arXiv:1009.5004v1 [cs.RO] 25 Sep 2010

On reverse-engineering the KUKA Robot Language

Henrik Miihe, Andreas Angerer, Alwin Hoffmann, and Wolfgang Reif

Abstract— Most commercial manufacturers of industrial
robots require their robots to be programmed in a proprietary
language tailored to the domain — a typical domain-specific
language (DSL). However, these languages oftentimes suffer
from shortcomings such as controller-specific design, limited
expressiveness and a lack of extensibility. For that reason, we
developed the extensible Robotics API for programming indus-
trial robots on top of a general-purpose language. Although be-
ing a very flexible approach to programming industrial robots,
a fully-fledged language can be too complex for simple tasks.
Additionally, legacy support for code written in the original
DSL has to be maintained. For these reasons, we present a
lightweight implementation of a typical robotic DSL, the KUKA
Robot Language (KRL), on top of our Robotics APIL. This work
deals with the challenges in reverse-engineering the language
and mapping its specifics to the Robotics API. We introduce
two different approaches of interpreting and executing KRL
programs: tree-based and bytecode-based interpretation.

I. INTRODUCTION

For programming industrial robots, Biggs and MacDonald
distinguish between two major principles: automatic and
manual programming [1]. While automatic programming
often uses programming-by-demonstration, manual program-
ming is by far the most common technique; the developer
has to explicitly specify the desired behavior of the robot
in a machine-readable syntax, usually using a formal text-
based or graphical language. Hence, a straightforward idea
is to program the robot directly using a general-purpose
programming language. This approach has the major dis-
advantage that the developer is responsible for developing
code which satisfies all necessary real-time constraints of
the robot controller. Any errors in the code may not only
lead to a failure of the program itself, but to severe damages
of the entire robot.

To mitigate this shortcoming, most commercial manufac-
turers of industrial robots provide domain-specific languages
for their robot systems. These languages are usually text-
based and offer the possibility to declare robotic-specific data
types, to specify simple motions, and to interact with tools
and sensors via I/O operations. Examples are the KUKA
Robot Language or RAPID from ABB. To run such a
program, it is transmitted to the robot controller, where it
is executed obeying real-time constraints. These languages
focus on a narrow set of required features and prohibit

Andreas Angerer, Alwin Hoffmann, Henrik Miihe, and Wolfgang Reif
are with the Institute for Software and Systems Engineering, University of
Augsburg, D-86135 Augsburg, Germany. E-mail of corresponding author:
hoffmann@informatik.uni-augsburg.de

This work presents results of the research project SoftRobot which is
funded by the European Union and the Bavarian government within the
High-Tech-Offensive Bayern. The project is carried out together with KUKA
Roboter GmbH and MRK-Systeme GmbH.

potentially dangerous operations such as direct memory
access. However, a major drawback of these languages is the
lack of extensibility. They are tailored to the underlying con-
troller and, as a consequence, only offer a fixed, controller-
specific set of instructions. Due to this design, even robot
manufacturers have difficulties extending these languages
with new instructions or adapting them to novel, challenging
requirements such as the synchronization of cooperating
robots or the tight integration of sensor-guided motions.

For that reason, we have developed a novel software
architecture [2] for programming industrial robots in the
research project SoftRobot. Its core part is the Robotics API
which represents an extensible object-oriented framework
for robotic applications (available in Java and C#). Similar
to robotic DSLs, the Robotics API offers an abstraction
from real-time programming facilitating the development
of robotic software. With a general-purpose programming
language and a robotic-specific application programming
interface (API), rapid development of domain-specific lan-
guages for industrial robots is possible. In contrast to exist-
ing robotics programming languages, we intend to develop
lightweight DSLs, that is, languages which are implemented
using well-defined interfaces and without other dependencies
on the underlying robot system. As a proof-of-concept, we
decided to reverse-engineer the KUKA Robot Language
(KRL) and implement it on top of our architecture. We
have chosen KRL to show that we can achieve a similar
expressiveness as classical robot programming languages
and simulate their execution semantics. Moreover, we can
execute legacy code written in KRL this way and thus
maintain a certain degree of compatibility.

