
Towards Quality of Service and Resource Aware Robotic Systems
through Model-Driven Software Development

Andreas Steck and Christian Schlegel
University of Applied Sciences Ulm

Department of Computer Science, Prittwitzstr. 10, 89075 Ulm, Germany
email: {steck, schlegel}@hs-ulm.de

Abstract— Engineering the software development process in
robotics is one of the basic necessities towards industrial-
strength service robotic systems. A major challenge is to make
the step from code-driven to model-driven systems. This is
essential to replace hand-crafted single-unit systems by systems
composed out of components with explicitly stated proper-
ties. Furthermore, this fosters reuse by separating robotics
knowledge from short-cycled implementational technologies.
Altogether, this is one but important step towards “able” robots.

This paper reports on a model-driven development process
for robotic systems. The process consists of a robotics meta-
model with first explications of non-functional properties. A
model-driven toolchain based on Eclipse provides the model
transformation and code generation steps. It also provides
design time analysis of resource parameters (e.g. schedulability
analysis of realtime tasks) as a first step towards overall
resource awareness in the development of integrated robotic
systems. The overall approach is underpinned by several real
world scenarios.

I. INTRODUCTION

Nowadays, implementing complete robotic systems is still
more of an art than a systematic engineering process. Inte-
grating the various libraries currently is more like plumbing.
Essential properties are mostly hidden in the software struc-
tures. In particular, non-functional properties and Quality of
Service (QoS) parameters are not explicated. Although, these
non-functional properties are considered being mandatory
for embodied and deployed robots in real world, they are
not yet addressed in a systematic way in most robotics
software development processes. Thus, these properties can-
not be taken into account during the design process, the
system deployment and the dynamically changing runtime
configurations.

The relevance of non-functional properties and QoS pa-
rameters arises from at least two observations of real world
operation: (i) some components have to guarantee QoS (e.g.
adequate response times to ensure collision avoidance), (ii)
the huge number of different behaviors needed to handle
real world contingencies (behaviors cannot all run at the
same time and one depends on situation and context aware
configuration management and resource assignment). Instead
of allocating all resources statically, the system should dy-
namically adapt itself. Thereby, appropriate QoS parameters
and resource information are to be taken into account.

For example, if the current processor load does not allow
to run the navigation component at the highest quality

level, the component should switch to a lower quality level,
resulting in a reduced navigation velocity, but still ensuring
safe navigation.

II. MOTIVATION

Service robots are expected to fulfill a whole variety
of tasks under very different conditions. We need various
components providing the desired capabilities to build a
full-fledged robotic system. Even the software components
should be COTS components to foster reuse and ensure ma-
turity and robustness. This kind of composability inevitably
depends on assured services with explicated QoS parameters
and required resources. That is even more important in
service robotics where resources are strictly limited. Nev-
ertheless, these are per se not explicated and are thus not
accessible in most service robotic systems.

The desired approach should compose systems out of
building blocks with assured services, both enriched with
QoS parameters and resource information.

This would, for example, allow to perform realtime
schedulability analysis, performance analysis and would also
allow to check whether response times of services can be
guaranteed. Furthermore, this allows to check whether the
desired mapping of components to processors and commu-
nication busses provides enough computational and memory
resources and bandwidth.

Depending on the executed task and the current state of the
environment, the component interactions and configurations
are different. Therefore, we cannot simply design a robotic
software system as static system by considering only a small
number of different configurations. In fact, we depend on
dynamic system configurations at runtime. That also requires
to take resource limitations into account.

Therefore, resource awareness will be mandatory in
robotics at all phases of design, development, deployment
and even at runtime.

As a consequence, one should establish a development
process which can cope with QoS parameters and resource
information at all development phases of the entire system.
Essential for such a process is to describe the system in
an abstract formal representation. Model-driven engineering
(MDE) is the only known approach to make these relevant
parameters explicit and accessible. Models abstract from un-
necessary details and give the developers a domain-specific

ar
X

iv
:1

00
9.

