncontrollability in the navigation automa-
ton. The rationale for this approach is straightforward: wevisu-
alize actuation errors as the uncontrollable execution of transi-
tions before the controllable planned move can be executed,and
for localization errors, we assume that any controllable planned
move is followed by an uncontrollable transition to the actual
configuration. Smaller is the probability of the uncontrollable
transitions in the navigation automaton,i.e., larger is the coef-
ficient of dynamic deviation for each state, smaller is the un-
certainty in navigation. From a history of observed dynamics
or from prior knowledge, one can compute the distribution of
the robot pose around the estimated configuration (in an amor-
tized sense). Then the probability of uncontrollable transitions
can be estimated by computing the probabilities with which the
robot must move to the neighboring cells to approximate this
distribution. The situation for a 2D circular robot is illustrated
in Figure 9(a), where we assume that averaging over the ob-
servations lead to a distribution with zero mean-error;i.e., the
distribution is centered around the estimated location in the con-
figuration space. For more complex scenarios (as we show in
the simulated examples), this assumption can be easily relaxed.
We call this distribution thedeviation contour(D) in the sequel.
The amortization or averaging is involved purely in estimating
the deviation contour from observed dynamics (or from prior
knowledge); a simple methodology for which will be presented
in the sequel. However, we first formalize the computation of
the uncertainty parameters from a knowledge of the deviation
contour.

For that purpose, we consider the current state in the naviga-
tion automaton to beqi . Recall thatqi maps to a set of possible
configurations in the workspace. For a 2D circular robot,qi cor-
responds to a set ofx− y coordinates that the robot can occupy,
while for a rectangular robot,qi maps to a set of (x, y, θ) coor-
dinates. The footprint of the navigation automaton states in the
configuration space can be specified via the mapξ : Q → 2C,
whereC is the configuration space of the robot. In general, for
a given current stateqi , we can identify the setN(qi) ⊂ Q of
neighboring states that the robot can transition to in one move.
The current stateqi is also included inN(qi) for notational sim-
plicity. In case of the 2D circular robot model considered in
this paper, the cardinality ofN(qi) is 8 (provided of course that
qi is not blocked and is not a boundary state). For a position
s ∈ ξ(qi) of the robot, we denote a neighborhood of radiusr of

15

the positions in the configuration space asBs,r . The normalized
“volume” intersections ofBs,r with the footprints of the states
included inN(qi) in the configuration space can be expressed
as :

F j(s, r) =

∫
A j

dx
∫

∪qj A j

dx
,∀q j ∈ N(qi) (33)

whereA j = Bs,r

⋂
ξ(q j) and dx is the appropriate Lebesgue

measure for the continuous configuration space.
We observe that the expected or the average probability of

the robot deviating to a neighboring stateq j ∈ N(qi) from a
locations ∈ ξ(qi) is given by:

∫ ∞

0
F j(s, r)Ddr (34)

Hence, the probabilityΠuc
i j of uncontrollably transitioning to a

neighboring stateq j from the current stateqi is obtained by
considering the integrated effect of all possible positions of the
robot withinξ(qi), i.e. we have:

Π
uc
i j =

∫

ξ(qi)

∫ ∞

0
F j(s, r)Ddrds

∑

qj∈N(qi)

∫

ξ(qi)

∫ ∞

0
F j(s, r)Ddrds

(35)

where dr, ds are appropriate Lebesgue measures on the contin-
uous configuration space of the robot. It is important to note
that the above formulation is completely general and makes no
assumption on the structure of the configuration space,e.g., the
calculations can be carried out for 2D circular robots, rectan-
gular robots or platforms with more complex kinematic con-
straints equally well. Figures 13(a)-(c) illustrate the computa-
tion for a circular robot with eight controllable moves,.e.g., the
situation for a SEGWAY RMP. The 2D circular case is however
the simplest, where any state that can be reached by an uncon-
trollable transition, can also be reached by a controllablemove.
For more complex scenarios, this may not be the case. For ex-
ample, in the rectangular model, with constraints on minimum
turn radius, the robot may not be able to move via a controllable
transition from (x, y, h1) to (x, y, h2), wherehi , i = 1, 2 is the
heading in the initial and final configurations. However, there
most likely will be an uncontrollable transition that causes this
change, reflecting uncertainty in the heading estimation (See
Figure 10). Also, one can reduce the averaging effect by con-
sidering more complex navigation automata. For example, for
a 2D circular robot, the configuration state can be defined to be
(xprevious, yprevious, xcurrent, ycurrent), i.e. essentially considering a
4D problem. The identification of the uncertainty parameters
on such a model will capture the differences in the uncontrol-
lable transition probabilities arising from arriving at a given
state from different directions. While the 2D model averages
out the differences, the 4D model will make it explicit in the
specification of the navigation automaton (See Figure 15). In
the sequel, we will present comparative simulation resultsfor

these models. Note, in absence of uncertainty, the 4D imple-
mentation is superfluous; (xprevious, yprevious, xcurrent, ycurrent) has
no more information than (xcurrent, ycurrent) in that case.

PSfrag replacements

15◦

Available
Controllable→
Transitions

Controllable
Move

Uncontrollable
Move

Figure 10: A rectangular robot unable to execute zero-radius turns. There exists
uncontrollable transitions that alter heading in place, which reflects uncertain-
ties in heading estimation, although there are no controllable moves that can
achieve this transition

Next, we present a methodology for computing the relevant
uncertainty parameters as a function of the robot dynamics.We
assume a modular plan execution framework, in which the low-
level continuous controller on-board the robotic platformis se-
quentially given a target cell (neighboring to the current cell) to
go to, as it executes the plan. The robot may be able to reach the
cell and subsequently receives the next target, or may end upin
a different cell due to dynamic constraints, when it receives the
next target from this deviated cell as dictated by the computed
plan. The inherent dynamical response of the particular robot
determines how well the patform is able to stick to the plan. We
formulate a framework to compute the probabilities of uncon-
trollable transitions that best describe these deviations.

Definition 20. The raw deviation∆R(t) as a function of the op-
eration time t is defined as follows:

∆R(t) = Θ(p(t), ζ(t)) (36)

where p(t) is the current location of the robot in the workspace
coordinates,ζ(t) is the location of the point within the current
target cell which is nearest to the robot position p(t) (See Fig-
ure 11), andΘ(·, ·) is an appropriate distance metric in the con-
figuration space.

