
ar
X

iv
:1

01
0.

56
94

v1
 [

cs
.P

L]
 2

7
O

ct
 2

01
0

Events! (Reactivity in urbiscript)

Jean-Christophe Baillie Akim Demaille Quentin Hocquet Matthieu Nottale
Gostai S.A.S., 15, rue Jean-Baptiste Berlier, F-75013 Paris, France

http://www.gostai.com, first.last@gostai.com

Abstract— Urbi SDK is a software platform for the devel-
opment of portable robotic applications. It features the Urbi
UObject C++ middleware, to manage hardware drivers and/or
possibly remote software components, and urbiscript, a domain
specific programming language to orchestrate them. Reactivity
is a key feature of Urbi SDK, embodied in events in urbiscript.
This paper presents the support for events in urbiscript.

Event-based programming is the “native” way in urbiscript
to program responses to stimuli — a common need in
robotics. It is typically used for “background jobs that moni-
tor some conditions”. It is used to program the human-robot
interfaces (“do this when the head button is pushed”), the
detection exceptional situations (collision avoidance, battery
level), the tracking of objects of interest etc. Events are also
heavily used in the implementation of Gostai Studio, a GUI
for Urbi based on hierarchical state machines [8].

In following example “whenever” an object of interest (a
ball) is visible, the head of the robot is moved to track it. The
code relies on some of key features of urbiscript: UObjects
(ball, camera, headPitch, headYaw), concurrency (&),
and event constructs (whenever).

whenever (ball.visible)
{ headYaw.val += camera.xfov * ball.x
& headPitch.val += camera.yfov * ball.y };

I. URBI AND URBISCRIPT

A. The Urbi Platform

The Urbi platform [1], including the urbiscript program-
ming language, was designed to besimple and powerful. It
targets a wide spectrum of users, from children customizing
their robots, to researchers who want to focus on complex
scientific problems in robotics rather that on idiosyncrasies of
some robot’s specific Application Program Interface (API).

Urbi relies on modularity to provide portability. Com-
ponents specific to an architecture (sensors and actuators
drivers, . . .) are implemented asUObjects, plugged into the
Urbi core. UObjects can also wrap pure software components
that provide core services, say text-to-speech, object tracking,
localization, etc. TheC++ UObject architecture is actually a
middleware: components can be relocated transparently on
remote computers instead of running on the robot itself. This
is especially useful for low-end robots whose CPU is too
limited to run demanding software components (e.g., face
detection, speech recognition, . . .).

The Urbi platform schedules the execution of these UOb-
jects, routes the events from producers to consumers, and so
forth. Its core is written inC++. This choice was driven by the

availability of compilers for many different types of hardware
architecture, and because many robot SDK are in C/C++.
It also provides access to very low-level system features
(such as coroutines, see below), and allows us to program
their support if they lack, in assembler if needed. Specific
features of some architectures are also easier to use from
C/C++, such as the real-time features of Xenomai. Finally,
some architecturerequire C++, such the Aibo SDK.

While the sole Urbi core suffices in many situations, it
proved useful to provide a programming language to fine-
tune this orchestration.

B. The urbiscript Programming Language

There are already so many programming languages. Why a
new one? Why not extending an existing language, or relying
on some library extensions?

Domain Specific Languages (DSLs) are gaining audi-
ence because they make developers much more productive
than when using the library-based approaches. Programming
robots requires a complete rethinking of the execution model
of traditional programming languages: concurrency is the
rule, not the exception, and event-driven programming is the
corner stone, not just a nice idiom. These observations alone
justify the need for innovative programming languages.

There are already many well-established environments that
provide these features, and that can be used to program
robots. The world of synchronous languages includes several
adequate members, such as Lustre [10] or Esterel [3]. These
systems offer soundness and strong guarantees, but at a price:
they are very different from the programming languages
developers are used to. They are adequate to develop real-
time, life-critical systems, but they are too demanding when
developing the global behavior of a personal robot. Some
general purpose programming languages have been extended
also to offer reactive programming: C [4], Caml [12], Haskell
[14], etc.

