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Abstract

In this book we introduce a mathematically formalized concept of emotion,
robot’s education and other psychological parameters of intelligent robots. We also
introduce unitless coefficients characterizing an emotional memory of a robot.
Besides, the effect of a robot’s memory upon its emotional behavior is studied, and
theorems defining fellowship and conflicts in groups of robots are proved. Also
unitless parameters describing emotional states of those groups are introduced, and a
rule of making alternative (binary) decisions based on emotional selection is given.
We introduce a concept of equivalent educational process for robots and a concept of
efficiency coefficient of an educational process, and suggest an algorithm of
emotional contacts within a group of robots. And generally, we present and describe
a model of a virtual reality with emotional robots.

The book is meant for mathematical modeling specialists and emotional robot
software developers.

Translated from Russian by Julia Yu. Plotnikova

© Pensky O.G., Chernikov K.V. 2010
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INTRODUCTION

Emotions represent an essential part of human and animal psychological
activity.

Attempts to formalize mathematically the psychological behavior of higher
living beings were performed in a book «['unores3sl u alIropuTMbl MaTEMaTHUYECKOU
teopun ucumucinenus smouuit» (“Hypotheses and Algorithms of Emotion Calculus
Mathematical Theory”) edited by Professor Oleg G. Pensky and published by the
Perm State University (Russia) in 2009. Although the authors wanted this treatise to
be considered as an example of some scientific quest, it encountered strong
misunderstanding of psychologists in the city of Perm.

That book suggested mathematical models introducing and applying such terms
and concepts as ‘emotional education/upbringing’, ‘reeducation’, ‘temperament’,
‘conflict’, etc.; also the authors reviewed approaches to modeling of emotional
behavior of subjects, estimation of a psychological state in groups; there was as well
suggested a new approach to the description of some new economic phenomena
based on psychological theories.

The authors of the present paper completely agree that computer modeling of
emotions is hindered by ambiguity of living being emotional behavior.

Considering misunderstanding of psychologists, Professor Pensky decided to
adapt the results of his studies performed in 2009 to mathematical modeling of
emotional robots and give a further development to those ideas.

The treatise of professor Oleg G. Pensky titled “Mathematical Models of
Emotional Robots” was issued by the Perm State University printing office in 2010.

In the present book, same as in that one issued in 2010, the authors made an
attempt to create and mathematically describe a virtual reality of emotional robots,
which is based on such key terms as emotions and education, and includes
fellowship/concordance and conflicts between its inhabitants—robots which feature
various abilities, temperaments, memory, will-power, emotional work under
achieving goals, ‘diseases’, education process prospects and corresponding concepts
and terms.

Currently the American scientists [1] work on creation of an electronic copy of
a human being which would be called E-creature. By happy chance the present book
touches upon those very topics which are currently studied by our American
colleagues. We consider robots with a non-absolute memory, and this kind of
memory is a human being’s feature.

Of course, the mathematical theory of emotional robots which we call your
attention to in this book is far from perfection. But its authors never meant that this
theory claims to be global, and once again ask critics above all to consider this book
as an example of a scientific quest.

Acknowledgements
The authors are eternally indebted to Alexander Bolonkin, PhD, Professor of
NJIT for having the book discussed, for the description of E-creature information



modeling problems, for his guidance in advancing and presenting our theory of
emotional robots to the scientific community.

The authors highly appreciate useful notes concerning the content of this book
made by Tatiana S. Belozerova, PhD (Russia).



1. ROBOT’s EMOTION: DEFINITION

A theory of human psychology defines emotions as an organism response to
some stimulus [2]. Concerning robots, let us designate this stimulus as ‘subject’, and
define it as follows:

Let # be a time.

Definition 1.1. The function S(z) is referred as a ‘subject’ if it has the following
properties:

1. Function domain of §(?): ¢ € lO, t*l £ > 0, £ < 0
2. 8(1)>0 for any ¢ € lO, t*J;

3. S(¢) is the one-to-one function;
4. S(t) 1s the bounded function.

The paper [3] contains a theorem proving that it is possible for computer
software to model human and animal emotions. But psychological features of living
beings’ emotions are so intricate and ambiguous that we decided to introduce a
special mathematical definition of a robot’s emotion. In this definition we are
abstracting from real human emotions and, at the same time, accumulating general
features of human and animal emotions; we are also abstracting from the content of
emotions.

Definition 1.2. The function f(?), satisfying the equation f(¢) = a(S(¢),t)S(t) (with
a(s(t),t) the arbitrary function) is the function of robot’s inner emotional experience.

Let us state that the subject S(?) initiates robot’s inner emotional experience.

Definition 1.3. The robot’s inner emotional experience function M(z) is called
an ‘emotion’ if it satisfies the following conditions:

1. Function domain of M(¢): t € lO, tol 9> 0;

2.0 < t*(note that this condition is equivalent to emotion termination in case
the subject effect is either over or not over yet);

3. M(?) is the single-valued function;

4. M(0)=0;

5. M%) =0;

6. M(?) is the constant-sign function;
d ‘M (t)‘

dt

7. There is the derivative within the function domain;



8. There is the only point z within the function domain, such that z =0, =z # ¢

d d ‘M (t)‘

dt /=2
d‘M(l‘)‘
t

a

b

9. >0 with t < z;

d|M (t)

10. <0 witht<z.

Let us assume there is such J>0 that for any emotions of a robot the condition
‘M (t)‘ <J is valid.

Now we can easily see that the function M (z‘)=Psin(%tj for te [O,tOJ,
t

P = const, 1s an emotion.

Definition 1.4. The function M (¢)is called an ambivalent emotion if it can be

presented as the vector which elements are emotions initiated simultaneously by one
and the same subject.

We will not focus on the content of emotions, and, according to [4], below we
plan to take into account only the following things important to us:

1. Emotions have a sign (plus or minus).

2. An object has a finite number of emotions.

Based on (2) we conclude that the robot’s emotional state can be described by

the emotion vector M (¢) with the finite number of elements (cardinality) equal to #:
M) =[M|(@),...M, (1)].

Hereinafter, in case we speak about a single-type emotion, we will omit the
corresponding index mark, vector mark and will denote this by M(%).

Assume the emotion-free state of a robot as a zero emotion level.

It is obvious, that stimuli can be totally external, partially external (or ‘partially
memorized’) and internal. All of them may become a subject:

- totally external stimuli (which are not contained in the robot’s memory (see
Fig. 1.1)), may serve as a subject;

-‘partially memorized’ stimuli (when some part of information about them is
entered into the robot’s memory, and some part of it comes from the outside as
external experience (Fig. 2.2)) may also serve as a subject;

- internal stimuli (when full information about these stimuli is kept in the
robot’s memory (Fig. 1.3)) may serve as a subject, as well. This is the case when,
e.g., some recollection (past event memories) of a robot may generate emotions.



Robot’s Memory Subject
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Fig. 1.1. Totally external stimuli as a subject

Robot’s Memory Subject

N

Fig. 1.2. Partially external stimuli as a subject



Robot’s Memory Subject

\
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Fig. 1.3. Internal stimuli as a subject

Fig. 1.2 and Fig. 1.3 partially correspond with the psychological theory of S.
Schechter [4]. According to Schechter, the occurred emotional state of a person is
effected by his/her previous experience and his/her assessment of the current
situation, as well as by perceived stimuli and stimulus-initiated physical alterations.

Let us note, that when describing a subject and its belonging to the robot’s
memory we used the term ‘information’ which is measured in bits [5]. So, let us
advance the following hypothesis: a subject can be measured in bits of information
as well.

It is obvious, that different subjects can initiate one and the same emotion of a
robot, i.e. there is no one-to-one dependence between a subject and an emotion (Fig.
1.4).
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Emotion Subjects

O\

Fig. 1.4. Relation between Subjects and Emotion.

And also, one and the same subject can initiate different emotions of a robot [4]
(Fig.1.5).

Let us introduce the concept of the unit (or specific) emotion, similarly to
matter density in Physics [6],

Definition 1.5. The specific emotion a(S(?),t) of a robot is an emotion per single
subject unit.

Obviously, the specific emotion satisfies the following relation:
M
a(S(t),t)= M
S(®)
We can easily see that the sign of the robot’s emotion M (S(¢),¢) is determined
by the sign of the specific emotion a(S(?),?).

11
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Fig.1.5. Relation between robot’s emotions and a subject.

Mathematical theory of emotional robots described in this book considers the
cases shown in Fig. 1.4 and 1.5.

2. EDUCATION OF A ROBOT

Let us introduce the definition of emotional upbringing (emotional education)
of a robot abstracting from the psychological concept of education/ upbringing.

Definition 2.1. The upbringing or education of a robot is a relatively stable
attitude of this robot towards a subject.