The robot will obviously take some time to reach the target
cell, assuming it is actually able to do so. We wish to eliminate
the effect of this delay from our calculations, since a platform
that is able to sequentially reach each target cell, albeit with
some delay, does not need the plan to be modified. Further-
more, unless velocity states are incorporated in the navigation
automata, the plan cannot be improved for reducing this delay.
We note that the raw deviation∆R(t) incorporates the effect of
this possibly variable delay and needs to be corrected for. We
do so by introducing the delay corrected deviation∆(t) as fol-
lows:

Definition 21. The delayed deviation∆d(t, η) is defined as:

∆d(t, η) = Θ(p(t + η(t)), ζ(t)) (37)

16

S

PSfrag replacements

J0

J1 J2 J3

J4 J5

J6

J7

J8

σu

A
B
C
D

∆R(t0)

∆R(t)

Robot
Trajectory

Target Cell

Current Location
(time = t0)

(a)

S

PSfrag replacements

J0

J1 J2 J3

J4
J5

J6

J7

J8

σu

σu

A

B
C

D

∆R(t0)
∆R(t)

Robot
Trajectory

Target Cell

Current Location
(time = t0)

(b)

Figure 11: Illustration for computation of amortized dynamic uncertainty pa-
rameters

whereη(t) is some delay function satisfying∀τ ∈ R, η(τ) ≥ 0.

Definition 22. The delay corrected deviation∆(t) as a function
of the operation time t is defined as:

∀t ∈ R, ∆(t) = argin f
∆d(t, η) : ∀τ ∈ R, η(τ) ≥ 0

∣∣∣
∣∣∣∆d(t, η)

∣∣∣
∣∣∣ (38)

Note that Definition 22 incorporates the possibility that the
delay may vary in the course of mission execution.We will
make the assumption that although the delay may vary, it does
so slowly enough to be approximated as a constant function
over relatively short intervals.

If we further assume that we can make observations only at
discrete intervals, we can approximately compute∆(t) over a
short intervalI = [tinit , t f inal] as follows:

∀t ∈ I ,∆(t) = argmin
Θ(p(t+η),ζ(t)):η∈N∪{0}

∣∣∣
∣∣∣Θ(p(t + η), ζ(t))

∣∣∣
∣∣∣ (39)

Furthermore, the approximately constant average delayη⋆ over
the intervalI can be expressed as:

η⋆ = argmin
η∈N∪{0}

∣∣∣
∣∣∣Θ(p(t + η), ζ(t))

∣∣∣
∣∣∣ (40)

Since the delay may vary slowly, the computed value ofη⋆ may
vary from one observation interval to another. For each interval
Ik ∈ {I1, · · · , IM}, one can obtain the approximate probability
distribution of the delay corrected deviation∆(t), which is de-
noted asD[k] . Therefore, from a computational point of view,
D

[k] is just a histogram constructed from the∆(t) values for the
interval Ik (for a set of appropriately chosen histogram bins or
intervals). For a sufficiently large number of observation in-
tervals{I1, · · · , IM}, one can capture the deviation dynamics of
the robotic platform by computing the expected distribution of
∆(t), i.e. computingD, which can be estimated simply by:

D =
1
M

M∑

k=1

D
[k] (41)

Once the distribution for the delay corrected deviation hasbeen
computed, we can proceed to estimate the probabilities of the
uncontrollable transitions, as described before. Determination
of the uncertainty parameters in the navigation model then al-
lows us to use the proposed optimization to compute optimal
plans which the robot can execute. We summarize the sequen-
tial steps in the next section.

6. Summarizingν⋆ Planning & Subsequent Execution

The complete approach is summarized in Algorithm 5. The
planning and plan assembly steps (Lines 2 & 3) are to be done
either offline or from time to time when deemed necessary in
the course of mission execution. Replanning may be necessary
if the dynamic model changes either due to change in the en-
vironment or due to variation in the operational parametersof
the robot itself,e.g., unforeseen faults that alter or restrict the
kinematic or dynamic degrees of freedom. Onwards from Line
4 in Algorithm 5 is the set of instructions needed for mission
execution. Line 5 computes the set of states to which the robot
can possibly move from the current state. We select one state
from the set of possible next states which have a strictly higher
measure compared to the current state in the computed plan.
It is possible that the set of such statesQnext (See Line 6) has
more than one entry. Choice of any element inQnext as the next
desired state is optimal in the sense of Proposition 5 . However,
one may use some additional criteria to aid this choice to yield
plans suited to the application at hand,e.g., to minimize change
of current direction of travel. For example one may choose the
state fromQnext that requires least deviation from the current
direction of movement, to minimize control effort. In general,
we can penalize turning using a specified penaltyβ ∈ [0, 1] as
follows:

Definition 23. Given a turning penaltyβ ∈ [0, 1], the turn pe-
nalized measure values on the set of possible next states Qnext

is computed as follows:

∀q ∈ Qnext, ν
β(q) = (1− β)ν#A(q) + β cos(h(q)) (42)

where h(q) is the heading correction required for transitioning
to q ∈ Qnext, which for 2D circular robots is calculated as the

17

X: 8
Y: 15

gamma
=
0.98PSfrag replacements

γ = 0.75

5

5

10

10

15

15

20

20

25

25

30

35

40

45

50

(a) β = 0

X: 8
Y: 15

gamma
=
0.98PSfrag replacements

γ = 0.75

5

5

10

10

15

15

20

20

25

25

30

35

40

45

50

(b) β = 0.35

X: 8
Y: 15

gamma
=
0.98PSfrag replacements

γ = 0.75

5

5

10

10

15

15

20

20

25

25

30

35

40

45

50

(c) β = 0.75

X: 8
Y: 15

gamma
=
0.98PSfrag replacements

γ = 0.75

5

5

10

10

15

15

20

20

25

25

30

35

40

45

50

(d) β = 1

Figure 12: Effect of increasing turning penaltyβ on making turns in choice of local transitions postν⋆-optimization. Note that thepotential gradientis identical
in all four cases. The start state is (8, 15) as shown. The gradient shown (by the arrows) is for the computed measure vectorν#A , and hence is identical for all four
cases

angular correction between the line joining the center of the
current state to that of q, and the line joining the center of the
last state with that of the current one. the direction of the last
state. The robot then chooses qnext as the state q∈ Qnext which
has the maximum value forνβ(q).