48
77

v1
 [

cs
.R

O
]

 2
4

Se
p

20
10

view on the system [1].
Another significant benefit of model-driven software devel-

opment is the decrease of development time and effort while
increasing flexibility, reuse and the overall system quality.
Design patterns, best practices and approved solutions can
be made available within the code generators such that even
novices can immediately take advantage from that coded
and immense experience. A demanding challenge in making
the step from code-driven to model-driven systems is the
definition of an appropriate meta-model.

III. RELATED WORK

Driven by the avionics and automotive industries, dis-
tributed realtime and embedded (DRE) systems denote an
established research community, which already deals with
questions relevant in robotics as well.

For example, the Artist2 Network of Excellence on Em-
bedded Systems Design [2] addresses highly relevant topics
concerning realtime components and realtime execution plat-
forms. Furthermore, many symposia and conferences directly
tackle the problem of component architectures for embedded
systems and service oriented architectures in embedded sys-
tems [3].

The automotive industry is trying to establish the AU-
TOSAR standard [4] for software components and model-
driven design of such components. AUTOSAR will provide
a software infrastructure for automotive systems, based on
standardized interfaces. Related to AUTOSAR, the ongo-
ing RT-Describe project [5] addresses resource aspects. To
adapt the system during runtime, RT-Describe relies on
self-description of the components. Software components
shall be enabled to autonomously reconfigure themselves,
for example, by deactivating functions that are currently not
needed. RT-Describe models are based on UML [6], SysML
[7] and MARTE [8].

The OMG MARTE [8] activity provides a standard for
modeling and analysis of realtime and embedded systems.
They provide a huge number of non-functional proper-
ties (NFPs) to describe both, the internals and externals
of the system. Mappings to analysis models (CHEDDAR,
RapidRMA) are available1 to perform scheduling analysis of
MARTE models. This part of the MARTE profile is of interest
to the robotics community.

The major differences that arise in robotics compared to
other domains are not the huge number of different sensors
and actuators or the various hardware platforms. Instead, the
differences are the context and situation dependant reconfigu-
rations of interactions and a prioritized assignment of limited
resources to activities even at runtime – again depending
on context and situation. Thus, mastering the huge amount
of different configurations in robotic systems is far more
complex than in common DRE systems or cars.

Robotic frameworks [9], like Player/Stage [10], ROS [11]
and MSRS [12] are widely in use and many of them offer a
rich support for common robotic hardware. All posses design

1http://www.omgmarte.org/Tools.htm

tools, ranging from simple ones up to complex ones like
visual programming in Microsoft Robotics Developer Studio
[12]. The same holds true for middleware systems. The
OMG Data Distribution Service for Realtime Systems (DDS)
[13] standard provides the concepts of a publish-subscribe
middleware structure with several integrated QoS parameters.
These tools and libraries coexist, without any chance of
interoperability. Each tool and framework has attributes that
favors its use. They all do not make the step towards MDSD.
However, only this step provides the semantics to become
independent of specifics of equally suitable, but not easily
replaceable, frameworks. The essential benefit would be to
finally enable productive use of all those codebases due to a
MDE approach.

An introduction into robotics component-based software
engineering (CBSE) can be found in [14], [15]. Several
important design principles and implementation guidelines
that enable the development of reusable and maintainable
software building-blocks are motivated in detail.

Within the robotics community, a model-based approach
is meanwhile considered valuable and the interest of frame-
work developers becomes focused on model-driven software
development (MDSD).

The BRICS project specifically aims at exploiting MDE
as enabling approach to reducing the development effort of
engineering robotic systems by making best practice robotic
solutions more easily reusable. They plan to create a BRICS
Integrated Development Environment, which will be based
on Eclipse and will provide the robotics community with an
MDE toolchain. [16]

The OROCOS [17] project conforms very well to our
ideas. They currently work on the integration of their
framework into a model-driven toolchain. Their focus is on
hard realtime motion control applications. OROCOS provides
hotspots to be filled in by the component developer.

GenoM3 [18] proposes scripting mechanisms to bind
component skeleton templates. This does not reach the
abstraction level of meta-models and severely restricts the
application architecture to the given narrow template struc-
ture.