From Definition 1.3 it follows that the robot’s emotion M(#) is the continuous
function on the segment[O, z‘], consequently M(t) is integrable on this segment.
Considering that, we can work out the following definition.

Definition 2.2. The elementary robot‘s education 7(¢) based on subjects S(?) is
the following function:

r(t) = fa(S(r),r)S(r)dr. (2.1)
0

The obvious mathematical features of the elementary education are as follows:

1) if a specific emotion sign coincides with a subject sign, then the
education is positive;

2)  in virtue of Definition 2.3, the function r(z) is differentiable with respect

dr()
t

to the parameter ¢, so the relation M (s(¢),¢) = is valid.

12



Let us consider that in the course of time a robot can forget emotions
experienced some time ago. Its current education is less and less effected by those
past (bygone) emotions. Consequently, past elementary educations initiated by those
emotions become forgotten as well.

Hence, the following definition becomes obvious.

Definition 2.3 The education of a robot R(z) based on the subjects S(?) is the
following function:

R(t)=r(r)+6;(t)R; (t;), (2.2)

where ¢ is the current time, ¢>¢;, 0<6;(t)<1. The current time satisfies the
relation ¢ =7 +¢;, where 7 1s the current time of the current emotion effect from the
beginning of its initiation, ¢; is the total time of all the formerly experienced
emotions effect, R;(¢;) is the education obtained by a robot in the time ¢;.

A verbal definition of education is as follows: it is a value determining
motivation stability of the robot’s behavior on a certain class of subjects.

It is obvious, that an education can be measured in bits of information similarly
to a subject, and, consequently, emotions are to be measured in bit per second (bit/s).

Definition 2.4. Coefficients 6,(¢) are the memory coefficients of events
experienced in the past, i.e. coefficients of the robot’s memory.

According to (2.2) we can write down a relation specifying the education in the
beginning of the i+1* emotion effect upon the robot:
R;,1(0) = r(0)+6,(0)R (7).
It is easy to see that the egs.
R, (0)=R.(t;), r(0)=0.
hold true.
Consequently 0, (0) =1 is valid.

Definition 2.5. A time step is the effect time of one emotion.

According to results obtained by psychological researches an emotion cannot
last more than 10 seconds. Therefore, let us assume that a time step value of any
robot emotion is less or equal to 10 sec.

Here and below psychological characteristics of robots corresponding to a
current moment of the time step are bracketed after the variable, and psychological
characteristics corresponding to the end of time steps are denoted without brackets.
For instance, R;(¢) defines a function of education altering for the current time ¢ of

the valid time step 7, and R; defines a value of education in the end of the time step i.

13



It is easy to see that the robot featuring the past event memory coefficient
identical with 1 remembers in detail all its past emotional educations. This robot can
be regarded as autistic. But let us suppose that the robot’s memories of the past
events are deleted, 1.e. the two-sided inequality 0<6; <1 1s valid for a forgetful

robot in the end of each time step. We are now in position to state a theorem for this
kind of robot.

Theorem 2.1. Educating the forgetful robot by means of positive emotions only
leads to satiety.

Proof:

It easy to see that Relation (2.2) is equivalent to

R(t)=r(2) +0;(O]ri—1 +0;_1 (OR; 2 |. (2.3)
Equation (2.3) can take the form
RO =r@)+01;1 +66_11;_2 66103+ +66_16 .. Bry. (2.4)

Since all the emotions are positive, elementary educations are positive, too;
since all the emotions are value-limited, and time of emotion effect 1s also limited,
so elementary educations are also limited. This makes us conclude that there are 6
and g of a forgetful robot for which the following inequalities hold true:

1>020;, q=r, g=2r(), (2.5)

where j =1,i, k=0,i—1.

Due to (2.4) u (2.5) we can obtain the upper bound of the function R(?)
variation. It will have the form

i-1 i1
R(H))<q+qY.07 <2¢> .6/ (2.6)
=0 Jj=0

The right side of (2.6) defines the sum of geometric progression terms, which
yields inequality
i1

R(t)<2q -y

(2.7)
Having passed to the limit under # — o or i — o in the right side of (2.7) we

get the upper bound of the education value:

R(t)<—=L (2.8)

14



Inequality (2.8) makes us conclude that the robot’s education based on positive
emotions has the upper bound, i.e. it is satiated.
The proof is now complete.

Psychological researches entirely confirm Theorem 2.1. According to their
results, it is not possible to bring up and train a person ad infinitum, as at some
certain moment he\she gets satiated [4], and passes to the next stage of his\her
emotional activity.

Definition 2.6. The limiting education U is the value corresponding to the end

9
1-6°

point of emotion effect time and satisfying the relation U =

Definition 2.7. Emotions initiating equal elementary educations are tantamount
(equivalent).

Definition 2.8. A uniformly forgetful robot is a forgetful robot whose memory
coefficients corresponding to the end point of emotion effect time are constant and
equal to each other.

Theorem 2.2. The education R; based on tantamount emotions of the

i

uniformly forgetful robot is defined by the relation R, =g¢ " , where ¢ is the

elementary education value, and i is the order number of the initiating tantamount
emotion from a quantity of emotions on which basis this education has been being
performed by the current time point.

Its proof'is evident from Theorem 2.1.

Also let us note the following. When performing a robot’s emotion by means of
software, it is impossible to predict the subject effect time. Therefore it is expedient
to model the emotions after subject effect is over.

Example:
Let us take the emotion function in a form

M(t) = Psin{ ; i (z‘ —f*)}, (2.9)

-t

. %k
with P = const, t € lt ,tOJ,

0 0 k k
¢"the fixed value, at that 1~ et , 2¢ |.

In (2.9) we replaced conditions 1, 2, 4, 5, 8 in the definition of emotion by the
following:

1. Function domain M(?): t € lt*, {0 J;

15



2.9 < Zt*;

4. M1 H)=0;
5. M%) =0;
8. Function domain contains an only point z, such that z ;tt*, z#t" and
d|M (1)] -
dt /t=z

Also let us note the following: according to (2.9), replacements of several
conditions of belonging of the robot’s inner emotional experience function M(¥) to
emotions do not require the currently considered theory to be revised.

Obviously, the time step r for Emotion (2.9) satisfies 7 =9 —t*, and the

elementary education » is computed by

/0

r= J'Psin[
t*

(t—t*)}dtzzpto_t* —2pL. (2.10)

T T

T
0 -+

We can easily see that during the education process Eq. (2.10) provides

0

. %
tantamount emotions under 7 =t~ —¢ = const.

Let us consider all the time steps to be equal to each other.

Below we give a theorem which mathematically characterizes deletion of the
past\bygone education memory data if those educations are not maintained by
emotions with the course of time. In this case the index i is defined by the relation

t . . . .
i= [—}, with ¢ the current time, o the effect time of the first and only emotion
o

causing the elementary education 7.

Theorem 2.3. The uniformly forgetful robot forgets its first and only elementary
education exponentially.

Proof. According to (2.4), if there is no constant emotional effect during some
period of time, then the robot’s education by the time ¢ satisfies the relation

Ri - 01-01-_101-_2...017"0. (211)
As far as the robot is uniformly forgetful, so 6, =6=const, with j=1i is

valid. Consequently, R, =6'r, holds true.
The proof is now complete.

16



The next theorem allows assessing the upper bound of the forgetful robot’s
current education in case when this robot had obtained only one elementary
education in the past.

Theorem 2.4. The current education of the forgetful robot obtained due to an

only positive elementary education satisfies the inequality R(t)SOHrO, with

020, j=1i.
Its proof is evident from (2.11).

Above we noted validity of
M =@ 2.12)
et :

Assuming that memory coefficients are differentiable functions and taking into
consideration (2.12) we get the formula for the sum (i.e. resulting) emotion V(?):
do;(t) dR;_{(¢
viny=20 c;t( ), lc;tl( )0,(1). (2.13)

+ Ri—l

(2.13) allows us to assert that sum emotions of the robot depend on past
educations, memory coefficients and their rate of change.

It is quite easy to see that for the robot with the absolute emotional memory

(6, =1, j=1,i) current sum emotions are not dependent on past educations.

Let robot’s elementary educations satisfy the following inequality:
‘rj‘éq. (2.14)

Under i tending to infinity and the inverse numeration of elementary
educations, (2.4) takes the form:

0 i—1
R=3r_, HHJ-. (2.15)
i=1 Jj=1

Definition 2.9. The robot’s education corresponding to (2.15) is an infinite
education.

Let us note that the infinite education convergence determines education
prospects.

17



Theorem 2.5. For the forgetful robot, the infinite education corresponding to
ends of time steps converges.