The effect of penalizing turns is shown in the Figure 12. Note
that for maximum turn penalty, the computed plan is almost
completely free from kinks. Also, note that theν⋆ optimization
ensures that all these plans have the same probability of success
and collision.

As stated in Line 8, the robot may not be successful to actu-
ally transition to the next chosen state due to dynamic effects.
In particular, if the state that the robot actually ends up inhas

Algorithm 5 : Summarized Planning & Mission Execution

input : ModelGMOD
NAV

begin1
/* ←− Planning & Plan Assembly−→ */;
Compute decomposed plansν#[k] ; /* Algorithm 3 */2

Compute assembled planν#A ; /* Algorithm 4 */3
/* ←− Mission Execution−→ */;
while true do4

Find set of neighbors:N(qi) =
{
q ∈ Q : ∃σ ∈ ΣC s.t. qi

σ
−→ q

}
;5

ComputeQnext=
{
qj ∈ N(qi) : ∀qk ∈ N(qi), ν#A | j > ν#

A |k
}
;6

Choose one stateqnext from setQnext;7
Attempt to move toqnext; /* May be unsuccessful8

*/

Read current stateqi ; /* Possibly qi , qnext */9
if qi == qGOAL then10

Mission SuccessfulTerminate Loop;11
else12

if ν#A |i ≦ 0 then13
Mission FailedTerminate Loop;14

endif15

endif16

endw17

end18

a non-positive measure (due to uncertainties and executioner-
rors), then execution is terminated and the mission is declared
unfeasible from that point (See Line 14).

It is important to note that if a particular configuration maps
to a navigation state with non-positive measure, then no feasi-
ble path to goal exists from that configuration,irrespective of
uncertainty effects. This underscores the property of the pro-
posed algorithm that it finds optimal feasible paths; even ifthe
only feasible path is very unsafe, it still is theonlyfeasible path;
and is therefore the optimal course of action (See Proposition 7
Statement 3).

7. Verification & Validation

In this section we validate the proposed planning algorithm
via detailed high fidelity simulation studies and in experimen-
tal runs on a heavily instrumented SEGWAY RMP 200 at the
robotic testbed at the Networked Robotics & Systems Labora-
tory (NRSL), Pennstate. The results of these experiments ad-
equately verify the theoretical formulations and the key claims
made in the preceding sections.

Remark 6. In depicting simulation results in the sequel, we re-
fer to “computed paths/plans”. It is important to clarify, what
we mean by such a computed or simulated path. The computed
path is the sequence of configuration states that the robot would
enter, if the uncertainties do not force it to deviate, i.e., the
path depicts the best case scenario under the uncertainty model.
Thus, the depictions merely give us a feel for the kind of paths
the robot would take; in actual implementation, the trajectories
would differ between runs. Also, when we refer to lengths of the
computed paths, we are referring to the lengths of the paths in
the best case scenario, i.e., the tight lower bound on the path
length that will actually be encountered.

18

PSfrag replacements

P
ro

ba
bi

lit
y 0.4

0.35

0.35

0.35

0.3

0.3

0.3

0.3

0.3

0.3

0.25

0.25

0.25

0.2

0.2

0.2

0.2

0.2

0.2

0.15

0.15

0.15

0.1

0.1

0.1

0.1

0.1

0.1

0.05

0.05

0.05

0 0

0 0

0 0

Run 1

Run 2

Run 3

Deviation∆

(a)

PSfrag replacements

Probability

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Run 1

Run 2

Run 3

Deviation∆

η⋆

Run Number

η
⋆

P
ro

ba
bi

lit
y

0.5

0.4

0.3

0.2

0.1

0

0

16

16

17

17

18

18

19

19

255 10 15 20

(b)

PSfrag replacements

Probability

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Run 1

Run 2

Run 3

Deviation∆
η⋆

Run Number
η⋆

P
ro

ba
bi

lit
y

0.5

0.4

0.3

0.2

0.1

0

16

17

18

19

25

5

10

15

20

γ =
.93

.003 .003

.003.003

.015

.015

.015

.015

∆

0.4
0.35

0.35

0.3

0.3

0.25

0.25

0.2

0.2

0.15

0.15

0.1

0.1

0.05

0.050 0Probability

E(D) Histogram

(c)

Figure 13: Computation of dynamic uncertainty parameters from observed dynamics for SEGWAY RMP 200 at NRSL, Pennstate:(a) shows the observed distribu-
tionD of the deviation∆ for different runs, (b) shows the distribution of the delayη⋆ for the various runs, Lower plate in (c) illustrates the expected distributionE(D)
for deviation∆ while the upper plate in (c) enumerates the probabilities ofthe uncontrollable transitions to the neighboring cells, and the coefficient of dynamic
deviationγ(GMOD

NAV
)

PSfrag replacements
5

5

10

10

15

15

20

20

25

25

30

35

40

45

50
(a) γ(GMOD

NAV
) = 1

PSfrag replacements
5

5

10

10

15

15

20

20

25

25

30

35

40

45

50
(b) γ(GMOD

NAV
) = 0.98

PSfrag replacements
5

5

10

10

15

15

20

20

25

25

30

35

40

45

50
(c) γ(GMOD

NAV
) = 0.9

Figure 14: Simulation results with a circular robot model and different values of the coefficient of dynamic deviationγ(GMOD
NAV

). Note the response of the navigation

gradient asγ(GMOD
NAV

) is decreased.

7.1. Simulation Results for Circular Robots
The recursive version of the modifiedν⋆ planning algorithm

presented in this paper (See Algorithm 5) is first validated in
a detailed simulation example as illustrated in Figures 13(a-c)
and 14(a-c). The workspace is chosen to be a 50×30 grid, with
obstacles placed at shaded locations, as illustrated. The size of
the workspace is chosen to correspond with the size of the ac-
tual test-bed, where experimental runs on the robotic platform
would be performed subsequently. Plates (a)-(c) in Figure 14 il-
lustrates the gradient of the optimized measure vector (by short
arrows) and a sample optimal path from location (15, 10) (up-

per,left) to the goal (40, 20) (down,right). We note that the “po-
tential field” defined by the measure gradient converges (i.e. has
an unique sink) at the goal. Also, note that the coefficient ofdy-
namic deviationγ(GMOD

NAV
) is decreased, the algorithm responds

by altering the optimal route to the goal. In particular, theopti-
mal path for smaller values ofγ(GMOD

NAV
) stay further away from

the obstacles. The key point to note here is that the the pro-
posed algorithm guarantees that this lengthening of the route to
account for dynamic uncertainty isoptimal, i.e., further length-
ening by staying even further from the obstacles yields no ad-
vantage in a probabilistic sense. This point has a direct practical

19

implication; one that can be verified experimentally as follows.
Let us assume that we have a real-world robot equipped with
on-board reactive collision avoidance, by which we can ensure
that the platform does notactually collidewith obstacles under
dynamic uncertainty, but executes corrections dictated bylocal
reactive avoidance. Then, the preceding result would implythat
a using the correct value of dynamic deviation (for the specific
platform) in the planning algorithm would result in routes that
require the least number of local corrections; which in turnen-
sures minimum time route traversals on the average.