Since the Urbi core is tightly bound toC++, none of these
languages are adequate. Binding with low-level languages
(such asC++) is a domain in which scripting languages, such
as Python [19] or Lua [11], excel. It is not surprising that they
are acclaimed interfaces for practical robot programming
environments such as ROS [15].

Yet, they do not provide native support for concurrency
and reactivity, even if there are existing extensions [6], [17].
When the Urbi project was started (circa 2003), the need for a
new language, tailored for programming robotic applications,
was felt.

http://arxiv.org/abs/1010.5694v1
http://www.gostai.com

To cope with the resistance to new languages, urbiscript
stays in the (syntactic) spirit of some major programming
languages:C++, Java, JavaScript etc. As most scripting lan-
guages, it is dynamically typed.

It is an Object-Oriented Language (OOL): values are
objects. Unlike most OOLs, urbiscript isnot class-based. In
class-basedOOLs (such asC++, Java, C#, Smalltalk, Python,
Ruby, . . .),classesare templates (molds) that describe the
behaviors and members of an object. Classes areinstantiated
to create a value; for instance thePoint class serves as a
template to create values such asone = (1, 1). The object
one holds the (dynamic) values while the class captures
the (static) behavior. Inheritance in class-based languages is
between classes.

urbiscript isprototype-based, like Self [18], Lisaac [16],
Cecil [5], Io [7] and others. In these OOLs, there are no
classes. Instantiation is replaced bycloning: an object serves
as a template for a fresh object, and inheritance relates
objects1.

// Create an empty object that derives from Object.

var one = Object.new();
[00000001] Object_0x109fce310

An object is composed of a list ofprototypes(parent
objects) and a list ofslots. A slot maps an identifier to a
value (an object).

// one is a clone of Object.

one.protos;
[00000002] [Object]

// Add two slots, named x and y.

var one.x = 1;
[00000003] 1
var one.y = 1;
[00000004] 1
// The names of local slots (inherited slots

// are not reported).

one.localSlotNames;
[00000005] ["x", "y"]

urbiscript is fully dynamic. Objects can be extended at
run-time: prototypes and slots can be added or removed.
Functions arefirst-class entities: they are ordinary values
that can be assigned to variables, passed as arguments to
functions and so forth. urbiscript supportsclosures: functions
can capture references from their environment, then later use
those references to retrieve or set their content. urbiscript is a
functional programming language, functions are values that
can be bound by slot like any other object.

one;
[00000006] Object_0x109fce310
// The function "asString" is used by the system

// to report values to the user.

function one.asString() { "(%s, %s)" % [x, y] };
one;
[00000007] (1, 1)

1Lines starting with a timestamp such as[00001451] (1.1451s
elapsed since the server was launched) are output by Urbi; the other lines
were entered by the user. The system answers with the value ofthe entered
expressions, unless there is none (e.g.,void). Due to space constraints,
the system answers for functions (their definition) is not displayed in this
paper.

For a thorough presentation of urbiscript, see [9].

C. Concurrency

Today, any computer runs many programs concurrently.
The Operating System is in charge of providing each process
with the illusion of a fresh machine for it only, and of
scheduling all these concurrent processes. In robots, jobs
not only run concurrently, they heavilycollaborate. Each
job is a part of a complex behavior that emerges from their
coordination/orchestration.

To support the development of concurrent programs, ur-
biscript provides specific control flow constructs. In addition
to the traditional sequential composition with ‘;’, urbiscript
provides the ‘,’ connector, which launches the first statement
in background, and immediately proceeds to executing the
next statements. Scopes (statements enclosed in curly braces:
{ s1; s2, ...}), are boundaries: a compound statement
“ends” when all its components did. The following example
demonstrates these points.