Proof. Let us show that Series (2.15) is absolutely convergent.

As 0<0; <1 holds true, so there is such ¢ less than unity, that §; <0 <1 (with

i =1,00 ) is valid.

By virtue of Inequality (2.14), Formula (2.15) and formula for finding a sum of
terms of a geometric progression [7] we develop a correlation

o0 i—1 o0 : q
S1rg| 110,55 g0 = <on.
i=1 j=1 i=0 1-6

So, Series (2.15) is absolutely convergent, consequently it converges.
The proof is now complete. Quod erat demonstrandum.

By virtue of the theorem given above, the relation
z=lim R; = lm r; + lim 0; lim R;_; 1s valid for the end of each time step of

[—>00 [—>00 i—o [0
the continuous education process, and this relation is equivalent to
z=lim r; + lim 6;z. (2.16)
[—>0 [—>0

(2.16) allows to enunciate the following theorem.

Theorem 2.6. The wuniformly forgetful robot’s elementary education
corresponding to ends of time steps in the course of continuous education process
tends to be constant.

Proof.

As 0; =0 =const <1, i=10,

holds true for the uniformly forgetful robot, by virtue of (3.16) the elementary
education sequence corresponding to ends of education time steps, has a limit.
Thus the theorem is proved.

Corollary 2.1. For the uniformly forgetful robot lim 7; = (l -0 )z is valid.
I—00

The proof follows from (2.16).

Let us assess the extent of error of the infinite education value provided when &
terms of series are used for assessing the sum of Series (2.15).

It is easy to see that the inverse numeration of elementary educations makes the
error of

18



bry1=| 2 n 110 satisfy by < 97 under finite summation of & terms of
i=k+1 j=1 1-6
series.

Obviously, an education cannot be performed continuously: after the series of
emotional effects there comes a slack period in this education.

Let us introduce a supplementary definition.

Definition 2.10. A complete education cycle is a quantity of time steps equal to
the sum of time steps under the effect of education emotions and a number of time
steps corresponding with the slack period (absence of elementary education effects
upon the robot) till the next emotional education effect.

Let us consider the education process of the uniformly forgetful robot with
tantamount emotions.
It is easy to see that according to Theorems 2.2 and 2.3 the education F 1k

for the first complete education cycle of the uniformly forgetful robot based on

tantamount emotions with equal periods satisfies the following relation:

1-67
1-6

where j, 1s the quantity of time steps in the presence of education effects upon the

k
F, . =q0" : (2.17)

robot, k; is the quantity of time steps in their absence.
Obviously, the education F; ; -, obtained by the robot as a result of n complete

education cycles is determined by the equality

1 _ jn .
Fi & =% q_@ +0]"an_]’kn_] : (2.18)
1-6
From the forms of Relations (2.17) — (2.18) it follows thatQ; , -, set by the

equalityQ; ;= Ik , does not depend on ¢g. Since g=const is valid, then

Q; &,

complete education cycles.

is a unitless measure for assessing the education obtained by the robot in n

Definition 2.11. The function €, , is a memory function.

It is evident that the memory function shows to what extent tantamount
educational emotions are memorized by the robot in the course of the educational
process.

Let U defines the value equal to the maximal (satiated) education. Assuming
that emotions are tantamount and memory coefficients are equal to one and the same

19



constant, we pass to the limit in both parts of Equality (2.2) under the quantity of
time steps tending to infinity. As a result we get

lim r(1)=U(1-0)=q.

1—>0

So, the robot’s education R, obtained in the first complete education cycle is
determined by the formula
R=0M (1—91'1 b

It easy to see that the function G(k, j,), satistfying the relation

Gtk j) =K =010 ) (2.19)

determines deviation of the education from its satiety: the closer is G(ky, j;)
(with the given values kjand j;) to 1, the closer the robot’s education is to its
satiety, and vice versa.

Definition 2.12. The function G(kq, j;) is a satiety indicator.

It is easy to see that the satiety indicator for the fixed k;and j, has a maximum

value when the condition
1

gz(j ’_‘:k jj‘ (2.20)
1 1

Inserting (2.20) to Relation (2.19) we get the formula specifying the maximal
value G, of the satiety indicator in the end of the first complete upbringing cycle.

holds true.

ky

G — ( kl j]] jl
max . . *
h+k ) ji+k
. . ok, o
Definition 2.13. The function B ; =12 is a complete satiety indicator.
Ji’l ’kf’l U

In the conclusion of this chapter we give several statements concerning the non-
uniformly forgetful robot with non-tantamount emotions.

It easy to see that for this kind of robot in the end of n complete education
cycles the general education function Vl[n]z , defining the education obtained during
n>'n

those cycles, satisfies the relation

20



] <L) Lp] P B (P11
p _ p p p p 2
Vel = Ok P+1+kz:1 re 1]H19] + 11719 le g

b

ll z[l] il +1

v o=l e | A+ x AN 1 17 ol :

ll’ll k=1 I +1 k=1 j= -1 J

_ lpl
where [z] denotes variables corresponding to the i-th education cycle, i =1,n, 0
corresponds to memory coefficients of the p-th cycle for time steps without
emotional educations, & is the number of the time step without emotional educations,
I, is the quantity of time steps in the p-th cycle without emotional effects, i, is the
quantity of time steps in the p-th education cycle with continuous emotional
education effects.

Obviously, for the forgetful robot the following inequalities are valid:

Pl < F . Y O 1 , _
[1] . g0
‘Vll i <Fiys Fiy =99 1-0°

~LP] _ _ _
where @ =max(6; , 6)),i=1i,, j=Ll,, p=Ln.

Let us introduce the following definition.

Definition 2.14. The generalized memory function Wl[n]. is a value satisfying
n»°n

Lyl

the relation Wy, ; = no!
q

n

Definition 2.15. The generalized education satiety indicator is the function
vl (-6
wln] _| Lyt |( )
ln,zn q '

Based on the definitions given above we conclude that the generalized memory
function and the generalized education satiety indicator are unitless functions.
It is obvious that the generalized education satiety indicator satisfies the

inequality 0 < W[n] <1.

i’l’l’l

21



3. PARAMETERS OF A GROUP OF EMOTIONAL ROBOTS

Let us consider a problem connected with studying emotional conditions of the
group of robots. The theory given below represents one of attempts to formalize
mathematically the solution of this problem.

Definition 3.1. The sum (i.e. resulting) education of the group including =
robots belonging to the set Q, based on the subject S(?) is computed as follows:

Wo = 2 jai(S(r),r)S(r)dr. (3.1)
ieQ, 0

Suppose we have two groups including p and k robots and forming two sets €2,
Q. correspondingly, where Q ,UQ;, =Q,, Q NQ =8, Q #®, Q #&.

Let us find out when the utmost psychological conflict between those groups can
occur on one and the same class of subjects. It is obvious that, for instance, hatred
(odium) is determined by opposite-signed sum educations of rival groups; also it is

n»

/4
obvious that the equality W—Q"z—l (wWhere WQp #0) 1s to hold true so that the

Q,

utmost confrontation between robot groups become possible.
The converse proposition is valid:

If a sum education of two groups is equal to zero and an education of at least
one robot is nonzero, then the utmost confrontation is most likely possible between
two groups of robots.

Below we give the proof of this statement:

Suppose W, =0, then k and p can be selected so that k+p=n, as well as Qand

Q, can be selected so that W, =Wq +W9p =0 1s valid, 1.e. 2 — _1 under

WQP

WQp # (0, which required to be proved.

Based on this we get Theorem 3.1. The necessary and sufficient condition for
the utmost confrontation between robot groups including at least one robot with a
nonzero education is that the sum education of those groups equals to zero.

Obviously, the farther is ‘WQk‘ from zero, the worse is the confrontation.

The given theorem helps us to define the most rival pairs of robots or robot
groups. To find out the pairs of rival groups it is enough to calculate each robot
education and then obtain a set of all possible sum educations (e.g., by enumerative
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technique, manually or by computer). Sets of robots with sum educations close to
zero make up rival risk groups.

It is easy to see that the greater the sum education of a group differs from zero,
the more united (or, better say, more serried) this group is.

Suppose the sum education of members of the first group obtained in the course

of several complete education cycles W satisfies the relation

n
will = > V_[H] , and the corresponding sum education of the second group is

(1]
— k
Jj=1 lpj kpj
[2] = § pl2] ~
computed by the formula W' = % V.[z] L2 where the index [1] or [2] denotes
j_l lpj > kp .
j

belonging to Group 1 or Group 2, n is a quantity of robots in Group 1, m is a
quantity of robots in Group 2.
Then the condition of rivalry between those groups is defined by the relation
wlll w2l = 0, which is equivalent to
n m
[1] [2] _
aVi[u (T aVi[zl o =0
J= pj’ kpj J= pj’ kpj

Definition 3.2. Re-education (re-bringing) is change of the education sign to the
opposite one.