The paper is structured as follows: In Sect. [[I} the KUKA
Robot Language is introduced and its main features are
explained using an example. Subsequently, Sect. [I1l|describes
the Robotics API and our software architecture which was
used to implement a lightweight interpreter for KRL. The
steps required for reverse-engineering KRL are explained in
Sect. While static preprocessing of KRL programs is
described in Sect. different approaches for interpreting
KRL on top of our software architecture are discussed in
Sect. Finally, Sect. concludes the paper.

II. KUKA ROBOT LANGUAGE

Today, every KUKA industrial robot is programmed using
the proprietary KUKA Robot Language which is an imper-
ative programming language similar to Pascal. In addition
to typical programming statements such as variable assign-
ments, conditionals and loops, KRL provides robotic-specific
statements e.g. for specifying motions and interacting with

DEF example ()
DECL INT i
DECL POS cpos
DECL AXIS jpos

FOR i=1 TO 6
SVEL_AXIS[i]=60

ENDFOR
jpos = {AXIS: Al 0,A2 -90,A3 90,24 0,A5 0,A6 0}
PTP jpos
IF $IN[1] == TRUE THEN

cpos = {POS: X 300,Y -100,Z 1500,A 0,B 90,C 0}
ELSE

cpos = {POS: X 250,Y -200,z 1300,A 0,B 90,C 0}
ENDIF

INTERRUPT DECL 3 WHEN $IN[2]==FALSE DO BRAKE
INTERRUPT ON 3

TRIGGER WHEN DISTANCE=0 DELAY=20 DO $OUT[2]=TRUE
LIN cpos

LIN {POS: X 250,Y -100,Z 1400, A 0,B 90,C 0} C_DIS
PTP jpos

INTERRUPT OFF 3
END

Fig. 1. Example program written in KRL.

tools. Moreover, KRLs execution semantics uses two pro-
gram counters to implement a feature known as advance run.
The second counter is usually ahead of the regular program
counter and is used for planning motions in advance. In
particular, this is used to blend two subsequent motions. An
extensive reference to KRL can be found in [3].

An example program showing the main features of KRL
is given in Fig. [I} Like all KRL programs, it contains a
declaration section followed by a statements section which
starts with the first statement and comprises the actual
program. Every variable must be declared in the declaration
section and can later be assigned in the statements sections.
Besides common data types (int, rear, soor and cuar), KRL
allows the definition of arrays and user-defined structs and
provides predefined structs such as axis and pos which are
specific to robotics. There is a large number of predefined
global variables, e.g. for setting the max. velocity of the
robot’s joints (sver_axis) or for accessing binary inputs (s1x)
and outputs (sout). To control program flow, KRL has several
statements such as conditionals (e.g. 1F, switcn), loops (e.g.
FOR, REPEAT ...

Because KRL is a robotic DSL, it has built-in statements
for programming motions such as ere or nin. While et
executes a point-to-point motion to its programmed end
point, the rin statement executes a linear motion to a
specified target in Cartesian space. Besides these two motion
types, KRL currently supports circular motions and splines.
Using the advance run feature, motions are pre-calculated
and planned before the actual program execution reaches
the corresponding motion statement. This allows blended
movements, where the motion does not stop exactly at the
programmed target but blends into the subsequent motion
(cf. Fig. [2). Usually, this approach leads to faster execution
of multiple motion statements by reducing acceleration and

unTIL, wHILE) and jumps (coTo).

deceleration phases. To indicate that a target position does
not need to be reached exactly, an additional parameter (e.g.
c_pis in the example program) is used in the corresponding
motion statement. However, there are KRL statements like
reading an input which stop the advance run making it
impossible to blend between two motions [3].

Ly
=

- ..v‘ﬂr
." N
Smoothing

Fig. 2. Two blended linear motions, L; and L, with n automatically
generated transition.

In KRL, the communication with external tools and sen-
sors is usually done by using digital or analog in- and
outputs. Hence, KRL provides predefined global variables
(cf. variables stnv and sour) and additional statements to
handle in- and outputs. These variables and statements can be
used in a Triceer statement to define path-related switching
actions. In the example from Fig.[I] the binary output sout(2)
is set to true 20ms after the linear motion to cpos was started.
Another feature of KRL are interrupts, where the current
program is suspended when an event (e.g. an input) occurs
and a subprogram is executed. The event and the subprogram
are defined by an interrupr declaration statement. After
being defined, the interrupted can be switched on and off.
In the example program above, an interrupt is declared,
which fires when the binary input sin(2] becomes true. The
interrupt-subprogram causes the robot to brake immediately
(erake). Besides the submit interpreter [3], which allows
running a special second program in parallel with the main
program, triggers and interrupts are the only means to
express concurrency in KRL — albeit in a limited manner.