// "1s" means one second. Launch two commands in

// background, using ",". Execution flow exits the

// scope when they are done.

{ { sleep(2s); echo(2) }, { sleep(1s); echo(1) }, };
echo(3);
[00001451] *** 1
[00002447] *** 2
[00002447] *** 3

Other control flow constructs, such as loops, can be exe-
cuted concurrently. For instance, iterating over a collection
comes in several flavors:for is sequential whilefor&
launches the iterations concurrently (see below).

for (var i : [2,1,0]) {
echo("%s: start" % i);
sleep(i);
echo("%s: done" % i)

};
echo("done");
[00125189] *** 2: start
[00127190] *** 2: done
[00127190] *** 1: start
[00128192] *** 1: done
[00128192] *** 0: start
[00128193] *** 0: done
[00128194] *** done

for& (var i : [2,1,0]) {
echo("%s: start" % i);
sleep(i);
echo("%s: done" % i)

};
echo("done");
[00105789] *** 2: start
[00105789] *** 1: start
[00105789] *** 0: start
[00105793] *** 0: done
[00106793] *** 1: done
[00107793] *** 2: done
[00107795] *** done

The standard library also provides functions that launch
new tasks, running in the background. From an implementa-
tion point of view, Urbi relies on a library of coroutines [13],
not system threads. Job control is provided byTags, whose
description fall out of the scope of this paper, see [2].

II. EVENTS

A. Basic Events

Their use goes in three parts. First, an event is needed, a
derivative from theEvent object. This object will serve as
an identifier for a set of events, it can be used many times
(or not at all).

var e = Event.new;
[00007599] Event_0x104bcec50

Second, event handlers are needed. They can catch any
emission of an event, or filter on the arity of the payload:

at (e?)
echo("e?");

at (e?())
echo("e?()");

at (e?(var x))
echo("e?(%s)" % [x]);

at (e?(var x, var y))
echo("e?(%s, %s)" % [x, y]);

Finally, we need to emit an event, possibly with a payload.

e!;
[00000033] *** e?
[00000034] *** e?()

e!(12, "foo");
[00000035] *** e?
[00000036] *** e?(12, foo)

e!(12, "foo", 666);
[00000037] *** e?

The expression e!(arg) is syntactic sugar for
e.emit(arg).

B. Semantics

The semantics is simple. There is no guarantee on the
order in which the event handlers are run (or rather the
order is an implementation detail that is not enforced by our
language definition). The handling of events is asynchronous
by default, i.e., the control flow that emitted the event may
proceed before the event handlers are finished.

var f = Event.new;
[00000917] Event_0x107545d90

at (f?(var e)) { echo(e); sleep(0.5s); echo(e); };
f!("handler"); echo("top");
[00000919] *** handler
[00000928] *** top

sleep(1s); // Wait for the second echo.

[00001433] *** handler

Event can be send synchronously to override this behavior.

f.syncEmit("handler"); echo("top");
[00001929] *** handler
[00002436] *** handler
[00002436] *** top

Several handlers can run concurrently.

f!("h1"); echo (1); f!("h2"); echo(2);
[00002437] *** h1
[00002442] *** 1
[00002442] *** h2
[00002448] *** 2
sleep(2s);
[00002942] *** h1
[00002954] *** h2

Event handlers may raise events; the system does not en-
force laws that would prevent endless constructs. We believe
that soundness properties such as termination guarantees do
not belong to the Urbi system, but to the programmer.

var e = Event.new;
at (e?(var p)) { echo(p); e!(-p) };
e!(-1);
[00003919] *** -1
[00003925] *** 1
[00003931] *** -1
[00003936] *** 1
[00003945] *** -1
...

From the implementation point of view, a major constraint
was the pressure over the CPU. Because in embedded
systems (and in particular with low-cost robots) the batteries
must be saved to all cost, the implementation aims at
the lowest possible foot-print. There is no active wait: in
Urbi, if there are no current computations but only event-
constructs that monitor external events (incoming network
data, UObjects-generated events etc.), then the system con-
sumes no CPU at all.