The OMG Robotics Domain Task Force [19] develops a
standard to integrate robotic systems out of modular compo-
nents. As in our work the components comprise an internal
state automaton and interact via service ports. However,
these ports are defined in a very generic way. The concept
of execution contexts decouple the business logic from the
thread of control. During the deployment the user has to
assign appropriate execution contexts to the components.
In our approach the user does not necessarily need any
knowledge about the internal structure of the components
during deployment. But as the elements and parameters
are made explicit they can be accessed by analysis tools,
for example. Unfortunately the reference implementation
(OpenRTM) requires user-code to directly interact with the
PSI-level even for core model parts, like communication. The
user-code gets far to strong bound to middleware (CORBA)
specifics.

An interesting approach which is similar to our work
is presented in [20]. The 3-View Component Meta-Model
(V3CMM) comprises three complementary views (structural
view, coordination view and algorithmic view) to model
component-based systems independent of the execution plat-
form. V3CMM encourages describing the component’s algo-
rithms (as an inherent part of the systems model) in a manner
which is similar to UML activity diagrams. In comparison
to that, we model the component hull “only”. Inside of our
components, the developers can integrate their algorithms
and libraries (OpenCV, Qt, OpenRAVE, etc.) without any
restrictions. In V3CMM the components interact by calling
the mutually provided interface operations. In our meta-
model we provide strictly enforced interaction patterns to
decouple the sphere of influence and thus partition the
overall complexity of the system. This ensures reusability
and interchangeability of the components.

It is worth highlighting that we focus on defining an
abstract meta-model ensuring the modeling and analysis
of robotic systems. Hence, we extend our current compo-
nent model iteratively and express it in an abstract way
(SMARTMARS meta-model) underpinned by different but
replaceable implementational technologies.

IV. MODEL-DRIVEN SOFTWARE DEVELOPMENT FOR
ROBOTIC SYSTEMS

Crucial to make the step from code-driven to model-
driven engineering is to define a meta-model and a matured
model-driven software development process which considers
the properties explicated in the models. The challenge is
to identify appropriate levels of abstraction and to handle
the properties, attached to the elements of the model, in
these different levels. As a result of our work, we propose a
development process and a meta-model for robotic systems.

A. The Development Process

The development process (fig. 1) aims not to exhaustively
model a robotic system at all views such that afterwards
one has just to push the button of a toolchain and to await
the executables. We are convinced that this will remain
unrealistic. However, there is already a huge benefit if such a
process can help to master the complexity of our systems and
in particular, allows to manage and explicate non-functional
properties. Starting with an idea, the model will be enriched
during development time until it finally gets executable in
form of deployed software components.

The major steps are, firstly, to describe the system in
a model-based representation (platform independet model -
PIM) which is independent of the underlying framework,
middleware structures, operating system and programming
language. In this design phase, several system properties are
either unknown or only known as requirements.

The second step is to transform the PIM into a platform
specific model (PSM). After model checks, the platform
independent elements are transformed into the appropriate el-
ements of the platform specific meta-model. These elements
represent the characteristics of the underlying environment

<<PIM−element>>

isPeriodic : true
priority : unknown
period : 1000 ms
wcet : 100 ms (requirement)

<<PIM−element>>
SmartTask

isRealtime : true

SmartComponent

 RS232 : unknown
required devices :

port connected to:
 unknown

platform :
 Linux (RTAI)

 RS232 : unknown
required devices :

platform :

 IP: 192.168.100.2
 CPU: Intel P8700
 Linux (RTAI)

 RS232 : /dev/ttyS2
required devices :

SmartComponent

isPeriodic : true

period : 1000 ms

RTAITask

<<PSM−element>>

<<PSM−element>>

wcet : 85 ms (measurement)

priority : 7 (accorrding to RMS)

port connected to:
 AnotherComponent
 (default)

SmartComponent
<<Sourcecode / Binary>>

Toolchain

port connections
change dynamically
during runtime
depending on the
current situation
(dynamic wiring)

User

isPeriodic : true
priority : unknown
period : 1000 ms

RTAITask

wcet : 80 ms (estimation)

<<PSM−element>>

<<PSM−element>>

SmartComponent

port connected to:
 unknown

PDM
PSM

PSI

PSM

PSI

Id
e

a
P

IM
P

S
M

 /
 P

S
I

D
e

p
lo

y
m

e
n

t
R

u
n

ti
m

e

D
e

v
e

lo
p

m
e

n
t

P
ro

c
e

s
s

Idea / Requirement

Fig. 1. The development process at-a-glance.