III. RoBOTICS API

Fig. |3 illustrates the important parts of the software ar-
chitecture introduced in [2]. The central concept is that real-
time critical commands can be specified using the object-
oriented Robotics API and are then translated into commands
for the Realtime Primitives Interface [4]. The Robot Control
Core (RCC) executes these commands, which consist of
a combination of pre-defined (yet extendable) calculation
modules and a specification of the data flow among them.
Implementing only the RCC with real-time aspects in mind
is sufficient to allow the atomic execution of Robotics
API commands while obeying real-time constraints. Here,
only the aspects of the programming model relevant to this
work will be introduced. A comprehensive overview of the
programming interface can be found in [5].

The Robotics API is implemented as a library on top
of a general purpose programming language. In terms of
concepts, the Robotics API covers the same scope that the
KUKA Robot Language does (see Sec. [Il)), offering robotic
specific data types, movement and tool commands as well
as control flow structures as provided by the host language.

Domain-specific DSL Interpretation Graphical Programming
Application Engine Environment

Robotics Base Class Libraries (RBCL)

|
]

: Robotics Extension
| Class Libraries (RECL)
]

Dynamic Construction of Realtime Primitive Commands

Realtime Primitive Interface (RPI)

Robot Control Core

Fig. 3. The Robotics API and its context in the software architecture.

Additionally, the Robotics API incorporates a comprehen-
sive robotics domain model that extends beyond the set of
specific data types that KRL provides. This simplifies the
development of diverse, complex robotic applications, which
is also supported by reusable class structures and reusable
logic. However, runtime environments of common object-
oriented programming languages do not guarantee real-time
constraints during program execution. Thus, reacting to cer-
tain sensor events cannot be done in real-time using eventing
concepts built into the programming language.

ignitionMovement : : action
lotion

ignitionMovementCmd - targets robot : Robot
: Command

motionEnded : Event | - triggeredB, startGasTrigger :
Trigger

starts
‘ gasOn : GasOn action ‘

Fig. 4. Robotics API command

startGasCmd :
Command

: targets weldingTorch :

WeldingTorch

To meet real-time requirements, e.g. for motion blending
or event handling, commands in the Robotics API can be
linked with a special mechanism prior to execution. Com-
mands that are combined in that way are executed atomically
on the Robot Control Core. Fig. [d] shows an example of
such a combined command structure. This example is taken
from a welding application and specifies the initialization
of the welding gas flow as soon as a robot motion has
ended. To achieve this, the motion (titled ignitionMove-
ment) defines a special event (motionEnded) that is used
as a trigger (startGasTrigger) for starting the subsequent
command (startGasCommand). Such a command structure
is converted into a dataflow specification that is executable
by the RCC with real-time guarantees. This, however, is
a different concept of handling events occurring during
execution than the concept employed by KRL, where it is
possible to call arbitrary methods when an event occurs.

Additionally, the way commands for robots or tools are
processed inside the Robotics API differs from how they
are handled in the KUKA Robot language. KRL interprets
program instructions ahead of their actual execution which
allows for successive blending between subsequent motions

(see Sec. [M). In today’s general purpose programming lan-
guages, which the Robotics API is intended to be used with,
such an ahead-of-time interpretation is usually not provided.

Our transaction-like mechanism for specifying real-time
critical commands is suitable for covering the requirements
in almost any domain of industrial robotics today [2]. It also
allows for blending between subsequent motions, but only
for a finite set of motions and not incrementally. However,
the execution semantics clearly differs from those of the
KUKA Robot Language, which constitutes an additional
challenge for interpreting legacy KRL programs on top of
the Robotics APIL.