Obviously, Group 1 including k robots can re-educate Group 2 including p

b

W,
robots in its favour if the equality WQk =0 where QO=#-1, ‘WQk‘>‘WQP

Q,

WQp Wq, <0 holds true by the beginning of the re-educating process. The greater Q

differs from -1, the more effective is this re-education.

Definition 3.3. There 1s an emotional conflict in the group at the time ¢, if the

n
sum of emotions of each member in the group is equal to zero, i.e. Y M, (t,) =0.
i=1

Obviously, if at the time #, sum emotions and educations of members of the

group are equal to zero, then there is the open conflict threat at its utmost stage.

Let us consider conditions of the conflict between uniformly forgetful robots
with tantamount emotions.

According to the definitions given above, the limiting education of the first
uniformly forgetful robot U, educated by tantamount emotions, satisfies the relation

U, = el , and the limiting education of the second tantamount emotions, is

Y1
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defined by wuniformly forgetful robot U, also educated by the relation

U, = 7 where 0, and 0, are memory coefficients, g, and g, are values of the
-0,

corresponding elementary educations. Suppose in the course of an infinite education

process robots come to an education conflict. This implies that the formula U, =U,

1s valid, and so is the relation

q91 9>
= ) 3.2
1-6, 1-6, (3-2)

Equality (3.2) allows us to compute the approximate interdependence of
memory coefficients of two uniformly forgetful robots conflicting on tantamount
emotions:

0, =1-(1-0,)42 . (3.3)
91
It is obvious, that if coefficients 8, and 6, are not connected by Relation (2.6),

then Robot 1 and Robot 2 will never come to an education conflict at the limit.

Above in Chapter 2 we showed that in the course of j continuous education
effects on Robot 1 and i continuous education effects on Robot 2 the corresponding
educations can be described as

1-6/ 1-6!
RlI_ 1200 g 170
TN e T T2 0,
Then the condition of the onset of the conflict in the education process can be
computed by the equality
1-¢/  1-6]

—g, 2120,

q1 (3.4)

But we can state that if memory coefficients 6, and 6, are not connected by

Relation (3.3), then the conflict between robots ceases with time by itself, i.e.
without any extra emotional effects different from already existing emotion effects.

4. FRIENDSHIP BETWEEN ROBOTS: FELLOWSHIP
(CONCORDANCE)

This chapter represents an attempt to introduce the term and concept of
“friendship between robots”, which we prefer to characterize as fellowship or
concordance of robots.

Here we introduce a couple of definitions.

Definition 4.1. The group of robots is a united fellowship if individual
educations of each member are positive.
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Definition 4.2. If individual educations of a fellowship are not less than £y >0,
then P is the fellowship value of this group.

Theorem 4.1. There exists ¢ such that a fellowship value of a fellowship is .

Proof: As this group of robots is a fellowship, then individual educations

R; (i=1,n) of each member satisfy the condition R; > 0. Therefore there exists a

value £>0 such that the inequalities R; >&, i=1,n hold true.
This completes the proof of the Theorem.

Definition 4.3. Suppose individual educations of a group including » robots are
positive. A sum (total) fellowship value of n robots is a sum of all individual
education values of robots in this group.

Assume that a set of n robots is divided into two sub-groups. Suppose the first
Sub-group including m robots is more united and affinitive of the two fellowships,
and its fellowship value is Fy. So, the sum/total fellowship value of the first Sub-

group P is computed by the equality P =mF.

Assume the second Sub-group includes n-m robots and has a fellowship value
Rg. Then the sum/total fellowship value of the first Sub-group A is defined by the
equality 4 =(n—-m)Ry.

Obviously, the sum/total fellowship value R of two sub-groups is defined by the

formula
R=P+A=mFy+(n-m)R. 4.1)

Assume the mequality Fy > R holds true.

Suppose members of the second Sub-group are robots with equal tantamount
emotions ¢ and uniformly forgetful with equal memory coefficients 6.

We state the following problem: let us define the education condition for robots
of the second Sub-group, under which it is possible for the fellowship coefficient of
the second Sub-group to become equal or more than the fellowship coefficient of the
first Sub-group as a result of education of robots in the second Sub-group.

Based on (4.1) we conclude that this condition is determined by the inequality

mPO + (I’l — m)R* > nPO 5 (42)

where R« is the education value of each robot in the second sub-group after the

education process had started.
It is easy to see that Relation (4.2) is equivalent to the formula
R« > Fy. (4.3)
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Let us effect simultaneously on each robot of the second sub-group by
tantamount emotions until Condition (4.3) becomes to hold true. Obviously, by the
end of the education process the relation

_pnJ .
! 00 +0‘]R02P0

q

is to hold true, where j is a quantity of education process time steps for robots of the
second sub-group.

So, for finding the least quantity (number) of the necessary education time
steps with the given memory coefficients of robots of the second sub-group we are
to solve the following problem:

solve for
| o1-67
min,| g + 6 RO — PO (44)
Jz1 -0
under
_pnJ :
ql 00 +0‘]R0—P020.

Let us prove the theorem.

Theorem 4.2. If the relation " q@ + Ry < Fy 1s valid, then Problem (4.4) has no

solution.

Proof. Since robots in the second sub-group are uniformly forgetful, then the
two-sided inequality 0<6 <1 holds true. So, Theorem 4.2 statement yields a
formula valid for any time step value ;:

_pJ .
! 00 +0‘]R0<P0

q

This formula implies that the limiting condition in Problem (4.4) is never to
hold true. Therefore, this task has no solution under this theorem statement.
This completes the proof.

In other words, the theorem implies the following: “education effects not
necessarily make robots achieve equal fellowship (i.e. concordance) between
members of the group with the given fellowship value”.

5. EQUIVALENT EDUCATION PROCESSES

Definition 5.1. The equivalent education process is a continuous education
process corresponding to an education with tantamount emotions, equal memory
coefficients and featuring the minimal deviation at all the education assessment node
points from the values of a real continuous education process of a robot.
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5.1. MATHEMATICAL MODEL OF EQUIVALENT EDUCATION
PROCESSES

Suppose education values of a real continuous process are established in the end

of each period by values R;, j=1,n, where n is a total quantity of education time
steps. Also suppose conditions
R]+12R] >0,j:1,n_—1. (51)

are valid.

Now we approximate the real education process to an equivalent education
process. To do this we need to find such 6, g under which the objective function

reaches its minimum

n

. 2

j-1 1-9/71

JO.q)= 3| R;-077 1R —g - (5.2)
=2 1-6

So, in order to develop the equivalent education process we need to solve the
equation set

aJ(0.q9) _, 9/00.q) _

0. 5.3
00 oq (-3)

Considering Relation (5.2), Equation set (5.3) in its expanded version takes the
form:

n . _pJ-1 .
> [Rj_HJ_IRI_Q%J(I_HJ_I):(): (5.4)
j=2 -

= 1-6/71Y = 1-6/7'—(j-1)0/7%(1-6
[Rj_elel_q_____}%J_Daj2R1_q =177 (1-0)

I M=

Jj=2 1-6 (1-0)°

(5.5)

Since for adequately selected time steps the solutions of Equation sets (5.4) —

(5.5) have to satisfy the conditions
0<6<l1,4q20, (5.6)

then, due to checking on validity of (5.6) we can estimate adequacy of the
equivalent process to the real education process.

Coefficients 0, g solved out of Egs. (5.4) — (5.5) allow us to find approximately
the limiting value of the education of the continuous process Z. Obviously, Z
satisfies the relation
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. _gi-!
Z= 1im[Rlef‘1+q1 4 leqe'

Let us assess the error in calculations of the limiting education in the real
continuous process through the equivalent education process.

According to the formula of continuous education in the real process, the
relation

R =7 +0; R] 1+ H@le (57)

holds true.
In (5.7) we pass to the limit under the time tending to inﬁnity'

lim R; = lim r; + lim 0; lim R; ;+ lim IY OrR" (5.8)

Jj—® Jj—® J—o ]—)oo Jook=1

According to the theorem of education convergence, the
relation lim R j=D>0 holds true. Hence, Relation (5.8) is tantamount to the
J—>0
equality

D= lim r; + lim QJ-D.
Jj—0 t—

So the value D satisfies the relation

Iim r»

Jj—©

=L 5.9
1—11m0 (5:9)
j—o

Suppose the inequality
lim ~
o 5 4 (5.10)
- lm6; 1-6
Jj—®©

holds true.