(middleware structures, operating system, framework, etc.).
The PSM is enriched with properties which are known due
to the knowledge about the platform specific characteristics.
However, some parameters can still be unknown and are
added not until the deployment of the component. Further-
more, the PSM is transformed into the platform specific
implementation (PSI). The developers add their algorithms
and libraries (user-code) with the guidance of the toolchain.
The user code is protected from modifications made by the
code generator due to the generation gap pattern [21] which
is based on inheritance.

The third step is to deploy the components to the dif-
ferent platforms of the robotic system. The capabilities and
characteristics of the target platforms are defined by the
platform description model (PDM). In this phase, the model
is enriched by the knowledge about the target platforms.
Further model checkings are performed to verify the con-
straints attached to the components against the capabilities
of the system (e.g. is executable only on a certain type of
hardware, needs one serial port, etc.). The QoS parameters of
the interaction patterns, for example, can be cross-checked
whether they can be satisfied. Furthermore, special analysis
models can be generated out of the deployment model. These
special models can be used to perform realtime schedulability
analysis, for example.

The fourth step is to run the system according to the
deployment model. Certain properties can still be unknown
and will be reasoned during runtime. Additionally, the wiring
between the components can change during runtime depend-
ing on the current situation of the robot. Even if it would
be possible to calculate the required resources for a worst-
case and rare-event situation in advance, it would not be

0..* 0..*
0..*

0..*

0..*

1..*
0..*

0..*

1..*

0..*

0..*

<<metaelement>>

SmartTimer

<<metaelement>>

SmartMutex

<<metaelement>>

SmartConditionMutex

<<metaelement>> <<metaelement>>

SmartTask SmartIniParameterGroup
<<metaelement>>

SmartInteractionPattern
<<metaelement>>

SmartSubState
<<metaelement>>

SmartMainState
<<metaelement>>

...
<<metaelement>>

SmartComponent
<<metaelement>>

SmartSemaphore

Fig. 2. Excerpt of the SMARTMARS meta-model.

TABLE I
THE SET OF INTERACTION PATTERNS.

Pattern Relationship Communication Mode
send client/server one-way communication
query client/server two-way request
push newest publisher/subscriber 1-to-n distribution
push timed publisher/subscriber 1-to-n distribution
event client/server asynchronous notification
state master/slave activate/deactivate component

services
wiring master/slave dynamic component wiring

possible and efficient to provide these resources on a standard
service robot. Dynamic adaptions and resource awareness
are mandatory to be able to fulfill a variety of different tasks
even with limited overall resources.

Absolutely essential for the development process is the
definition of an abstract meta-model to describe robotic
systems independently of the implementational technology.

B. The SMARTMARS meta-model

As a promising starting point to define the meta-model,
we adapt and adopt well-established concepts of the SMART-
SOFT framework [22], which has been continuously extended
and used in building robotic systems for more than a
decade now. The SMARTSOFT concepts are independent of
the implementation technology and scale from 8-bit micro-
controllers up to large scale systems [23]. Two reference
implementations are available on sourceforge [24]. The first
implementation is based on CORBA and the second one on
ACE [25] only.

Consequently, we propose SMARTMARS (Modeling and
Analysis of Robotic Systems) (fig. 2) as an abstract
meta-model, which addresses modeling and analysis of
robotic systems. The basic concept behind the meta-model
are loosely coupled components offering/requiring services.
These services are based on strictly enforced interaction
patterns (table I) that transmit communication objects [22]
[26]. They provide a precisely defined semantics and describe
the outer view of a component, independent of its internal
implementation. The patterns decouple the sphere of influ-
ence and thus partition the overall complexity of the system.
Internal characteristics can never span across components.
The interaction patterns provide stable interfaces towards
the user code inside of the component and towards the
other components independent of the underlying middleware

isRealtime
== true

isRealtime
== false

isPeriodic
== true

SchedPolicyKind
<<enumeration>>

FIFO
round−robin
sporadic

<<metaelement>>
SmartCorbaTask

schedPolicy : SchedPolicyKind

SmartCorbaTimer
<<metaelement>>

<<metaelement>>
SmartCorbaCondMutex

SmartCorbaMutex
<<metaelement>>

timer [0..1]

condMutex [0..1]

mutex [1]

schedPolicy : SchedPolicyKind
isRealtime : Boolean
isPeriodic : Boolean
priority : Integer