It is important to note that the assumption of a circular robot
poses no critical restrictions. Similar results can be obtained
for more complex models as well,i.e. rectangular platform with
constrained turn radius. However, extension to multi-bodymo-
tion planning would require addressing the algorithmic com-
plexity issues that become important even for the recursiveν⋆

for very large configuration spaces, and is a topic of future
work.

7.2. Simulation Results for Non-symmetric Uncertainty

As stated in the course of the theoretical development, it is
possible to choose the degree of amortization or averaging that
one is willing to allow in the specification of the navigationau-
tomaton. As a specific example, one may choose to compute the
probabilities of uncontrollable transitions with respectto some
length of trajectory history; the simplest case is using thepre-
vious state information to yield non-symmetric deviation con-
tours (See Figure 15). The particular type of deviation contours
illustrated in Figure 15 is obtained if the platform has a large
stopping distance and inertia, and the heading and positional
estimates are more or less accurate,i.e., the uncontrollability in
the model is a stronger function of the dynamic response, rather
than the estimation errors. A typical scenario is the SEGWAY
RMP 200 with good global positioning capability, in which fac-
toring in the dynamic response is important due to the inverted-
pendulum two-wheel kinematics. For this simulation, we usea
navigation automaton obtained from discretizing an essentially
4D underlying continuous configuration space. Each state (ex-
cept the obstacle state) in the navigation automaton maps toa
discretized pair of locations, reflecting the current robotloca-
tion and the one from which it transitioned to the current loca-
tion. We call this the4D Model to distinguish it from the the
significantly smaller and simpler 2D model. Note that the 2D
model can be obtained from the 4D model by merging states
with the same current location via averaging the probabilities
of uncontrollable transitions over all possible previous states.
Also note that (as stated earlier), in the absence of uncertainty,
the 4D formulation adds nothing new; explicitly encoding the
previous location in the automaton state gives us no new infor-
mation. Table 1 enumerates the comparative model sizes.

Table 1: Comparison of 4D and 2D Models

Map Size No. of States Alphabet Size
2D Model 40× 40 1600 8
4D Model 40× 40 256× 104 8

PSfrag replacements

Deviation Contour
Trajectory

(a)
(b)
(c)

Figure 15: Non-symmetric deviation contours arising from explicit dependence
on the last discrete position for the robot

PSfrag replacements

GOAL
INIT

4D model

2D model

No uncertainty

Figure 16: Comparative pathlengths for the chosen initial and goal configura-
tions: 65 steps for 2D model, 51 steps for 4D model, 36 steps for the case with
no uncertainty

Comparisons of computed plans for a particular set of initial
and goal configurations is shown in Figure 16. To accentuate
the differences in the computed plans, the deviation contours
were chosen so that the probability of uncontrollable transition
in the current direction of travel is significantly more compared
to that of deviating to left or right,i.e., the contours are re-
ally narrow ellipses. Under such a scenario, the platform is
more capable of navigating narrow corridors as compared to the
amortized 2D counterpart. This is reflected in the paths shown
in Figure 16, where the path for the 4D model is shorter, and
goes through some of the narrow bottlenecks, while the path
for the 2D model takes a safer path. Note, the path for the no-
uncertainty case is even more aggressive, and shorter. In prac-
tical implementation, when the uncontrollable probabilities are
identified from observed dynamics or pre-existing continuous
models, the differences in the two cases are often significantly
less.

7.3. Simulation Results for Rectangular Robots

The proposed planning algorithm is next applied to the case
of rectangular robots, specifically ones that have a minimum
non-zero turn radius. We further impose the constraint thatthe

20

platform cannot travel backwards, which is a good assumption
for robots that have no ranging devices in the rear, and also for
aerial vehicles (UAVs). Even assuming planar operation, this
problem is essentially 3D, with the navigation automaton re-
flecting the underlying configuration states of the form (x, y, h)
whereh is the current heading, which can no longer be ne-
glected due to the inability of the patform to turn in place. A
visual comparison of the models for the circular and rectangu-
lar cases is shown in Figure 17(e). The heading is discretized
at 15◦ intervals, implying we have 24 discrete headings. This
also means that for the same planar workspace, the number of
states in the rectangular model is about 24 times larger the num-
ber of states for the circular model. Also, while in the circular
case, we had 8 neighbors, the number of neighboring configura-
tions increases to 8× 24+24= 216 However, not all neighbors
can be reached via controllable transitions due to the restriction
on the turn radius; we assume a maximum turn of±45◦ in the
model considered for the simulation. As explained earlier,all
the neighbors may be reachable via uncontrollable transitions,
which reflects uncertainties in estimation (See Figure 10).

We test the algorithm with different values ofγ(GMOD
NAV

) as il-
lustrated in Figure 17(a-d). Note the trajectories become more
rounded and less aggressive (as expected) as the uncertainty is
increased. Also note that the heading at the goal is different for
the different cases. This is because, in the model , we specified
as goals any state that maps to the goal location in the planar
grid irrespective of the heading,i.e., the problem was solved
with essentially 24 goals. Although for simplicity, the theo-
retical development was presented assuming a single goal, the
results can be trivially shown to extend to such scenarios. The
trajectories however, will be significantly different if weinsist
on having a particular heading at the goal (See Figure 18).