Considering the last inequality and Relation (5.9) we get the following formula:

(5.11)

lim Vj - b
o q M q M —q N q0-M06

where M = maxrj,e max@
J J

28



lim » j
J —>_OO < 9
- lm6; 1-6
Jj—©
Obviously, in this case the limiting education error estimate satisfies the
relations

Let us consider the case corresponding to the inequality

lim r; 1-0 |-M1-0 5.12
N =L A A{q( —j a-o (5.12)

T1-0 1-1lim6, 1-6 1

Jim 6, 9 (1-9)(1—@)

where M =minr;, 0=minf;, j=10.

Relations (5.11) and (5.12) allow us to get the error estimate X of the limiting
education under approximation of the real process to the equivalent education
process. Obviously, in the general case it can be found by the formula

- 1-60|-M(1-6
M—q q0- M0 q[ _j _( ) .

[1_5J(1—9)+[1—5J(1—9) (1“9)(1‘@

Analyzing Formulas (5.11) and (5.12) we can state that the worse is the robot’s
emotional memory the less is the error estimate of the limiting education.
Also, (5.11) and (5.12) allow us to state that the formula

- ~ 1
jh_r)nooRJ 10 (5.13)
holds true if the matter concerns a forgetful robot.

By virtue of (5.1), Relation (5.13) allows us to find approximately the limiting
education of a robot for the real educating process on the basis of the equivalent
educating process.

It is easy to see that (5.9) implies the relation

X <ma

9

R] S&_, J:l)CD

1-6
which is the upper bound of the education value of the forgetful robot’s real
education process.

5.2. ALTERNATIVE TO AN OBJECTIVE FUNCTION UNDER
COINCIDENCE OF TIME STEPS OF REAL AND EQUIVALENT
EDUCATION PROCESSES

Let us introduce a simpler objective function such that its minimization can
give us the coefficients 8 and ¢ which define the equivalent education process
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2

Lneﬂ)=fo,—q—mg4).
=2

Validity of this objective function for designing an equivalent education process
follows from the formula of education of a robot with tantamount emotions and

equal memory coefficients: R; =g +0R;_;.
In order to minimize this function let us solve the following equation set:

aJ0.9) _
00 ’
aJ0.9) _
oq '

Now we are to find the corresponding derivatives:

0J(0,q) _
vO.9) 2%( g OR,, ).
oq

Then the system takes the form

(Ri —q—06R;_, )Ri—l =0,

-

Il
\S)

(Ri —q _HRi—l): 0.

-

Il
V)

Now simplify this and get
n n n
2
2RR_ —q) R -0 (R ) =
i=2 i=2

i=2
>R, —q(n-1)-60> R, =0.
i=2 i=2

The system is linear relative to 8 and ¢q so let’s express 6 and g as R,. Out

of the second equation we get

Substitution of ¢ into the first equation gives
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ZRiRl 1 ZRI ]_OZ(RI ]) =0
=2 =2 =21
n n n 2
. Z R; ) R, (Z R; J u
QZRI'RI . =2 i=2 +0 i=2 _GZ(RI'_])Z =0
i=2 n-1 pary
n n 2
$r5n, (S
C>Z:RIRI 1~ -2 = _0 Z(Rz ]) =2/ =0,
i=2 n— i=2 n -1
. 2R R, . o
ZRiRi—l =2 = (n _l)zRiRi—l - ZRi ZRi-l
g = i=2 n-1 _ i=2 i=2 =2
n 2 n n 2 '
n (ZRHJ (”‘DZ(Ri—l)Z _(ZRi—]j
Z(Ri 02— i=2 i=2 i=2
i=2 n—1
Consequently,
n n n
" (n-DYRR -2 R YR, "
=2 =2 =2
zRi - : : : 2 zRi—l
— n 5 n i=2
(n— 1)2 (Ri.)” — (Z R, j
q= i=2 i=2
n—1

So, under known education values of the real education process of a robot
R;,i=1,n we get unique values of 6 and ¢ for which the conditions
0<60<1, g=0 are to be valid.

If the obtained values satisfy all the limitations mentioned above, then the
coefficients 6 and ¢ define the equivalent education process. If the obtained values

do not satisfy those limitations, then it is not possible to develop any equivalent
education process with the same time steps as in the real education process and with

the corresponding educations R;,i = 1,n of the real education process.
The obtained coefficients € and g allow us to find approximately the limiting
value of the real education process. Let Z be the limiting value; then

Z =lm(q+6R,_|)=q+0Z.
[—©
q

Out of this we get Z = ——.
1-6

According to the formula of the continuous education process the relation
R, =1 +6,R;_,
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is valid.
Having passed to the limit in this relation we get
lim R; =lim 7; + lim 6, lim R, ;.
1—>0 1—>0 1—>0 1—>0
According to Theorem 2.1 of forgetful robot’s education convergence at
IimR, =D >0
positive emotions, the relation i—>* holds true. Hence, we get

D=1lmr +1im6,D,
[—>0 [—
lim 7,
— I—>0 ‘

[—

lim 7,
1-lim6, 1-6

[—»00

Let ; then we get the following formula:

Doy i g M, g M(-0)-g(-0)
1-limg, 1-60 1-6, 1-0 (1-0,)(1-6)

i—0

>

with: M| = maxrl-,e_l =max 0;,i =1,
1 1
lim 7;
Let us consider the case when —== <1 , out of it we get the following
l1-lm@; 1-0
[—>00

formula:

limr, )
9 _ iggr’ <« 49 _ Ma ZQ(1—921_M2(1—9)
1-6 1-1lim6,  1-6 1-6, 1-6,)1-06)

i—00

where M, =minr;,0, =min0;,i =1,
i i

The obtained relations are necessary for computing an error of the limiting
education under approximation of the real education process to the equivalent
education process. The error X is found by

Xgma){Ml(l—@)—Q(l—Ql) q(l—@z)—Mz(l_g)]-

(1-6)1-6) ~  (1-6,)(1-06)
Analyzing the inequality described above we conclude that the worse is the
robot’s emotional memory, the less is the error of limiting education computing.

Example. Let us consider an example of equivalent education process
development.

32



Suppose the real education process includes three education time steps

Ry, Ry, Ry ith R =LRy; =3, Ry =4 By the formulas given above we find 6 and

g, and get
% _7* 1
g2 15-774 14
2*¥10-16 2
_ %
_7-05 42222‘5
2 2

Atthat, 0<60 <1, g >0 are valid.

So, we obtained an approximation of the real education process including three
time steps with the real education R, =1,R, =3,R; =4 to the equivalent education

process with tantamount emotions under g =2.5 and equal memory coefficients

0=05.
Based on the obtained values, we can find the approximate value of the limiting

education Z . Simple calculations lead to the following relation: Z ~ % =35.

5.3. GENERALIZATION IN CASE OF NONCOINCIDENCE OF TIME
STEPS OF REAL AND EQUIVALENT EDUCATION PROCESSES

Speaking about generalization, assume that a number of education time steps in
the equivalent education process may differ from their number in the real education
process. For instance, the end of the second time step of the real education process
may coincide with the end of the second or more time step of the equivalent
education process.

Noncoincidence of time steps for education processes can occur due to
randomness in timing of educations of the real education process. Education values
of the real process can be approximately restored for each time step in the course of
development of the equivalent education process.

Assuming that the equivalent education process is continuous, we can suppose
that during each time step our robot is effected by a tantamount emotion with the

elementary education 7 .
It is easy to see that the objective function can be presented as follows:

' ' n 1— jS 2
J(0.4, jises ju)=2| Ri —q ) (5.14)
i=1 1-6
where R;is the education value of the real education process after the time step i,
1-67i . . . .
and g characterizes the education obtained as a result of the equivalent

education process after the time step j; .

So, in order to develop the equivalent education process it is necessary to
minimize Objective function (5.14). For that we need to solve the following equation
set:
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a'](eaqajla"'ajn) —
00 ’
a'](eaqajla"':jn)
q

=0.

Then the equation set for finding will take a form

_pli . .
Z{R,- e ][f,-eff‘la—e)wﬁ ~1)=0,

i=1 1-0
n 1_9]1'

R, - =0,
gl{ 4, ]
0<0<1,g>0

Example.
Assuming that R, =3,R, =6,R; =10 hold true and applying the cyclic data

search method for Objective function (5.14) minimization with an enumeration step
equal to 0.1 for ¢ and 6 , and an enumeration step equal to 1 for j,, and with
variation intervals of g between 0.1 and 2.9, 6 - between 0.09 1o 0.99. j,- between
1 no 100, we get the following values: ¢=0.2, 6=099. j, =16, j, =35,
J3 =69 . Obviously, the limiting education equals 20. The computation results show

that under found parameters of the equivalent education process the value of (5.14)
equals 0.0056, 1.e. the developed equivalent education process approximates the real
one quite closely.