SmartTask
<<metaelement>>

timeUnit : TimeUnitType
period : Integer
wcet : Integer

isPeriodic : Boolean
priority : Integer
period : Integer

schedPolicy : SchedPolicyKind
RTAITask

<<metaelement>>

isPeriodic : Boolean
priority : Integer
period : Integer
wcet : Integer

period : Integer

PIM

PSM

Fig. 3. The transformation of the PIM and the PSM by means of the
SmartTask metaelement.

structure (fig. 4). The interfaces can be used in completely
different access modalities as they are not only forwarding
method calls but are standalone entities. The query pattern,
for example, provides both, synchronous and asynchronous
access modalities at the client side and a handler based
interface at the server side. Interaction patterns are annotated
with QoS parameters (e.g. cycle times for push timed pattern,
timeouts for query and event pattern). Dynamic reconfigura-
tion of the components at runtime is supported by a param
port to send name-value pairs to the components, a state
port to activate/deactivate component services and dynamic
wiring to change the connections between the components.

The state pattern is used by a component to manage
transitions between service activations, to support house-
keeping activities (entry/exit actions) and to hide details of
private state relationships (appears as stateless interface to
the outside).

Dynamic wiring is the basis for making both, the control
flow and the data flow configurable. This is required for sit-
uated and task dependent composition of skills to behaviors.

The wiring pattern supports dynamic wiring of services
from outside (and inside) a component by exposing service
requestors of a component as ports. The wiring pattern
allows to connect service requestors to service providers
dynamically at run time. A service requestor is connected
only to a compatible service provider (same pattern and
communication object). Disconnecting a service requestor
automatically performs all housekeeping activities inside a
communication pattern to sort out not yet answered and
pending calls, for example, by iterating through the affected
state automatons (inside interaction patterns) and thus prop-
erly unblocking method calls that otherwise would never
return. For example, the wiring mechanism already properly
sorts out effects of a server being destroyed while clients are
in the process of connecting to it. Of course, this relieves a
component builder from a huge source of potential pitfalls.

SMARTMARS covers two different views: (i) it is a
completely abstract meta-model for modeling and analysis
of robotic systems and (ii) it is a concrete reference imple-
mentation implemented as an UML profile.

<<Component>>

Neutral Fatal

<<Component>>

Neutral Neutral FatalFatal

Fatal

Neutral Fatal

Alive

Alive Alive Alive

Alive

<<Component>>

Neutral

<<Component>>

Send

Query

Wiring

etc.Event

User Space

User Space

meta−information for user−code
e.g. platform constraints
 −> runs only on QNX
 −> runs only on RTAI−Linux

Send

Query

Wiring

etc.Event

PSM

Send

Query

Wiring

etc.Event

PIM

User Space

User Space

Send

Query

Wiring

etc.Event

User Space

User Space

User Space

User Space

Send

Query

Wiring

etc.

User Space

Event

User Space

Threads / Mutex / Timer

Threads / Mutex / Timer
Interface Execution Environment

Threads / Mutex / Timer
Interface Execution EnvironmentInterface Execution Environment

Threads / Mutex / Timer

Interface Execution Environment

stable interface towards

stable interface towards user−code

other components

internal implementation of the
component hull is generated
depending on the parameters

...

Push

Push PushPush

Push

Middleware OS

Windows QNX

...
LinuxLinuxCORBA ACE

interoperable
ACE ACE

Fig. 4. Left: Refinement steps of component development. Right: Our robot Kate.

V. THE SMARTSOFT MDSD TOOLCHAIN

As proof of concepts and to gain more experience on how
to further investigate on the development of SMARTMARS,
we designed, implemented and provided the SMARTSOFT
MDSD TOOLCHAIN [24] which is based on the Eclipse
Modeling Project [27].