It is on top of this event-handling layer that urbiscript
provides its supports for monitoring arbitrary expressions,
seeSection III.

C. Filtering

Finally, at clauses can filter on the payload.

var e = Event.new;
[00000002] Event_0xADDR
var x = 123;
[00000003] 123
at (e?(var x, var y) if x == y)

echo("e?(%s, %s) with %s == %s" % [x, y, x, y]);
at (e?(x, var y))

echo("e?(%s, %s)" % [x, y]);

e!(12, 34);

e!(12, 12);
[00000215] *** e?(12, 12) with 12 == 12

e!(x, 34);
[00000218] *** e?(123, 34)

e!(x, x);
[00000221] *** e?(123, 123) with 123 == 123
[00000221] *** e?(123, 123)

urbiscript supports pattern-matching, which can be used to
filter the event payload. Special syntactic support is provided
for tuples, lists, and dictionaries (and their combinations).

var e = Event.new;
[00000206] Event_0x109324980

// Filter on lists.

at (e?([1, var y, "foo"]))
echo("[1, %s, \"foo\"]" % y);

e!(1, 2, "foo");
e!([1, 2, "foo"]);
[00000312] *** [1, 2, "foo"]

III. E XPRESSIONS ASEVENTS

The at blocks can also be used to monitor arbitrary
expressions:

var x = 1;
[00000001] 1

// The absence of question mark indicates we’re

// monitoring an expression, not an event.

at (x <= 0)
echo("x is negative")

onleave

echo("x isn’t negative anymore");

x = -1;
[00000002] -1
[00000003] *** x is negative
x = -2;
[00000004] -2
x = 1;
[00000005] 1
[00000006] *** x isn’t negative anymore

This is actually syntactic sugar on top of
makeEvent(exp). It turns any Boolean expression
into an event that triggers when the expression evaluates to
true, and stops when it becomes false again.

A. Durations

Gostai developed some robotic behaviors using event
constructs, for instance to trigger some reaction when a ball
is visible, or ceases to be. Because the object detection is not
perfect, the robot sometimes appeared to behave erratically.
This is easy to solve using some hysteresis mechanism, but
the result is cluttered uses of event constructs. The same
happens when implementing behaviors such as “do this when
the head of the robot is patted for two seconds”.

To address this issue urbiscript provides support to monitor
conditions that are sustained for some specified amount
of time: the handler may require an event to be sus-
tained for a given amount of time before being “accepted”
(at (exp ∼ duration)). The optionalonleave clause is
run when the condition is invalidated.

var x = 0;
[00001855] 0
at (0 < x ∼ 1s)

echo("%1.1f: at" % [time() - t0])
onleave

echo("%1.1f: onleave" % [time() - t0]);

t0 = time();
[00001862] 1.19469

// x is 1 for 1 second.

x = 1; sleep(1s);
[00001863] 1
[00002865] *** 1.0: at

// The event was triggered, it is not rerun.

sleep(1s);

// Reset.

x = 0;
[00003869] 0
[00003869] *** 2.0: onleave
// x is not positive long enough.

x = 1; sleep(0.9s); x = 0; sleep(0.5s);
[00003874] 1
[00004777] 0
// x is positive long enough.

x = 1; sleep(0.5s); x = 2; sleep(0.5s);
[00005281] 1
[00005783] 2
[00006283] *** 4.4: at

B. Main Usage: Arbitrary Event Monitoring

The main interest of this feature is to be able to monitor
in an event-driven way objects without requiring any special
facility from their part. Consider for instance a “car” object,
that has a “fuel” slot indicating the remaining fuel level. With
a classical approach, if we want to trigger an alert when
we’re running out of gas, the car would have to provide an
adequate event, and trigger it each time the fuel is altered
and is under a given threshold.