IV. APPROACH

The goal of this work was running KRL in an entirely
different execution environment and with a different under-
lying execution paradigm. The first problem is that KRL is
only documented in user manuals, i.e. there is no publicly
available formal specification or grammar of the language.
Semantics is only documented by informal descriptions.
Additionally, even if it is possible to sufficiently determine
the semantic meaning of every construct in the language, a
successful reimplementation must not only retain the same
control flow as the original implementation but also ensure
that robot movements are planned and executed the same
way. This task is difficult, because of different underlying
concepts of KRL and the Robotics API used to implement
motion commands. KRL can start a motion and continue
the execution of the program while the motion is performed
by the robot. Commands read while continuing the execution
can influence the motion (cf. advance run in Sect. [[). Repli-
cating this in a simple way requires a means of augmenting a
motion which has already been started, which is conceptually
incompatible with the Robotics APIL

Starting with a simple benchmark program written in KRL
and the programming manual [3], every command found in
either code or the handbook was added to a list of valid KRL
statements. To find the set of allowed parameters for each
command, the manual proved to be insufficient, even though
it uses EBNF-like notation to explain some commands. The
set of parameters specified in the manual is often either in-
complete or vague. To counter the problems stemming from
a lack of documentation, we extracted about one megabyte
of valid KRL source code from a KUKA robot control unit.
This in itself is usually not enough to construct a grammar
for a programming language in a reasonable amount of time.
Combined with a very restrictive preliminary grammar built
manually using the handbook mentioned earlier, the source
code proved to be a valuable asset. The preliminary grammar
was constructed in a conservative manner: Whenever the
syntax was not entirely clear in the handbook, the most re-
strictive assumption was made to construct the corresponding
grammar rule. After having finished the construction, both
lexer and parser were generated and extended to simplify
finding missing or insufficient grammar rules. All common
constructs not included in the grammar so far were added.
If a specific parse error happened only with a single source

file, the official KRL implementation KUKA.OfficeLite [6]
was used to validate the construct before it was added to the
grammar. This way a comprehensive grammar for KRL was
built from scratch in a short amount of time.

Having obtained a usable grammar, we next implemented
a way of mapping KRL to the Robotics API introduced in
Sect. Although translating KRL to Java with calls to the
Robotics API is possible, we chose to build an interpreter
for the DSL. The official KUKA implementations of KRL
offer some debugging options and features like backward
execution of movement commands. Trying to mimic these
features in a translation-based approach would complicate
the translation process. An interpreter, on the other hand, al-
lows a high level of interaction with the interpreted program.
It simulates a CPU but can be accessed and manipulated
easier than the physical CPU. Further advantages of the
interpretation approach will be detailed in Sect.

V. PREPROCESSING

From the grammar, both lexer and parser were generated
using ANTLR [7] (ANother Tool for Language Recognition).
We enriched the grammar with the description of a tree
structure that the generated parser uses to output an Abstract
Syntax Tree (AST) instead of a parse tree. A parse tree
is a representation of which rules were used to parse the
input whereas an AST is less verbose and represents only
the information necessary for the purpose of interpretation.

Since KRL is both statically and explicitly typed, compre-
hensive type-checking is possible before actually executing
a program. This is advantageous, since having to terminate a
program because of an invalid assignment while in the mid-
dle of the execution is discouraged, especially in a DSL that
is used to control heavy machinery. Type checking requires
all symbols and their types to be known. Additionally, it is
paramount that symbol scoping, that is, different visibility in
different areas of the program, is established. Thus, a symbol
table has to be generated before a type checker can be run.

The program that fills the symbol table works on the AST
created by the parser — an example is displayed in Fig. [5]
A hierarchy of symbol tables is established to allow for
easy integration of scoping: only symbols are visible that
are in a symbol table which is an ancestor to the current
symbol table. In this context, current symbol table means
local to the expression for which visibility of a symbol has
to be determined. If a statement in a method m tries to read
a variable a, the symbol table used to collect symbols of
said method is the current symbol table. In the symbol table
hierarchy given at the top of Fig.[5] variable a is thus visible
to method m, since it is in a symbol table that is an ancestor
of the current symbol table for statements in method m.