In the simulations for the rectangular model, we deliberately
assume that any neighbor that cannot be reached via a con-
trolled move is not reachable by an uncontrollable transition
as well. Although this is not what we expect to encounter in
field, the purpose of this assumption is to bring out an interest-
ing consequence that we illustrate in Figures 19(a-b). As ex-
plained above, this assumption implies that we have little or no
uncertainty in local heading estimations (since the robot can-
not turn in place, so there is no uncontrollable transition that
alters heading in place). It therefore follows, that under this
scenario, the platform would find it relatively safe to navigate
narrow passages. This is exactly what we see in Figure 19(b),
where the circular robot with same coefficient of dynamic un-
certainty, really goes out of way to avoid the narrow passage,
while the rectangular robot goes through.

7.4. Simulation Results for Mazes
We simulate planning in a maze of randomly placed static

obstacles. A sample case with optimal paths computed for dif-
ferent coefficients of dynamic deviation is illustrated in Fig-
ure 20(a). A key point to note is that the optimal path is length-
ens first asγ(GMOD

NAV
) is decreased, and then starts shortening

again, which may seem paradoxical at first sight. However,
this is exactly what we expect. Recall that the proposed al-
gorithm minimizes the probability of collision. Also note that

there are two opposing effects in play here; while a longer path
that stays away from the obstacles influences to decrease the
collision probability, the very fact that the path is longerhas an
increasing influence arising from the increased probability that
an uncontrollable sequence would execute from some point in
the path that leads to a collision. At relatively high valuesof
γ(GMOD

NAV
), the first effect dominates and we can effectively de-

crease the collision probability by staying away from the ob-
stacles thereby increasing the path length. However, at low
values ofγ(GMOD

NAV
), the latter effect dominates, implying that

increased path lengths are no longer advantageous. This in-
teresting phenomenon is illustrated in Figure 20(b), wherewe
clearly see that the path lengths peak in theγ(GMOD

NAV
) = 0.72

to γ(GMOD
NAV

) = 0.85 range (for the maze considered in Fig-
ure 20(a)). Also note that the configuration space has to be
sufficiently complex to actually see this effect; which is why
we do not see this phenomenon in the simulation results pre-
sented in Figures 14(a-c).

7.5. Experimental Runs on SEGWAY RMP 200

The proposed algorithm is validated on a SEGWAY RMP
200 which is a two-wheeled robot with significant dynamic un-
certainty. In particular, the inverted-pendulum dynamicspre-
vents the platform from halting instantaneously, and making
sharp turns at higher velocities. At low velocities, however, the
platform can make zero radius turns. The global positional fix
is provided via an (in-house developed) over-head multi-camera
vision system, which identifies the position and orientation of
the robot in the testbed. The vision system yields a positional
accuracy of±7.5 cm, and a heading accuracy or±0.1 rad for
a stationary robot. The accuracy deteriorates significantly for a
mobile target, but noise correction is intentionally not applied
to simulate a high noise uncertain work environment. Further-
more, the cameras communicate over a shared wireless network
and randomly suffers from communication delays from time to
time, leading to delayed positional updates to the platform. In
the experimental runs conducted at NRSL the workspace dis-
cretized into a 53× 29 grid. Each grid location is about 4 sq.
ft. allowing the SEGWAY to fit completely inside each such
discretized positional state which justifies the simplifiedcircu-
lar robot modeling. The runs are illustrated in Figure 22. The
robot was run at various allowed top speeds (vmax) ranging from
0.5 mph to over 2.25 mph. Only the extreme cases are illus-
trated in the figure. For each speed, the uncertainty parameters
were estimated using the formulation presented in Section 5.
The sequence of computational steps for the low velocity case
(vmax = 0.5 mph) are shown in Figure 13. Note the coefficient
of dynamic deviation for the low velocity case turns out to be
γlow
= 0.973. For the high velocity case, (vmax= 2.25mph), the

coefficient is computed to have a value ofγhigh
= 0.93 (calcula-

tion not shown). Also, the robot is equipped with an on-board
low-level reactive collision avoidance algorithm, which ensures
that the platform does notactuallycollide due path deviations;
but executes local reactive corrections when faced with such sit-
uations. The platform is equipped with multiple high frequency
sonars, infra-red range finders and a high-precision SICK LMS

21

051015202530

0

5

10

15

20

25

(a) γ(GMOD
NAV

) = 1

051015202530

0

5

10

15

20

25

(b) γ(GMOD
NAV

) = 0.8

051015202530

0

5

10

15

20

25

(c) γ(GMOD
NAV

) = 0.5

051015202530

0

5

10

15

20

25

(d) γ(GMOD
NAV

) = 0.1

PSfrag replacements
15◦

Discretized
Neighboring

Configurations

Circular Model Rectangular Model
(e)

Figure 17: Comparative trajectories for rectangular model

200 laser range finder. The data from these multiple ranging de-
vices, mounted at various key locations on the platform, must
be fused to obtain correct situational awareness. In this paper,
we skip the details of this on-board information processingfor
the sake of brevity. The overall scheme is illustrated in Fig-
ure 21

In the experimental runs, we choose two waypoints (marked
A and B) in Figure 22 (plates a,b,d,e), and the mission is to
plan and execute the optimal routes in sequence fromA to B,
back toA and repeat the sequence a specified number of times
(thirty). This particular mission is executed for each top speed
for a range ofγ values, namely withγ ∈ [0.75, 1] with incre-

ments of 0.1. The expectation is that using the correct coef-
ficient of dynamic deviation (as computed above for the two
chosen speeds) for the given speed, would result in the mini-
mum number of local corrections, leading to minimum average
traversal times over thirty laps.

The results are summarized in plates (c) (for the low ve-
locity case) and (f) (for the high velocity case) in Figure 22.
Note the fitted curve in both cases attain the minimal point very
close to the corresponding computedγ values, namely, 0.97 for
vmax = 0.5 mph and 0.92 for vmax = 2.25 mph. A visual com-
parison of the trajectories in the plates (a) and (d) clearlyre-
veal that the path execution has significantly more uncertainties

22

PSfrag replacements

Goal Location

Goal Heading

Note Difference

(a) Strict Goal Heading Requirement

PSfrag replacements

Goal Location

Goal Heading

Note Difference

(b) No Heading Requirement

Figure 18: Comparative trajectories for rectangular modelfor γ(GMOD
NAV

) = 0.8: Case (a) we demand that the robot reach the goal with a specified heading (−150◦).
Case (b): Any heading at the goal is acceptable

PSfrag replacements

Circular Robot
Rectangular Robot

Note

Note

(a) γ(GMOD
NAV

) = 1

PSfrag replacements

Circular Robot

Rectangular Robot

Note

Note

(b) γ(GMOD
NAV

) = 0.8

Figure 19: Comparative trajectories for rectangular modeland circular model to illustrate the effect of different uncertainty assumptions: (a) Trajectories in the
absence of uncertainty (b) Trajectories withγ(GMOD