class Car
{

// The urbiscript constructor.

function init() {
var this.fuel = 1;
// We must manually create a specific

// event to signal low fuel level.

var this.lowFuel = Event.new;
};

// We must never update fuel directly, but use

// this setter, otherwise we might end up not

// sending the lowFuel event.

function updateFuel(var v) {
var previous = fuel;
fuel = v;
var threshold = 0.05;
// We must emit the event only if we just

// passed below the threshold.

if (previous >= threshold && v < threshold)
lowFuel!;

};
};
[00000735] Car

var car = Car.new;
[00000802] Car_0x109f322e0

at (car.lowFuel?)
echo("Warning, running out of gas!");

This method has several cons. It forces theCar imple-
menter to write a lot of boiler plate code, and to anticipate all
its user needs and provide the adequate events. For instance
here we cannot monitor other values of the fuel level. A more
generic interface would be to provide an event that triggers
each time the fuel level changes.

class Car
{

function init() {
var this.fuel = 1;
// We must manually create a specific

// event to signal low fuel level.

var this.fuelChanged = Event.new;
};

// We must never update fuel directly, but use

// this setter.

function updateFuel(var v) {
var previous = v;
fuel = v;
// For convenience, the event carries the

// previous and current values as payload.

fuelChanged!(previous, fuel);
};

};
[00000735] Car
var car = Car.new;
[00000783] Car_0x102ed0990

// Like before, give a warning on low fuel level.

at (car.fuelChanged?(var prev, var cur)
if 0.05 < prev && cur <= 0.05)

echo("Warning, running out of gas!");
// Also, check we do not overfill the tank.

at (car.fuelChanged?(var prev, var cur)
if prev < 0.95 && 0.95 <= cur)

stopFillingGas();

This approach allows the user to monitor the fuel level
for any condition. However, theCar implementer still has to
provide and trigger manually events for changing variables.
The Car user can monitor the fuel level in any way, but at
the expense of verbose and complexat constructs.

With the use ofat on arbitrary expressions, we can get
rid of all these problems: theCar implementer simply uses
the fuel slot naturally by directly affecting it values. Since
nothing special has to be done, he cannot forget to provide
any monitoring event. The user can monitor any condition
on the fuel slot, in a more concise way.

class Car
{

function init() { var this.fuel = 0.5 }
// No wrapper needed, directly update "fuel".

};
[00000735] Car
var car = Car.new;
[00000737] Car_0x102db0d80

// Car has a fuel level slot, a float.

car.fuel;
[00000000] 0.5

// Although Car wasn’t designed to emit fuel

// events, we can react to its variations.

at (car.fuel < 0.05)
echo("Warning, almost out of gas!");

at (0.95 < car.fuel)
stopFillingGas();

C. General Purpose Usage: Eased Flow Control

Another interesting usage of this feature is simplified
control flow in some situation. We can for instance separate a
stop condition from an algorithm with anat: the algorithm is
as soon as the condition is verified. We can then perform the
algorithm without worrying about checking our exit cases.

The following function is an example of synchronous flow
control. It searches a value in a list, sorted (dichotomy) or
not (linear search).

function find(var list, var val, var sorted)
{

var begin = 0;
var end = list.size;

// First, factor all our stop cases with ats.

// When we find the element, return its index.

at (list[begin] == val)
return begin;

// When we exhaust our search space, fail.

at (begin == end)
return -1;

// Now only the traversals remain.

if (sorted)
// Perform a dichotomy on sorted vectors.

loop

{
var middle = ((begin + end) / 2).floor;
if (list[middle] < val)

begin = middle + 1
else

end = middle
}

else

// Linear search on non-sorted vectors.

loop

begin++;
};

D. Implementation

The main concern is efficiency. A trivial implementation
would be simple busy-looping: checking at each instant (at
the end of every scheduler cycle) whether the condition is
true, and triggering the event if needed. This would work, but
is of course highly time and space (and energy!) expensive.