6. METHOD OF APPROXIMATE DEFINITION OF MEMORY
COEFFICIENT FUNCTION

In Chapter 2 we proved the following equality for the beginning of each time
step:

0,(0)=1i=1,0. (6.1)
Now let us express the memory coefficients 6;(¢) in the following form
0,(t)y=a;t+b;,
where a;, b, are constants which are not dependent on the current time ¢ of

emotion effect.
According to (6.1) and relations for finding the coefficients a;, b, we can

work out the following equations system:

ai0+bl~ :1, (62)
a;(t; —t;1)+b; =6 (6.3)

34



with ¢;_;,t;, the time of the beginning of the i-th time step; 0, the memory

1
coefficient of the equivalent process.

We obtain relations allowing us to find the unknown values in Equation system
(6.2) — (6.3) provided that parameters of the equivalent process are found on the
basis of

The objective function given in Section 5.2.

It is easy to see that the sought-for values are found by the explicit formulas
b, =1,

n n n
(n— 1)2 RR;_ | - Z R, Z R,
i=2 i=2 =2 _1

2
(n— DZ (Ri—l )2 - (Z R j
i=2 i=2
a. =

1 >

li =l
where n is the number of time steps for which successive values of the robot’s
education R; are known, as well as time step which are defined by the values ¢,_;, ¢;,

i=Ln.

7. MATHEMATICAL MODEL OF FORMING TANTAMOUNT ROBOT
SUB-GROUPS

This chapter describes one of the ways to make up groups of robots with equal
sum educations.
Let us consider a group of k robots, where each robot has its order number i,

where i =1,k .
Suppose the robot 7 has its education R;. Then the sum education of the group

k
of robots 4 satisfies the relation 4 =) R, .
i=1

Problem: Out of the set Q including all the robots, let us make up sub-groups
- n
which are nonoverlapping subsets Q ,, p=Ln (n<k), U Q, 6 =Q, so that sum
p=1

education values of the obtained sub-groups are least different from each other.

Let us give the following definition and prove the auxiliary theorem.
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Definition 7.1. The average education F), of the group p is a value satisfying

LR,

jeQ

P

the relation F), = , where N, is the quantity of robot units in the set Q.

p

n
Theorem 7.1. The sum education 4 satisfies the equality 4 =) N,F,.
i=1

Proof. It is easy to see the validity of the equality chain
2R
N.F, =N, {2 = >R, (7.1)
N; JEeQ,;

Summing (7.1) with respect to all the values i we get

n n k n
SNE=Y Y R =R =A,ie. Y NF =A
i=1 i=1jeQ; s=1 i=1

The proof is complete.

Let us introduce the objective function in a form:

n-1 n

J=Y Y(NF-N,F .
i=1j=i+l
Now the problem put above can be mathematically described as follows:
solve for
min J(X/, %j (7.2)
N, F;

under limits

n n
SN, =k, YN,F,=A4, N,>0, i=ln.
i=1 i=1

Problem (7.2) deals with determination of conditional extremum of function of
several variables, so it can be easily solved by the well-known Lagrange method.

As a result of applying the Lagrange method to the solution of this Problem we
get the roots of the following equation system:

_ n
2F, S (NF = N,F,)=4 - 4F =0, i=tn—1,2.N; =k=0,

J=i+l i=1

n—1
23 (N,F, = N,F,)+ 2, =0, (7.3)
i=l1
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S NE-A=0, 23 (NE-NF)-2,=0, i=lLn-1,

i=l j=i+l
n—1

2F, > (N,F,— N,F,)+ A + A,F, =0,
i=1

where 41 Ay are the Lagrange method auxiliary variables.

In the general case, the question about existing and uniqueness of the solution
of the nonlinear algebraic equation set (7.3), and about mathematical ways of its
solution is still open-ended.

Now let us consider the task which is a little bit different, though similar to
Problem (7.2) in its statement. In this new problem statement we suppose that the
quantity of robots N, in the groups €, is already predetermined. It is quite easy to

see that in this case the mathematical statement of the problem will have the
following form:
solve for

min J(%j (7.4)

n
under » N,F;, = 4

i=l

According to the Lagrange method, Problem (7.4) solution is reduced to just
finding the roots of the linear equation set

n
2 Y (N.F-N;F;)-2=0, i=ln-1,
j=i+l

S N,F,—A=0, (7.5)
i=1

n—1
2Z(N1F; _NnFn)_‘_;t:O?
i=1

where A is the Lagrange method auxiliary variable.

It is easy to show that the major equation determinant in this equation set is
nonzero (e.g., the case when n=2 means that the group is split into two sub-
groups), 1.e. with such # this set always has a unique solution.

Definition 7.2. Sub-groups with the values F;, i=1,n obtained in the solution

of Problem (7.4) are tantamount ones.

Definition 7.3. Sub-groups with the values /;, i=1,n which are the solution of

Problem (7.4) and which make the objective function J reach its minimum equal to
zero are absolutely tantamount sub-groups.
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Let us define simple conditions under which the sub-groups being formed are
absolutely tantamount.

The minimum of the function J (F j obviously equals to zero when the

relations

N.F,=N,F;, i=ln-1, j=i+ln,

, hold true.
ZNZ-FZ- =A.

i=1

It is easy to see that under n =2 the sub-groups become absolutely tantamount
when the relations

A A
F, =—— hold true.

2N, 2N,

The solution of Problem (5.9) allows us to get numerical values of abstract
average educations which may not coincide with real average educations of sub-
groups being formed. This is connected with the fact that average educations of all
real sub-groups are known values and, consequently, absolutely tantamount sub-
groups might not be obtained basing on educations of single robot units. This is also
the reason why it is not always possible to split a set of robots into tantamount sub-
groups.

£

8. ALGORITHM FOR FORMING TANTAMOUNT SUB-GROUPS OF
ROBOT

Below we give an algorithm for making up real robot sub-groups closest to
tantamount ones:

1. Set up values N, ..., N, determining a quantity (number) of robots in each

n
sub-group being formed, with ) N, = k.
i=1

2. Make up the array Z of different sets Z = {QNl’y,...,QNn’y }Cy]=1 (g 1s the
quantity of set pools in the array 7), such that

oy = Oy, Ny, =R i), i=ln j=ln
3. Based on Step 2 find the value of the function J (;7 j for each pool of sets

Qe .
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4. Define numbers of y for which the corresponding sets make the objective

function J (F j reach its minimum.

5. Arrange a visual output of sets Qy ....Qy , corresponding to the

minimum values of J (;7 j )

Note that performing Step 2 on a computer one may use well-known computer
algorithms of combinatory analysis given in [8].

Having selected the sets including robot sub-groups with the closest sum
educations, we can assess their equivalence, i.e. to what extent those sub-groups are
tantamount towards each other, by comparing average educations of those sub-
groups to the values F; which are the solution result of Problem (7.4).

For assessing the closeness V of the formed sub-groups to the tantamount ones,

we suggest applying the following formula:
D. - F, -
V= maxw, i=Ln, D; are real average educations of each of formed sub-
i i

group. Obviously, the nearer is V to zero, the closer are the formed sub-groups to
each other.

To detect sub-groups of robots grouped according to their education levels out
of a general set we suggest applying well-known algorithms of cluster analysis [9].
These algorithms may, for instance, help to detect either robots belong to leading or

lagging sub-groups.

9. APPLYING VECTOR ALGEBRA RULES TO INVESTIGATION OF
ROBOT SUB-GROUP EMOTIONAL STATE

Here and below we use Cartesian rectangular coordinates.

Definition 9.1. A robot’s education based on n emotion types is the vector

R = (Rl,Rz,...,R o Ry ), where each clement of the vector of education based on

single-type emotions is defined according to Relation (2.2).

Introducing vectors of educations and emotions allows us to use rules of vector
algebra in mathematical operations with educations and emotions.

Thus, the group education R including m robots can be found by the formula

m -
R=> Ry, (9.1)
k=1
and the group emotion M can be found by
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m -
M=> Mg, (9.2)
k=1

where £ is an order number of a robot in its group.

Note that with m<n the vector of group emotions includes at least n-m zero
elements.

By introducing Relations (9.1) and (9.2) we obtained a rule for composition of
robots’ psychological characteristic vectors.

Below we give the results of theoretical research concerning a pair of emotional
robots or their two groups; either of the groups features its education and emotion
vector.

Definition 9.2. A single-type psychological vector of a robot is either just an
emotion vector or just an education vector.

To unify the records we designate single-type psychological vectors as c_z e b.

Let us consider psychological properties of scalar product of emotion education
vectors.