After having collected all symbols in a given KRL pro-
gram, type checking is trivial: The AST has to be read a
second time and every expression has to be checked for
type compatibility. Type checking can be done by verifying
that a set of type constraints is met [8]. Considering the
source code in Fig. [5] we must verify that the type of the
variable on the left side of the assignment is compatible

Sourcecode
DEFDAT $global
INT a

Symboltable

GlobalSymbols

ENDDAT - a: int
- m : method

DEF m()
INT

b
a=>5
END

DEF mo()
INT ¢

END

AST

Fig. 5. KRL sourcecode, AST generated by the parser and associated
symbol table hierarchy.

with the type of the expression on the right. In the context
of an assignment, two types are considered compatible if
lossless conversion between the type of the expression and
the variable is possible. A set of similar constraints was
found for all expressions in KRL and implemented in the
type checker. The type checker also adds type information
to the AST to avoid having to compute this information again
in the interpreter.

VI. INTERPRETATION

Traversing the AST is a simple way of executing a DSL.
We will call this approach tree-based interpretation. It is
a straightforward implementation of an interpreter, but not
the only feasible method. Literature suggests that a different
approach, called bytecode interpretation, is also widely used
[9]. Since our implementation using a tree-based approach is
both more mature and versatile than our implementation of a
bytecode interpreter, we will focus tree-based interpretation
first. Later in this chapter, a bytecode-based prototype will
be introduced and compared to the original approach.

Tree-based interpretation relies on the idea that a KRL
program can be effectively executed by walking the AST
generated from it and executing each node in it as shown
in Fig. [6] For simple statements, like a variable declaration
(see Fig. E} label s1), execution comes down to reading the
declaration node, reading the variable name in the child node
and allocating a corresponding amount of memory. For more
complex statements like an assignment (see Fig. [5} label
s2), execution requires executing both child-nodes. The value
returned by executing the second child-node — and thus the
right side of the assignment — needs to be assigned to the
position in memory referenced by the first child-node.

Control flow constructs like loops are simple to execute:
for an unconditional loop, its body is executed iteratively
until a statement which causes the loop to exit is encountered.
However, a serious problem arises with executing statements
that severely impact control flow (e.g. a return statement,
a procedure, a function call, or a coro). It is sufficient to
focus on the most difficult of these statements, coro, since

test.src AST

DEF test()

WHILE x<10000 [— parser —|

[est]]] [

l

[Interpreter I

Fig. 6. Architecture when using a tree-based interpreter.

the others statements can be simulated with it. In a tree-based
interpreter, two stacks need to be maintained: The call stack
of the interpreter (interpreter call stack) itself and the call
stack of the program being interpreted (program call stack).
When interpreting a rooe for instance, the interpreter call
stack changes because a method is invoked that handles the
execution of the loop. The program call stack remains the
same as it only changes with method calls and jumps in KRL
cannot target a label outside the current method.

Consider a coro statement inside a loop which jumps
to a statement outside said loop. A jump like that would
require the method executing the roor statement to return
execution to its caller and tell it to continue at the target
label of the jump. This requires reversing the call stack, and
transferring information on where to continue execution to
the caller — in complex cases through a call-hierarchy of
arbitrary height. Although this can be achieved by wrapping
every method used for node execution, a more elegant albeit
unusual approach is using the exception concept provided by
most high-level programming languages, as suggested in [9].
Exceptions can pass through the call hierarchy and be caught
in appropriate places with a minimum of additional code.
Additionally, since none of the debug information carried
by the exception is required, cost for exception creation is
minimal, as suggested by [10, p. 174].

At the beginning of this chapter, a different approach,
bytecode interpretation, was mentioned. Compared to a tree-
based interpreter, a bytecode interpreter does not walk a
complex data structure like a tree but instead works on
simple code consisting of small atomic operations. Using
a less verbose data structure leads to less overhead in the
interpreter. Extracting an operation and its parameters from
the AST requires accessing different nodes of the tree and
thus accessing different addresses in memory using pointers.
Bytecode can be constructed in a way that groups operations
and parameters together, making the cost of accessing an
operation and its parameters as cheap as reading a byte-
sequence from memory.