We could check the condition only at a given frequency,
but then we could miss some events, if the condition becomes
true and then false again between two checks. Moreover,
this would imply a potential delay between the realization
of the condition and the triggering of theat, which can be
acceptable for reading some robotic sensor, but not in our
previous vector-search algorithm. This would anyway not be
optimal, since we would probably end up doing too many
checks.

Our implementation uses a “push” model rather than a
“poll” one: instead of checking the condition arbitrarily to
see whether it changed, it’s the modification of any value that
might alter the expression that will trigger the reevaluation
of the expression, and potential triggering of the at block.
This is optimal, since the condition is reevaluated only if
there’s any chance it changed: if nothing related to yourat

happens, it won’t consume any CPU cycle.
To achieve this, when anat is first declared, the condition

is evaluated, and any mutable data encountered during this
evaluation is hooked for modification. Then every time some
of this data is altered, we reevaluate the condition and trigger
the at block if needed. When the condition is reevaluated,
the hooked variables list is also flushed and rebuilt since
it might differ, if we take another branch of a conditional
statement for instance.

var global = false;
[00000619] false

function test(var foo)
{ if (global) foo.a == 1 else foo.a == foo.b };

var foo = Object.new;
[00000620] Object_0x1091939d0
var foo.a = 1;
[00000621] 1
var foo.b = 2;
[00000621] 2

at ({echo("evaluate"); test(foo)})
echo("True!")

onleave

echo("False!");
[00000001] *** evaluate

// Hooked variables here are: global, foo,

// foo.a and foo.b.

// Altering foo.b triggers an evaluation,

// but does not alter the result or the hooked

// variables list.

foo.b = 3;
[00000002] *** evaluate
[00000002] 3
// Altering global makes the condition true.

global = true;
[00000003] *** evaluate
[00000004] *** True!
[00000002] true

// The list of hooked variables is now: global,

// foo, foo.a.

// Altering foo.b does not trigger a reevaluation,

// since it no longer participates.

foo.b = 2;
[00000006] 2

IV. FUTURE WORK

A. Handlers Synchronicity

As of today, urbiscript allows the emission of an event
to declare whether the event handlers must be performed
immediately (synchronous), or “later” (asynchronous). But
experience shows that some patterns are better treated when
it is on the handler side that synchronicity is chosen.

B. Congestion Control

As reported earlier, the (asynchronous) execution of event
handlers may result in several instances of event handlers
being run concurrently. Depending on the application this
might be a feature, or a nuisance.

There are several ways to process events whose handling is
long. Similarly to what the clock-directed loops in urbiscript
already do, bodies could be forbidden to overlap by waiting
for the previous handler to finish, they might need to be
preempted by newer event emissions, we could event manage
some priority scheme, with features that would allow to drop
obsolete events.

C. Urbi

The Urbi platform, as a middleware, already provides
support for emitting events at theC++ level, independently
of the urbiscript language. But the reception part is ongoing
work.

CONCLUSION

We have presented event-driven programming in urbis-
cript, the programming language of choice to orchestrate
UObjects (Urbi components). Together with the primitive
support for concurrency, it is the corner stone for the
Urbi paradigm for the development of robotic applications.
Although it bears resemblance to reactive programming lan-
guages, the urbiscript language is made to make experimenta-
tion easier by offering more opportunities for the additionof
featurea posteriori. Expression-based events are one typical
example: they allow to monitor events in a non-intrusive way,

without requiring that hooks were previously deployed in the
monitored objects.

Acknowledgments:The authors would like to thank
the anonymous reviewers for their suggestions, insight and
helpful comments.

REFERENCES

[1] Jean-Christophe Baillie. URBI: Towards a universal robotic low-level
programming language. InProceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS’05), pages 820–
825, 2005.