A. Mapping of Abstract Concepts

Fig. 3 shows the transformation of the PIM and the
PSM by the example of the SmartTask metaelement and the
CORBA based PSM. The SmartTask (PIM) comprises several
parameters which are necessary to describe the task behavior
and its characteristics independent of the implementation.

Depending on the isRealtime attribute and the ca-
pabilities of the target platform (PDM) the SmartTask is
either mapped onto a RTAITask or a non-realtime SmartCor-
baTask. If hard realtime capabilities are required and are
not offered by the target platform, the toolchain reports this
missing property. To perform realtime schedulability tests,
the attributes (wcet, period) of the RTAITasks can be
forwarded to appropriate analysis tools.

In case the attributes specify a non-realtime,
periodic SmartTask, the toolchain extends the PSM by
the elements needed to emulate periodic tasks (as this feature
is not covered by standard tasks).

In each case the user integrates his algorithms and libraries
into the stable interface provided by the SmartTask (user
view) independent of the hidden internal mapping of the
SmartTask (generated code).

B. Development of Components

The major steps to develop a SMARTSOFT component are
depicted in figure 4 on the left. The component developer
models the component in a platform independent represen-
tation using the SMARTMARS UML profile. He focuses on
the component hull, which comprises, for example, service
ports and tasks – without any implementation details in mind
(fig. 5). Pushing the button, the toolchain verifies the model
(oAW check), transforms it into an appropriate PSM (oAW
xTend) and generates the PSI (oAW xPand). Accordingly,
the developer integrates his algorithms and libraries without

Fig. 5. Model of the SmartPlayerStageSimulator component modeled with
the SMARTSOFT MDSD TOOLCHAIN

Fig. 6. The service port regularly provides a base state (pose, velocity etc.)
by means of the push timed pattern.

any restrictions, but with the guidance of the toolchain (oAW
recipes). The oAW recipes assist, for example, the handling
and usage of the interaction patterns in the user part of the
source code. Tags are used to indicate user code constraints
(e.g. runs only on RTAI-Linux) and need to be set in the
model by the user.

Fig. 6 illustrates how existing libraries are easily integrated
into the user space of the component hull and how the glue
logic looks like to link existing libraries (or code generated
by other tools) to the generated component hull.

C. Deployment of Components

To create a system deployment the developer imports the
components needed for the scenario into the deployment
model. He maps the components onto the desired target
platform and defines, for example, the initial wiring between
the components.

NavTask

SmartRobotConsole

cdlGoalEventClient

cdlParameterClient

cdlStateClient

plannerEventClient

plannerParameterClient

plannerStateClient

mapperParameterClient

mapperStateClient

SmartCdlServer

navVelSendClient

laserClient

plannerClient

 goalEventServer

 paramServer

 stateServer

SmartPlannerBreadthFirstSearch

baseClient

curMapClient

 plannerGoalServer

 stateServer

 paramServer

 plannerEventServer

SmartPioneerBaseServer

 navigationVelocityServer

 basePositionServer

SmartLaserServer

 laserServer
baseClient

SmartMapperGridMap

laserClient curPushServer

 paramServer

 stateServer

NamingService

cdlTask
period: 100ms

device: RS232

baseTask
period: 100ms

device: RS422

laserTask
period: 25ms

pushTimed
cycle: 100ms

resolution: 50

map_size_x: 60000
map_size_y: 40000
cell_size: 50

target
ip: 192.168.0.1
username: zafh

Fig. 7. Deployment diagram of a navigation task. Switching to simulation
is done by replacing services (e.g. the Player/Stage component provides ser-
vices of P3DX and LRF). Ellipses show selected non-functional properties
defined in the models.

VI. EXAMPLE

The model-driven toolchain has been used to build numer-
ous robotic components (navigation, manipulation, speech,
person detection and recognition, simulators) reusing many
already existing libraries within the component hulls (Open-
RAVE, Player/Stage, GMapping, MRPT, Loquendo, Veri-
Look, OpenCV, etc.). These components are reused in
different arrangements (fig. 7) to implement, for exam-
ple, Robocup@Home scenarios (Follow Me, Shopping Mall,
Who-is-Who).