The bytecode has to be generated out of the KRL program
before interpretation can start. This is achieved by reusing
the annotated AST introduced in Sect. Since bytecode
is usually represented as an array of byte values, a standard
approach is to first generate human readable bytecode that
is easy to read and debug, and then assemble the textual

test.src AST

DEF test()

WHILE x<10000 [— parser —»|

[est] [nr]] [

1

r bytecode compiler

Assembled bytecode

Textual bytecode

.method TEST

stackframesize 2
int_loadConst 0
int store O # C
int loadConst 1
int store 1 # X

int load 1 # X

int loadConst 10000

int 1t

jmp_false 1
int_load 0 # C
int load 1 # X
int add

int store 0 # C
int load 1 # X
int loadConst 1
int add
int_store 1 # X

[
bytecode assembler l

Interpreter
I

jmp @
.label 1
.end

Fig. 7. Process used to generate bytecode from a KRL program.

representation into an actual byte-array. We designed each
bytecode operation to be as simple as possible. Required
memory is determined by the compiler and numerical in-
dexes are used to address variables. This way, memory
allocation is dealt with before the program is executed,
resulting in a leaner interpreter. The translation process and
the results generated in each step are displayed in Fig.

The Robotics API is used to execute movement commands
in both the tree-based interpretation approach as well as the
bytecode interpretation approach. As explained in Sect.
KRL can blend motions together, thus making the transition
between two separate motions smooth, as illustrated in Fig. 2]
To achieve this, KRL executes motions asynchronously and
continues interpretation until it finds the next motion to be
executed. When found, a soft transition between the running
and the next motion is calculated and applied. Mapping this
behavior to the Robotics API is non-trivial, because the way
a motion is executed cannot be influenced once execution has
started. To mimic KRL, we do not start execution of a motion
as soon as it is found. Instead interpretation is continued
and all motion commands are queued until a motion is
encountered that may not be blended. This can either be the
case when a motion has a parameter indicating that it is not
supposed to blend with a subsequent motion, when a special
command prevents blending as mentioned in Sect. [lIjor when
the queue is full. If any of the above applies, the motion-
queue is executed with blending between each motion. The
rationale behind this is that interpretation of control flow and
computational statements takes only a minor amount of time.
Thus, the delay introduced by deferred execution of motion
commands is minimal, but allows us to closely mimic the
execution semantics of KRL.

Interrupts in KRL halt execution of the main program
and run a subroutine when an event condition becomes
true. An interpreter can mimic this behavior by a separate
thread that periodically checks all event conditions. When
a condition becomes true, the main thread executing the

KRL program has to block and a new thread executing the
interrupt subroutine has to be created. Once the subroutine
has finished, the main thread can resume. Apart from this
scenario, more complex interrupt invocations are possible:
an interrupt can fire while an interrupt subroutine is being
executed. To handle both scenarios, all threads executing ei-
ther the main program or an interrupt subroutine are managed
on a stack. Only the thread on top of the stack is allowed
to execute statements, all other threads need to block. When
an interrupt subroutine finishes, the thread executing it is
removed from the stack, allowing another interrupt to finish.
This concept can cope with an arbitrary number of interlaced
interrupts without explicitly suspending threads and makes
resource synchronization unnecessary. Additionally, the same
mechanism can be used to implement triggers: instead of
monitoring a condition, the robots position is considered.
When the robot reaches the point specified in the trigger,
its subroutine is executed just like an interrupt subroutine.
However, this approach does not guarantee any real-time
constraints for both interrupts and triggers. Alternatively,
simple triggers (e.g. setting outputs) that meet real-time
requirements can be established by the transaction-like mech-
anism of the Robotics API (cf. Sect. [[II).

The third way of adding concurrency is the submit in-
terpreter, which allows executing a different program in
parallel to the main KRL program. Implementing the submit
interpreter is possible by running two separate interpreter
instances concurrently on the same memory. Because KRL
documentation does not specify how the submit interpreter
is scheduled and whether it receives CPU time, we have
decided not to include an implementation in our prototypes.

VII. CONCLUSION

In this paper, we have shown that it is possible to run
KRL using the Java-based Robotics API developed in the
SoftRobot project. Running KRL is necessary in order to
support legacy applications and additionally serves as proof
that our approach is indeed viable. We have introduced
the Robotics API and shown that it is superior to KRL in
many areas, but also that its semantics differs in other areas.
Additionally. we have shown that reverse-engineering KRL
is possible and that a grammar for the language can be build
using only information from the KRL manual and results
from trying statements in KUKA.OfficeLite.