Suppose a is the single-type psychological vector of the first robot, or the

group of robots, and b is the single-type psychological vector of the second robot, or
the second group of robots (both of robots or the groups belong to a common set).

According to the rules of vector algebra, a scalar product of two single-type
psychological vectors is a value satisfying the relation

(;z,z;j:

the moduli of vectors, obtained by well-known vector algebra formulas;

a

bicos a,

with:

a

,\z;

o the vectorial angle contained by a, b.
It is obvious that cos() satisfies the equality

cos(a) =

S

a
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Definition 9.3. If a € [0,%) then we consider that psychological effects are

: .. : /4 .
directed at achieving one goal; but if o € (5,71':|, then these effects are directed at

achieving opposite goals.

Definition 9.3. is illustrated by Fig. 9.1 and Fig. 9.2.

v

Fig. 9.1. Single-type psychological vectors are directed at achieving one goal

AlYy

—

v

Fig. 9.2. Single-type psychological vectors are directed at achieving different
(opposite) goals

The following statements are obvious.

41



Theorem 9.1. If a cosine of the angle between two single-type psychological
vectors is positive, then psychological effects are directed at achieving one common
goal.

Corollary 9.1. If a cosine of the angle between two single-type psychological
vectors is equal to 1, then psychological effects directed at achieving one goal are
the most effective.

Theorem 9.2. If a cosine of the angle between two single-type psychological
vectors is negative, then psychological effects contradict each other and are directed
at achieving different (opposite) goals.

Corollary 9.2.1. If a cosine of the angle between two single-type psychological
vectors is equal to -1, then the set of robots contains sub-groups with opposite
psychological characteristics.

Corollary 9.2.2. If a cosine of the angle between two single-type psychological
vectors is equal to -1, and moduli of these vectors are equal to each other, then there
is a conflict in the set of robots, and psychological characteristics of this conflict
correspond to the considered psychological vectors.

It 1s obvious, that if Corollary 9.2.2. is valid simultaneously for both emotion
psychological vectors and education psychological vectors, then the conflict between
two sub-groups gets its acutest form. Thus we can formulate the following theorem.

Theorem 9.3. If cosines of the angles between emotion vectors and education
vectors are equal to -1, moduli of emotion vectors are equal to each other, and
moduli of education vectors are equal to each other, too, then there is a conflict in its
peak point.

Theorem 9.4. 1If a cosine of the angle between single-type psychological
vectors is equal to zero, then there occurs an unstable psychological situation so that
any single emotion may tend the set of robots either to one goal achieving or to
different (opposite) goals achieving (i.e. either to serrying together and uniting or to
dissociating and disuniting).

The proof is obvious.

Theorem 9.5. A set of emotional robots can not simultaneously be in situations
when the cosine modulus of angle between single-type psychological vectors is
equal to 1, and, at the same time, the set’s psychological situation is unstable due to
this type of vectors.

Proof. Assume the set of robots is emotional. Then its single-type psychological
vector is not equal to zero.
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Since the cosine modulus of the angle between psychological vectors is equal to
1, then the vectors are collinear. As the collection of robots experiences an unstable
psychological situation, so psychological vectors are orthogonal. But both described
cases can simultaneously be valid only if at least one vector is equal to zero, but it
contradicts with an assumption that the considered set of robots is emotional. So, the
theorem is proved ex contrario.

Corollary 9.5. Theorem 9.5. can be rephrased as follows: a collection of
emotional robots cannot simultaneously experience a conflict and psychological
uncertainty.

10. MATHEMATICAL ASSESSMENT OF GOAL ACHIEVMENT
EXTENT

Suppose an educator set for a robot a numerically expressed goal of education.
In some cases it is possible to assess numerically to what extent the robot manages
to reach its goal in the course of this education.

10.1. Rule of solving for the extent of goal achievement

Let us introduce the following definitions.

Definition 10.1. A goal is the vector 4 =(ay,...,a, ) characterizing the desired

m
final state of a robot, achieved in K steps, with Zal-z > 0.
i=1
Below we consider the case when for achieving the goal we have a given
number of steps K.

Definition 10.2. A step-to-the goal & is the vector R = (rk’l,...,rk’m) defining a

state of a robot obtained in one k-th step in the course of achieving the goal.

Definition 10.3. A state vector (or robot’s state vector) Wjis a vector

corresponding to the goal achievement as a result of passing all the steps through the

k
step k inclusive, and satisfying the relation W, = > R;.
i=1
Obviously, deviation of the step k& direction from the goal direction is
characterized by the angle S, equal to the angle between the goal itself and the step

k to the goal. The cosine of this angle is defined by the formula [10]
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cos(f) = (‘j &)
k

and the cosine of the angle a; contained by the robot state vector and the goal (this

: (10.1)

cosine characterizes deviation from the goal direction after passing through k& steps)
is defined by the relation

(ADWk)‘
A7

cos(a; ) = (10.2)

After passing through the given number of steps K specified for this goal
achievement, it is possible to find the value 6 showing how close the robot is to the
preset goal. A formula defining 6 is a ratio of the vector projection numerical
value Wy onto the vector 4 to the modulus of 4.

So, considering (10.2), the relation for evaluating o takes a form

o

_|mkleoslax) k|(awg) (4mk) (10.3)
4 A A 4P

It is easy to see that & can possess any values, and the goal is achieved
completely if 6 >1.

The cosine of the angle of deviation of the sum state vector from the goal
direction y can be found by the relation

(10.4)

The formula for evaluating the goal achievement percentage y, at every step k
is analogous:
AR
k=( 2"), (10.5)
4
and the goal achievement Aj after passing through & steps is found by

(4,m;)
4

Ay = . (10.6)

Suppose . 1s time necessary for performing the step &, then we can evaluate
the total period of time 7 spent for achieving 6. It is found by the formula

K
k=1
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Comparing members of one sub-group to each other we can find the most
talented for education robot according to the following criterion: while his positive
o is equal to that value of the rest robots, he must perform the least time 7.

The formulas mentioned above can be used for analyzing robot’s actions while
achieving the goal: for instance, if under some k the values yj are too big (see

(10.5)) and angles Bj are close to zero (see (10.1)), we may conclude that the

robot’s actions chosen at the step & provide the most successful achievement of the
preset goal.

Obviously, successful actions of the robot at every k-step yield the biggest
0, A (see (10.3), (10.6)) and the angle values v, «aj (see (10.4), (10.2)) close

to zero. In other words, to achieve the goal successfully the robot must perform
maximal results at every step.

Now let us consider a question about quantitative assessment of a sub-group
goal achievement.

Suppose every member j of a sub-group has its individual goal z =y )

where j=1,L, L is a quantity of robots in the sub-group.
In this case the general goal A4 of the sub-group is evaluated by

L
A= sz.
j=1

Suppose every robot in the sub-group has its k-step to its own goal defined by
the vector f; k=S 11 joeS s ) then the sum £-step of the sub-group achieving the goal

L
is evaluated by the formula R, =} f;; , and in k steps the state vector of the sub-
j=1

k k L
group will satisfy the relation W, => R, =>.> f ITE
i=1 i=1j=1

Now, based on the relations introduced, we may numerically assess the
achievement extent of the sub-group goal by formulas initially developed for a
single robot unit by substituting a robot for a sub-group.

Suppose, having achieved some goal a robot sets up another one. That new goal
may have a quantity of components different from the previous one. To find the
quantitative assessment of the next goal achievement we can apply the scheme
described above including there a corresponding quantity of components of a new
goal.

But sometimes the goal of robot’s actions cannot be seen clearly. In this case
the best way to present this goal is by the matrix A4:

aLl aL
A= ... ... ..
aq’1 ..o a

where every line represents one of the goals.
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Assessing one by one every line (i.e. every goal achievement) in the matrix 4
after passing K steps we can find the goal which is achieved best of all the rest.
Solution of this problem can warn the robot against aiming at unaccomplishable and
unrealizable goals.

Also let us pay attention at a simpler case when the goal and k-steps are scalars.
Note, that in this case the goal and k-step to that goal have only two directions —
either coinciding with the number axis direction or opposing it. Thus Relations
(10.3), (10.5), (10.6) take the form:

Wk Ry Wi
5 =—, =—, l =—,
Xk p k=
where A4 is a value of the goal.

The method of individual assessment of a goal achievement can be used for
ranking robots according to their educations, e.g. in descending order. For correct
ranking, it is necessary, first of all, to set up the maximally possible accomplishable
goal, and then get robots ranked according to numerical values of this goal
achievement. If these numerical values appear to be equal for some robots, then a
robot with the least deviation from the goal direction has to be put at the first place.
This way of education ranking we call goalizing.