The non-functional properties specified in the different
modeling levels enable analysis of resource usage and veri-
fication of resource constraints. Hard realtime schedulability
analysis, for example, is performed by a model-to-model
transformation from a deployment model into a CHEDDAR
[28] specific analysis model.

VII. CONCLUSION AND FUTURE WORK

The proposed development process and meta-model allows
the explication, management and analysis of non-functional
properties. We made those parameters accessible during
development and deployment to check for guarantees and
resource awareness in a systematic way. The next steps are
to extend the SMARTMARS meta-model and to further make
use of it for analysis, verification and simulation at design-
time as well as at run-time.

VIII. ACKNOWLEDGMENTS

This work has been conducted within the ZAFH Service-
robotik (http://www.servicerobotik.de/). The authors grate-
fully acknowledge the research grants of state of Baden-
Württemberg and the European Union.

We thank Dennis Stampfer for his extraordinary support
in implementing the SMARTSOFT MDSD TOOLCHAIN.

REFERENCES

[1] J. Bézivin, R. F. Paige, U. As̈mann, B. Rumpe, and D. C. Schmidt,
“Perspectives Workshop: Model Engineering of Complex Systems
(MECS),” Dagstuhl Seminar Proceedings, 2008. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2008/1604

[2] ARTIST, “Network of excellence on embedded system design,” 2010,
http://www.artist-embedded.org/, visited on June 15th 2010.

[3] ISORC09, “12th IEEE Int. Symp. on Object/Component/Service-
Oriented Real-Time Distributed Computing,” 2009, http://www.dcl.
info.waseda.ac.jp/isorc2009/, visited on June 15th 2010.

[4] AUTOSAR, “Automotive open system architecture,” 2010, http://
www.autosar.org/, visited on June 15th 2010.

[5] RT-Describe, “Iterative Design Process for Self-Describing Real Time
Embedded Software Components,” 2010, http://www.esk.fraunhofer.
de/EN/press/pm0911RTDescribe.jsp, visited on June 15th 2010.

[6] OMG UML, “Unified Modeling Language (UML) Superstructure
specification v2.2, formal/09-02-02,” February 2009.

[7] OMG SysML, “OMG Systems Modeling Language (SysML) specifi-
cation v1.1, formal/2008-11-02,” November 2008.

[8] OMG MARTE, “A UML Profile for MARTE: Modeling and Analysis
of Real-Time Embedded systems, Beta 2, ptc/2008-06-08,” June 2008.

[9] Robot Standards and Reference Architectures (RoSTa), “Coordination
Action funded under the European Unions Sixth Framework
Programme (FP6),” February 2010. [Online]. Available: http:
//wiki.robot-standards.org/index.php/Middleware

[10] B. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project:
Tools for multi-robot and distributed sensor systems,” in Proc. of the
11th Int. Conf. on Advanced Robotics (ICAR), Coimbra, Portugal, June
2003, pp. 317–323.

[11] ROS, “Robot operating system,” 2010, http://www.ros.org/, visited on
June 15th 2010.

[12] Microsoft, “Microsoft Robotics Developer Studio,” 2010, http://msdn.
microsoft.com/en-us/robotics/default.aspx, visited on June 15th 2010.

[13] OMG DDS, “Data Distribution Service for Real-time Systems (DDS)
v1.2, formal/2007-01-01,” January 2007.

[14] D. Brugali and P. Scandurra, “Component-Based Robotic Engineering
(Part I),” IEEE Robotics & Automation Magazine, vol. 16, no. 4, pp.
84–96, Dezember 2009.

[15] D. Brugali and A. Shakhimardanov, “Component-Based Robotic En-
gineering (Part II),” IEEE Robotics & Automation Magazine, vol. 17,
no. 1, pp. 100–112, March 2010.

[16] R. Bischoff, T. Guhl, E. Prassler, W. Nowak, G. Kraetzschmar,
H. Bruyninckx, P. Soetens, M. Haegele, A. Pott, P. Breedveld,
J. Broenink, D. Brugali, and N. Tomatis, “BRICS – Best practice
in robotics,” in Proc. of the Joint 41st International Symposium on
Robotics and the 6th German Conference on Robotics, 2010, pp. 968–
975.