NAV
) = 0.8.

in the high velocity case. Also note, that the higher average
speed leads to repeated loss of position fix information in lo-
cations around (row = 20, column= 35). Plates (b) and (e)
illustrate the sequence of waypoints invoked by the robot inthe
two cases, being the centers of the states in the navigation au-
tomaton that the robot visits during mission execution. Note
that in the high velocity case, the variance of the trajectories is
higher leading to a larger set of waypoints been invoked. Note
that three distinct zones (denoted as Zone A, Zone B and Zone
C) can be identified in the plates (e) and (f) of Figure 22. Zone
A reflects the operation whenγ is (incorrectly assumed to be)
too large, leading to too many corrections, and hence execution
time can be reduced by reducingγ. In Zone B, reducingγ in-
creases execution time, since now the trajectories becomesun-
necessarily safe,i.e. stays away from obstacles way more than
necessary leading to longer than required paths and hence in-
creased execution time. Zone C represents a sort of saturation
zone where reducingγ has no significant effect, arising from the
fact that the paths cannot be made arbitrarily safe by increasing

path lengths. Although the experimental runs were not done for
smaller values ofγ, we can say from the experience with maze
simulations (See Section 7.4), that the execution times will start
reducing again asγ is further reduced.

These results clearly show that the approach presented in this
paper successfully integrates amortized dynamical uncertainty
with autonomous planning, and establishes a computationally
efficient framework to cyber-physical motion planning.

8. Summary & Future Research

The recently proposed PFSA-based path planning algorithm
ν⋆ is generalized to handle amortized dynamic uncertainties in
plan execution, arising from the physical limitations of sensing
and actuation, and the inherent dynamic response of the physi-
cal platforms. The key to this generalization is the introduction
of uncontrollable transitions in the modified navigation automa-
ton, and showing thatν⋆ can be implemented in a recursive
fashion to guarantee plan optimality under such circumstances.

23

PSfrag replacements

γ = 1
γ = 0.9
γ = 0.8
γ = 0.6

5
10
15
20
25
30
35
40
45
50
60
70
80
G

1

0.8

0.4

0.1

SSS

G

(a)

PSfrag replacements

γ = 1
γ = 0.9
γ = 0.8
γ = 0.6

5
10
15
20
25
30
35
40
45
50

60

70
80
G

1

0.8

0.4

0.1

S

G

γ(GMOD
NAV

)

P
at

h
L

en
gt

hs

Simulated Data
Polynomial Fit

1

0.95

0.9

.85

0.8

0.75

0.70.2 0.60.1 0.50.40.3

90

70

100

105

110

80

120

(b)

Figure 20: Effect of dynamic uncertainty on the optimal pathlengths computed byν⋆. Plate (a) illustrates the optimal paths forγ(GMOD
NAV

) = 1.0, 0.8, 0.4,0.1 from

the start location marked byS and the goal marked byG. Plate (b) illustrates the variation of the length of the optimal paths as a function ofγ(GMOD
NAV

) for the maze
illustrated in (a).

Figure 21: Autonomous navigation scheme withν⋆ implementation on heavily
instrumented Segway RMP (shown in inset).

The theoretical algorithmic results is verified in detailedhigh-
fidelity simulations and subsequently validated in experimental
runs on the SEGWAY RMP 200 at NRSL, Pennstate.

8.1. Future Work

Future work will extend the language-measure theoretic
planning algorithm to address the following problems:

1. Multi-robot coordinated planning: Run-time complex-
ity grows exponentially with the number of agents if one
attempts to solve the full Cartesian product problem. How-
everν⋆ can be potentially used to plan individually fol-
lowed by an intelligent assembly of the plans to take inter-
action into account.

2. Hierarchical implementation to handle very large
workspaces: Large workspaces can be solved more effi-
ciently if planning is done when needed rather than solving

the whole problem at once; however care must be taken to
ensure that the computed solution is not too far from the
optimal one. One the areas of current research is an al-
gorithmic decomposition of the configuration space such
that individual blocks are solved in parallel on communi-
cating processors, with the interprocessor communication
ensuring close-to-global optimality. We envision such an
approach to be ideaally suited to scenarios involving multi-
ple agents distributed over a large workspace which coop-
eratively solve the global planning problem in an efficient
resource-constrained manner.

3. Handling partially observable dynamic events: In this
paper all uncontrollable transitions are assumed to be per-
fectly observable. Physical errors and onboard sensor fail-
ures may need to be modeled as unobservable transitions
and will be addressed in future publications. A generaliza-
tion of the measure-theoretic optimization technique under
partial observation has been already reported [48]. The fu-
ture goal in this direction is to incorporate the modifica-
tions to allowν⋆ handle loss of observation and feedback
information.

References

[1] J.-C. Latombe, Robot Motion Planning, International Series in Engineer-
ing and Computer Science; Robotics: Vision, Manipulation and Sensors,
Kluwer Academic Publishers, Boston, MA, U.S.A., 1991, 651 pages.

[2] S. M. LaValle, Planning Algorithms, Cambridge University Press, Cam-
bridge, U.K., 2006, available at http://planning.cs.uiuc.edu/.

[3] K. Kondo, Motion planning with six degrees of freedom by multistrate-
gicbidirectional heuristic free-space enumeration, IEEETransactions on
Robotics and Automation 7 (3) (1991) 267–277.