To execute KRL, we have introduced two separate ap-
proaches, each with a different set of advantages and thus use
cases. Comparing both approaches, the tree-based interpreter
is flexible because it works on a more verbose data-structure.
This makes adding features like debugging simple, because
debug information is directly available to the interpreter.
The bytecode interpreter works on a lean data-structure
including only information vital to executing the program.
Furthermore, bytecode can be represented as an array making
dereferencing pointers and thus random memory access
unnecessary. Because of this, more instructions fit into the
CPU cache and execution is faster. We tested performance
while executing a simple benchmark written in KRL. With

both interpreters written in Java, the bytecode interpreter is
about six times faster than the tree-based interpreter on all
major platforms (Microsoft Windows Vista, Ubuntu Linux,
Mac OS X) tested on the same machine. Furthermore, a
bytecode interpreter prototype written in C is up to 300
times faster than the tree-based interpreter written in Java.
However, interfacing the bytecode interpreter written in C
with the Java-based API is not possible yet.

The Robotics API was interfaced with the interpreters
to implement robot commands like motions and to gain
access to I/0s. We assumed that executing control flow and
calculation statements takes only a small amount of time
compared to the time it takes the robot to complete a motion
command. Under that assumption, we were able to show that
differences in semantics between the API and KRL can be
bridged by batch-executing motions. Concurrency as offered
by KRL can be added to our interpreters by using threads
and a stack-based synchronization mechanism.

Future research will focus on extending and modifying
KRL to include features like synchronization between robots.
The interpreters introduced in this paper were designed to
be extendable and can be used for prototyping additions
to the original DSL. Furthermore, more specific commands,
e.g. for welding applications, will be integrated. So far, the
Robotics API does not include a way of specifying complex
triggers like it is possible in KRL. Embedding a simple DSL
to specify triggers in and using a lean bytecode interpreter
to execute those triggers could be a way of mitigating this
shortcoming and will be a topic of future research.

ACKNOWLEDGEMENT

We would like to thank Prof. Terrence Parr for his impor-
tant remarks on interpreting KRL.

REFERENCES

[1] G. Biggs and B. MacDonald, “A survey of robot programming sys-
tems,” in Proc. Australasian Conference on Robotics and Automation,
J. Roberts and G. Wyeth, Eds., Brisbane, Australia, Dec. 2003.

[2] A. Hoffmann, A. Angerer, F. Ortmeier, M. Vistein, and W. Reif,
“Hiding real-time: A new approach for the software development of
industrial robots,” in Proc. 2009 IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems, St. Louis, MO, USA, Oct. 2009, pp. 2108-2113.

[3] KUKA System Software 5.5 — Operating and Programming Instruc-
tions for System Integrators, KUKA Roboter GmbH, Augsburg, Ger-
many, 2009.

[4] M. Vistein, A. Angerer, A. Hoffmann, A. Schierl, and W. Reif,
“Interfacing industrial robots using realtime primitives,” in Proc. 2010
IEEE Intl. Conf. on Automation and Logistics, Hong Kong, China,
Aug. 2010.

[5] A. Angerer, A. Hoffmann, A. Schierl, M. Vistein, and W. Reif, “The
Robotics APL: An object-oriented framework for modeling industrial
robotics applications,” in Proc. 2010 IEEE/RSJ Intl. Conf. on Intelli-
gent Robots and Systems, Taipei, Taiwan, Oct. 2010.

[6] KUKA.OfficeLite. KUKA Roboter GmbH. [Online]. Avail-
able: |http://www.kuka-robotics.com/en/products/software/kuka_sim/
kuka_sim_detail/

[7] T.Parr and R. Quong, “ANTLR: A predicated-LL(k) parser generator,”
Software-Practice and Experience, vol. 25, no. 7, pp. 789-810, 1995.

[81 A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, and Tools, 2nd ed. Addison Wesley, 2006.

[9]1 T. Parr, Language Implementation Patterns: Create Your Own Domain-
Specific and General Programming Languages. Pragmatic Bookshelf,
2009.

[10] . Shirazi, Java Performance Tuning. Sebastopol, CA, USA: O’Reilly
& Associates, Inc., 2002.

http://www.kuka-robotics.com/en/products/software/kuka_sim/kuka_sim_detail/
http://www.kuka-robotics.com/en/products/software/kuka_sim/kuka_sim_detail/

	I Introduction
	II KUKA Robot Language
	III Robotics API
	IV Approach
	V Preprocessing
	VI Interpretation
	VII Conclusion
	References