[17] H. Bruyninckx, P. Soetens, and B. Koninckx, “The real-time motion
control core of the Orocos project,” in Proc. of the IEEE Int. Conf.
on Robotics and Automation (ICRA), vol. 2, 2003, pp. 2766–2771.

[18] A. Mallet, C. Pasteur, M. Herrb, S. Lemaignan, and F. Ingrand,
“GenoM3: Building middleware-independent robotic components,” in
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA),
2010.

[19] OMG Robotics, “OMG Robotics Domain Task Force,” 2010, http:
//robotics.omg.org/, visited on June 15th 2010.

[20] D. Alonso, C. Vicente-Chicote, F. Ortiz, J. Pastor, and B. Álvarez,
“V3CMM: a 3-View Component Meta-Model for Model-Driven
Robotic Software Development,” Journal of Software Engineering for
Robotics, vol. 1, no. January, pp. 3–17, 2010.

[21] J. Vlissides, “Pattern Hatching – Generation Gap Pattern,” http://
researchweb.watson.ibm.com/designpatterns/pubs/gg.html, visited on
June 15th 2010.

[22] C. Schlegel, “Communication Patterns as Key Towards Component-
Based Robotics,” Int. Journal of Advanced Robotic Systems, vol. 3,
no. 1, pp. 49 – 54, 2006.

[23] C. Schlegel, T. Haßler, A. Lotz, and A. Steck, “Robotic software
systems: From code-driven to model-driven designs,” in International
Conference on Advanced Robotics (ICAR), June 2009.

[24] SmartSoft, http://smart-robotics.sf.net/, visited on June 15th 2010.
[25] D. Schmidt, “The ADAPTIVE Communication Environment,” http:

//www.cs.wustl.edu/∼schmidt/ACE.html, visited on June 15th 2010.
[26] C. Schlegel, “Navigation and execution for mobile robots in dynamic

environments – an integrated approach,” Ph.D. dissertation, Faculty of
Computer Science, University of Ulm, 2004.

[27] E. M. Project, http://www.eclipse.org/modeling/, visited on June 15th
2010.

[28] CHEDDAR, “The cheddar project,” http://beru.univ-brest.fr/
∼singhoff/cheddar/, visited on June 15th 2010.

http://www.servicerobotik.de/
http://drops.dagstuhl.de/opus/volltexte/2008/1604
http://www.artist-embedded.org/
http://www.dcl.info.waseda.ac.jp/isorc2009/
http://www.dcl.info.waseda.ac.jp/isorc2009/
http://www.autosar.org/
http://www.autosar.org/
http://www.esk.fraunhofer.de/EN/press/pm0911RTDescribe.jsp
http://www.esk.fraunhofer.de/EN/press/pm0911RTDescribe.jsp
http://wiki.robot-standards.org/index.php/Middleware
http://wiki.robot-standards.org/index.php/Middleware
http://www.ros.org/
http://msdn.microsoft.com/en-us/robotics/default.aspx
http://msdn.microsoft.com/en-us/robotics/default.aspx
http://robotics.omg.org/
http://robotics.omg.org/
http://researchweb.watson.ibm.com/designpatterns/pubs/gg.html
http://researchweb.watson.ibm.com/designpatterns/pubs/gg.html
http://smart-robotics.sf.net/
http://www.cs.wustl.edu/~schmidt/ACE.html
http://www.cs.wustl.edu/~schmidt/ACE.html
http://www.eclipse.org/modeling/
http://beru.univ-brest.fr/~singhoff/cheddar/
http://beru.univ-brest.fr/~singhoff/cheddar/

	I Introduction
	II Motivation
	III Related Work
	IV Model-Driven Software Development for Robotic Systems
	IV-A The Development Process
	IV-B The SmartMARS meta-model

	V The SmartSoft MDSD Toolchain
	V-A Mapping of Abstract Concepts
	V-B Development of Components
	V-C Deployment of Components

	VI Example
	VII Conclusion and Future Work
	VIII ACKNOWLEDGMENTS
	References