24

PSfrag replacements

A

B
5

10

10

15

15

20

20

25

25

30

35

40

45

50
60
70
80

(a)

PSfrag replacements

A

B
5

10

10

15

15

20

20

25

25

30

35

40

45

50
60
70
80

(b)

PSfrag replacements

A

B
5

10

10

15

15

20

20

25

25

30

35

40

45

50
60
70
80

(c)

PSfrag replacements

A

B
5

10

10

15

15

20

20

25

25

30

35

40

45

50
60
70
80

(d)

PSfrag replacements

A
B
5

10
15
20
25
30
35
40
45
50
60
70
80

0.75
0.8

0.85

0.91 0.93 0.95 0.97 0.99

145
150
155
160
165
170
175

180

185

190

195

200

205

210

Zone
A

Zone
B

Zone
C

Mean Runtime

Smooth Spline

Mean Runtime
Smooth Spline

γ(GMOD
NAV

)

T
im

e
(s

ec
)

(e)

PSfrag replacements

A
B
5

10
15
20
25
30
35
40
45
50
60
70
80

0.75 0.8 0.85

0.91

0.93

0.95

0.97

0.99

145

150

155

160

165

170

175

180
185
190
195
200
205
210

Zone
A

Zone
B

Zone
C

Mean Runtime
Smooth Spline

Mean Runtime

Smooth Spline

γ(GMOD
NAV

)

T
im

e
(s

ec
)

0.9

(f)

Figure 22: Experimental runs on SEGWAY RMP 200: (a)-(c) Low speed runs and (d)-(f) High speed runs: Plates (a) and (d) shows the trace of the robot positions
as read by the overhead vision system at NRSL for the low and high speed runs respectively. (b) and (e) shows the waypoints invoked by the robot in course of
executing the specified mission in the low and high speed cases respectively. Plates (c) and (f) illustrate the variationof the mean mission execution times with the
coefficient of dynamic deviation used fro planning in the lowand high speed cases respectively.

[4] J. Borenstein, Y. Koren, The vector field histogram-fastobstacle avoidance for mobile robots,
Robotics and Automation, IEEE Transactions on 7 (3) (2002) 278–288.
doi:10.1109/70.88137.
URL http://dx.doi.org/10.1109/70.88137

[5] T. Lozano-Perez, A simple motion-planning algorithm for general robot
manipulators, IEEE Transactions on Robotics and Automation 3 (3)
(1987) 224–238.

[6] D. A. Anisi, J. Hamberg, X. Hu, Nearly time-optimal pathsfor a ground
vehicle, Journal of Control Theory and Applications.

[7] J. Barraquand, B. Langlois, J.-C. Latombe, Robot motionplanning with
many degrees of freedom and dynamic constraints, MIT Press,Cam-
bridge, MA, USA, 1990.

[8] J. Langelaan, Tree-based trajectory planning to exploit atmospheric en-
ergy, in: American Control Conference, 2008, 2008, pp. 2328–2333.
doi:10.1109/ACC.2008.4586839.

[9] S. Lahouar, E. Ottaviano, S. Zeghoul, L. Romdhane, M. Cecca-
relli, Collision free path-planning for cable-driven parallel robots,
Robotics and Autonomous Systems 57 (11) (2009) 1083 – 1093.
doi:DOI:10.1016/j.robot.2009.07.006.

[10] L. M. Ortega, A. J. Rueda, F. R. Feito, A solution to the
path planning problem using angle preprocessing, Robotics
and Autonomous Systems In Press, Corrected Proof (2009) –.

doi:DOI:10.1016/j.robot.2009.07.028.
[11] J. R. Andrews, N. Hogan, Impedance Control as a Framework for Im-

plementing Obstacle Avoidance in a Manipulator, ASME, Boston, MA,
1983, pp. 243–251.

[12] O. Khatib, Real-time obstacle avoidance for manipulators and mobile
robots, in: IEEE International Conference on Robotics and Automation,
Vol. 2, St. Louis, MI, 1985, pp. 500–505.

[13] B. H. Krogh, A generalized potential field approach to obstacle avoid-
ance control, in: International Robotics Research Conference, Bethlehem,
1984.

[14] M. Kumar, D. Garg, R. Zachery, Multiple mobile agents control via artifi-
cial potential functions and random motion, in: Proceedings of the ASME
International Mechanical Engineering Congress and Exposition, ASME,
Seattle, WA, 2007.doi:PaperNo.IMECE2007-41521.

[15] S. Sarkar, E. Halland, M. Kumar, Mobile robot path plan-
ning using support vector machines, in: ASME Dynamic Sys-
tems and Control Conference, ASME, Ann Arbor, Michigan, 2008.
doi:PaperNo.DSCC2008-2200.

[16] J. Borenstein, Y. Koren, Potential field methods and their inherent lim-
itations for mobile robot navigation, in: Proceedings of the 1991 IEEE
International Conference on Robotics and Automation, 1991, pp. 1398–
1404.

25

http://dx.doi.org/10.1109/70.88137
http://dx.doi.org/10.1109/70.88137
http://dx.doi.org/10.1109/70.88137
http://dx.doi.org/10.1109/ACC.2008.4586839
http://dx.doi.org/DOI: 10.1016/j.robot.2009.07.006
http://dx.doi.org/DOI: 10.1016/j.robot.2009.07.028
http://dx.doi.org/Paper No. IMECE2007-41521
http://dx.doi.org/Paper No. DSCC2008-2200

[17] R. Tilove, Local obstacle avoidance for mobile robots based on the
method of artificial potentials, Robotics and Automation, 1990. Pro-
ceedings., 1990 IEEE International Conference on (1990) 566–571
vol.1doi:10.1109/ROBOT.1990.126041.

[18] I. Chattopadhyay, G. Mallapragada, A. Ray,ν⋆ : a robot path planning
algorithm based on renormalized measure of probabilistic regular lan-
guages, International Journal of Control 82 (5) (2008) 849–867.

[19] I. Chattopadhyay, A. Ray, Renormalized measure of regular languages,
Int. J. Control 79 (9) (2006) 1107–1117.

[20] I. Chattopadhyay, A. Ray, Language-measure-theoretic optimal control of
probabilistic finite-state systems, Int. J. Control.

[21] J. M. O’kane, B. Tovar, P. Cheng, S. M. Lavalle, Algorithms for plan-
ning under uncertainty in prediction and sensing, in: Chapter 18 in Au-
tonomous Mobile Robots: Sensing, Control, Decision-Making, and Ap-
plications, Marcel Dekker, 2005, pp. 501–547.

[22] T. Lozano-Perez, M. T. Mason, R. H. Taylor, Automatic
Synthesis of Fine-Motion Strategies for Robots, The Inter-
national Journal of Robotics Research 3 (1) (1984) 3–24.
doi:10.1177/027836498400300101.

[23] A. Lazanas, J. Latombe, Landmark-based robot navigation, Vol. 92,
AAAI Press, San Jose, California, 1992, pp. 816–822.

[24] T. Fraichard, R. Mermond, Path planning with uncertainty for car- like
robots, in Proc. of the IEEE Intl. conf. on Robotics & Automation (1998)
27–32.