[2] Jean-Christophe Baillie, Akim Demaille, Quentin Hocquet, and
Matthieu Nottale. Tag: Job control in urbiscript. In Noury Bouraqadi,
editor, 5th National Conference on Control Architecture of Robots,
May 2010.

[3] Gérard Berry and Georges Gonthier. The ESTEREL synchronous pro-
gramming language: design, semantics, implementation.Sci. Comput.
Program., 19(2):87–152, 1992.

[4] Frédéric Boussinot. Reactive C: an extension of C to program reactive
systems.Softw. Pract. Exper., 21(4):401–428, 1991.

[5] Craig Chambers. The Cecil language specification and rationale:
Version 3.2. February 2004.

[6] A. Lúcia de Moura, N. Rodriguez, and R. Ierusalimschy. Coroutines
in Lua. Journal of Universal Computer Science, 10(7):910–925, July
2004. |http://www.jucs.org/jucs

[7] Steve Dekorte. Io: a small programming language. InCompanion
to the 20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications (OOPSLA’05),
pages 166–167, New York, NY, USA, 2005. ACM.

[8] Gostai. Gostai Studio.http://www.gostai.com/products/studio/gostai_studio,
2010.

[9] Gostai. Urbi SDK 2.2 manual.
http://www.gostai.com/downloads/urbi-sdk/2.2/doc/urbi-sdk.htmldir,
2010.

[10] Nicolas Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.The
synchronous dataflow programming language LUSTRE.Proceedings
of the IEEE, 79(9):1305–1320, September 1991.

[11] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Walde-
mar Celes Filho. Lua — an extensible extension language.Softw.
Pract. Exper., 26(6):635–652, 1996.

[12] Louis Mandel and Marc Pouzet. ReactiveML, a reactive extension to
ML. In Proceedings of 7th ACM SIGPLAN International conference
on Principles and Practice of Declarative Programming (PPDP’05),
Lisbon, Portugal, July 2005.

[13] Ana Lúcia De Moura and Roberto Ierusalimschy. Revisiting corou-
tines. ACM Trans. Program. Lang. Syst., 31(2):1–31, 2009.

[14] John Peterson, Greg Hager, and Paul Hudak. A language for declar-
ative robotic programming. InInternational Conference on Robotics
and Automation, 1999.

[15] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. ROS: an open-
source Robot Operating System. InICRA Workshop on Open Source
Software, 2009.

[16] Benoı̂t Sonntag and Dominique Colnet. Lisaac: The power of
simplicity at work for operating system. InIn Proceedings of
the 40th International Conference on Technology of Object-Oriented
Languages and Systems (TOOLS Pacific, pages 45–52. Australian
Computer Society, Inc, 2002.

[17] Christian Tismer. Continuations and Stackless Pythonor “how to
change a paradigm of an existing program”. Technical report, Virtual
Photonics GmbH, 2000.

[18] David Ungar and Randall B. Smith. SELF: The power of simplicity.
In Norman Meyrowitz, editor,Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’87), volume 22, pages 227–242, New York, NY, 1987. ACM
Press.

[19] Guido van Rossum. Python tutorial. Technical report, CWI (Centre for
Mathematics and Computer Science), Amsterdam, The Netherlands,
The Netherlands, 1995.

|
http://www.gostai.com/products/studio/gostai_studio
http://www.gostai.com/downloads/urbi-sdk/2.2/doc/urbi-sdk.htmldir

	I Urbi and urbiscript
	I-A The Urbi Platform
	I-B The urbiscript Programming Language
	I-C Concurrency

	II Events
	II-A Basic Events
	II-B Semantics
	II-C Filtering

	III Expressions as Events
	III-A Durations
	III-B Main Usage: Arbitrary Event Monitoring
	III-C General Purpose Usage: Eased Flow Control
	III-D Implementation

	IV Future Work
	IV-A Handlers Synchronicity
	IV-B Congestion Control
	IV-C Urbi

	References