[25] N. J. Nilsson, Principles of Artificial Intelligence, Tioga, 1980.
[26] H. Takeda, J.-C. Latombe, Sensory uncertainty field formobile robot nav-

igation, in Proc. of the IEEE Intl. conf. on Robotics & Automation (1992)
2465–2472.

[27] P. E. Trahanias, Y. Komninos, Robot motion planning: Multi- sensory
uncertainty fields enhanced with obstacle avoidance, in: Proc. of the
IEEE/RSJ Intl. conf. on Intelligent Robots and Systems, 1996.

[28] N. A. Vlassis, P. Tsanakas, A sensory uncertainty field model for un-
known and non-stationary mobile robot environments, in: Proceedings of
the IEEE Intl. conf. on Robotics & Automation, 1998.

[29] N. Roy, S. Thrun, Coastal navigation with mobile robots, in: Advances in
Neural Information Processing, Systems (NIPS, 1999.

[30] R. Alami, T. Simeon, Planning robust motion strategiesfor a mobile
robot, in: Proc. of the IEEE Intl. conf. on Robotics & Automation, 1994.

[31] B. Bouilly, T. Simeon, R. Alami, A numerical technique for plan- ning
motion strategies of a mobile robot in presence of uncertainty, in: Proc.
of the IEEE Intl. conf. on Robotics & Automation, 1995.

[32] M. Khatib, B. Bouilly, T. Simeon, R. Chatila, Indoor navigation with un-
certainty using sensor-based motions, in Proc. of the IEEE Intl. conf. on
Robotics & Automation 4 (1997) 3379–3384.

[33] J. Barraquand, P. Ferbach, Motion planning with uncertainty: The infor-
mation space approach, in: Proc. of the IEEE Intl. conf. on Robotics &

Automation, 1995.
[34] L. A. Page, A. C. Sanderson, Robot motion planning for sensor-based

control with uncertainties, Vol. 2, Nagoya, Japan, 1995, pp. 1333–1340.
[35] L. Blackmore, H. Li, B. Williams, A probabilistic approach to optimal ro-

bust path planning with obstacles, in: Proceedings of the AIAA Guidance,
Navigation and Control ConferenceNavigation and Control Conference,
2006.

[36] L. Blackmore, A probabilistic particle control approach to optimal, robust
predictive control, in: Proceedings of the AIAA Guidance, Navigation
and Control ConferenceNavigation and Control Conference,2006.

[37] A. Lambert, N. L. Fort-Piat, Safe task planning integrating uncertainties
and local maps federations, International Journal of Robotics Research,
volume 19 (2000) 597–611.

[38] A. Lambert, D. Gruyer, Safe path planning in an uncertain-configuration
space, in: Robotics and Automation, 2003. Proceedings. ICRA ’03.
IEEE International Conference on, Vol. 3, 2003, pp. 4185–4190.
doi:10.1109/ROBOT.2003.1242246.

[39] J. P. Gonzalez, A. T. Stentz, Planning with uncertaintyin position: An
optimal and efficient planner, in Proc. of the IEEE/RSJ Intl.conf. on In-
telligent Robots and Systems (2005) 2435–2442.

[40] J. P. Gonzalez, A. Stentz, Planning with uncertainty inposition using
high-resolution maps, in: Proc, of the IEEE Intl. conf. on Robotics &
Automation, Rome, Italy, 2007.

[41] R. Alterovitz, T. Siméon, K. Y. Goldberg, The stochastic motion roadmap:
A sampling framework for planning with markov motion uncertainty, in:

Robotics: Science and Systems, 2007.
[42] P. Singla, T. Singh, A novel coordinate transformationfor obstacle avoid-

ance and optimal trajectory planning, in: 2008 AAS/AIAA Astrodynam-
ics Specialist Conference and Exhibit, 2008.

[43] A. Ray, Signed real measure of regular languages for discrete-event su-
pervisory control, Int. J. Control 78 (12) (2005) 949–967.

[44] V. Garg, An algebraic approach to modeling probabilistic discrete event
systems, Proceedings of 1992 IEEE Conference on Decision and Control
(Tucson, AZ, December 1992) 2348–2353.

[45] V. Garg, Probabilistic lnaguages for modeling of DEDs,Proceedings
of 1992 IEEE Conference on Information and Sciences (Princeton, NJ,
March 1992) 198–203.

[46] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw Hill, New York,
1988.

[47] I. Chattopadhyay, Quantitative control of probabilistic discrete event sys-
tems, PhD Dissertation, Dept. of Mech. Engg. Pennsylvania State Univer-
sity, http:// etda.libraries.psu.edu / theses / approved /WorldWideIndex /
ETD-1443.

[48] I. Chattopadhyay, A. Ray, Optimal control of infinite horizon partially ob-
servable decision processes modeled as generatorsof probabilistic regular
languages, International Journal of Control In Press.

26

http://dx.doi.org/10.1109/ROBOT.1990.126041
http://dx.doi.org/10.1177/027836498400300101
http://dx.doi.org/10.1109/ROBOT.2003.1242246

	1 Introduction & Motivation
	1.1 Potential Field-based Planning Methodology
	1.2 The bold0mu mumu Planning Algorithm
	1.3 Focus of Current Work & Key Contributions

	2 Preliminaries: Language Measure-theoretic Optimization Of Probabilistic Automata
	2.1 Event-driven Supervision of PFSA
	2.2 Optimal Supervision Problem
	2.3 Problem Formulation: A PFSA Model of Autonomous Navigation
	2.4 Decision-theoretic Optimization of PFSA
	2.5 Optimal Tradeoff between Computed Path Length & Availability Of Alternate Routes

	3 Generalizing The Navigation Automaton To Accommodate Uncertain Execution
	3.1 The Modified Navigation Automaton

	4 Optimal Planning Via Decision Optimization Under Dynamic Effects
	4.1 Recursive Problem Decomposition For Maxima Elimination
	4.2 Plan Assembly & Execution Approach

	5 Computation of Amortized Uncertainty Parameters
	6 Summarizing bold0mu mumu Planning & Subsequent Execution
	7 Verification & Validation
	7.1 Simulation Results for Circular Robots
	7.2 Simulation Results for Non-symmetric Uncertainty
	7.3 Simulation Results for Rectangular Robots
	7.4 Simulation Results for Mazes
	7.5 Experimental Runs on SEGWAY RMP 200

	8 Summary & Future Research
	8.1 Future Work