Let us consider the case when numerical values of goal vector elements are
unknown, but the task is to rank education vectors according to the achievement
ascending order (i.e. according to the order of closeness to the goal being achieved).
Without breaking the integrity, suppose the robot’s goal is to obtain the best result.
Then the goal A can be characterized by a vector with m unit elements: 4=(l,...,1).

Having assigned an order number to each unit element of the education vector set

(this 1s to indicate its closeness to 1), we get the vector B; = (bl’j,...,bm’j ), j=Ln

for each education.
It is easy to see that in this case the values of projections &, of each vector B,

onto the goal vector A4 satisfy the relation
m
2. B j
s, == (10.7)
7 m
and the angle of deviation from the goal achievement ¥, can be found by the

formula

m
zBi,j
i=1

— .
(2B Am
i=1

According to (10.7), the less is &, the closer are the vectors B; to the goal.

cos‘Pj =

Thus these vectors can be ranked in ascending order ofd;. If with all this

46



0; =0y, i#k, then the vector corresponding to the biggest cos'¥, is to be put
forward.

Let us note the following.

Sometimes a robot achieves its final goal stepwise, from one part of the goal to
the other.

Suppose the final goal 1s evaluated by the vector

A= RN +1,...,akj,...,akj+] ,aij +1...,akj+] T +1,...,am)>
where 7 is a number of elements of the finite education goal vector.

Without breaking the integrity, suppose that at the step i the robot achieved the
education

Wi =Ry R Ri . Re 0,.0)

i+1°

Then in (10.3) the vector W; satisfies the relation W; =W, where i=1,s, s is
the total amount of steps to the goal.

10.2. Algorithm for forming tantamount sub-groups of robots according to
their goal achievement extent

Based on the rule of solving for the extent of goal achievement given above in
Section 10.1 we can suggest the following algorithm of forming two tantamount
sub-groups, if goals of each robot are equal to each other and each sub-group
includes an even number of members:

1)  Make up a general linear array out of goal achievement extent values of
each robot;

2)  Within the array, define numbers of robots having the maximal and
minimal values of goal achievement extent;

3)  Robots with these numbers go to the first sub-group;
4)  Remove from the general array the elements with maximal and minimal
values of goal achievement extent;

5)  If'the resulting general array is not empty, then go to Step 6, otherwise go
to Step 10;

6)  Within the resulting general array, define numbers of robots having the
maximal and minimal values of goal achievement extent;

7)  Robots with these numbers go to the second sub-group;
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8)  Remove from the general array the elements with maximal and minimal
values of goal achievement extent;

9)  If'the resulting general array is not empty, then go to Step 2, otherwise go
to Step 10;

10)  End.

11. MATHEMATICAL MODEL OF ROBOT’s EMOTIONAL
ABILITIES

In the previous section we presented formulas for evaluating the extent of
education goal achievement based on methods of the vector ranking projective
theory.

Now we advance a hypothesis that the ablest ‘gifted’ robot is the most docile
and submissive to education, i.e. by the time 7 this robot reaches large average extent
of education goal achievement per time unit.
On the basis of this hypothesis we offer a relation for evaluating the robot’s ability
F:

[6@dr | 4R jfaizei(r)dr
| — i=1 ¢ 0i=l

t m m

F(t)= = i=l i=1 . 11.1
() 7 2 (11.1)

So, robot’s abilities are measured in units reciprocal of the time.
Based on Chapter 3 we can get the assessment of abilities of a robot which does
not have a property of absolute memory. This assessment is given by

m. 16/
4QZ‘ai‘1 é
“~ —0.
[F ()| <— - —,
tZai2
=
with: l
q = max|ry;
1

0; the values of maximal memory coefficients corresponding to the i-th

education;
Jj; the order number of the i-th education time step depending on the education
current time ¢ .

Let us prove the following theorem.
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Theorem 11.1. The abilities Fj, of the forgetful robot are limited at the end of

each time step k.
Proof. Suppose 0 =max0;, v is the minimum value of all the periods. Then

i=l,n
the inequality

mo -6/ m
4q |a | é 41 QQZ‘ai‘
‘F ‘S i=1 Y < — V=1
k m m
ey a; a7
i=1 i-1

holds true, quod erat demonstrandum.

Eq. (11.1) finds the most capable (‘gifted’) robot in a group, ranks robots
according to their abilities and discloses robots with highly pronounced propensities
to this or that scope of activities defined by subsets of education vector elements.

We offer the following algorithm for finding scopes of activities to which a
robot has the strongest abilities.

1. Set up the general education goal vector Az(al,...,am) as an input
parameter.

2. By the control point of time ¢ the education process is to result in the
general education vector R=(R;(t),....R,, (1)).

3. Select subgoal vectors (which are subsets composed of one, two, ..., m

elements of the goal wvector) in series from the goal vector A.

4. Compute the ability values for each of these composed subsets provided
that the considered educations correspond to numbers of elements of subgoal
vectors.

5. Select the maximal ability values corresponding to each of composed
subsets.
6. Find numbers of elements of the composed subset goals, corresponding

to these maximal ability values. These numbers correspond to education types
according to which a robot is considered to be the most successful, 1.e. the ablest.

n .
The relation N = Y C,, defines the quantity of major steps N to be performed
i=1
when this algorithms is processed by computer software.
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For studying robot’s abilities it is necessary to introduce the concept of ability
range implying the quantity of educations matching the given ability value. We can
conclude that, with equal ability values, the wider is the robot’s ability range, the
more talented is the robot. Thus, general abilities of a robot are defined by B,
satisfying the equality B = (p, F ), where p is the ability range, F' is the ability
value.

Theorem 11.2. In a univariate case, with the time infinitely increasing the
abilities of a forgetful robot achieving the goal tend to zero.
Proof. Since the relations

1, IP] i , p=2n,
V[p] [UQk ]{ [r] L+ Z r[p] Hg[p] [ng[p]V[p 1] ]
Ipsip | k= k=1 /1 i=1 [p-1:ip1
11 ~ 1 ll +1
v o=l e | A+ Ty AN 1 9[” (11.2)
ll’ll k=1 n+ +1 k=1 ] =1 J

are valid for n education cycles, then the inequalities

1
F'll ll ’ Fll ll _qell (113)

‘[1]
1-6°

1,0

~LP] _ _ _
with @ =max(6; , 61, i=1i,, j=11,, p=Ln

- b p>°
hold true for the forgetful robot.

Also, Formulas (11.3) imply the chain of relations
il e L )il q (11.4)
<y 0 g— z( je : - -
i=1 1 9 i=I\ 1-6 (1—9)2
In view of the definition of the robot’s ability for the univariate case the
following formulas can be written:

}’l’n
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t

[V, @)z

|Alt P 4 4

lim|Z ()| = lim <lim————=lm——/-=0
t—>0 t—>o0 dt =0 | 4] 12 oo | At

So, lim Z(¢) =0. Thus the theorem is proved.
t—>0

Theorem 11.3. In a multivariate case, with the time tending to infinity the
abilities of a forgetful robot tend to zero.

yi)

Proof. Since for each education component j the values o
i’l] 4 i’l]

satisfy the

relations |Vl[nj ] < F , (where j=1,m, m is the number of goal vector

nislni n j ’in j
jn
components and current education vector components, 7 ; is the number of complete
education cycles corresponding to the j—th education vector component) and
Inequalities (11.4), then the relations
q m
lim | Z(¢)|< lim = =0
t—>0 t—o0 n

t>a?

i=1
are valid, therefore lim Z(¢)=0.
{—o0

This proves the theorem.

Corollary 11.3. If there were some forgetful robot existing for an infinitely long
period of time, then in the course of time its abilities would tend to zero, i.e. vanish.

12. WORK AND WILLPOWER OF EMOTIONAL ROBOTS

It is easy to see that in the univariate case (when the goal 4 is defined by one
value) the value of goal achievement by the end of the n-th complete education cycle

7400
satisfies the relation 6(¢) = %
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Let us introduce the following definitions.

Definition 12.1. Education process work on achievement of the goal 4 is the
t
function X (¢)=[J(r)dr , where the subintegral function is a function of value of the
0
goal 4 achievement.

Definition 12.2. Willpower of a robot achieving the goal 4 is the function

i5(r)dr
Y(f) - 07

It is easy to see that Work is measured in time units, while Willpower does not
have units of measurement.

Now let us establish several simple theorems; their proofs are obvious from
(11.3).

Theorem 12.1. In the univariate case the education process work of a forgetful
29

robot achieving its goal satisfies the inequality ‘X (t)‘ S——— 1.
4](1-0)
Theorem 12.2. In the univariate case the willpower of a forgetful robot
achieving its goal satisfies the inequality
2
Y(o)s—1 .
4](1-0)

Theorem 12.3, In the multivariate case (the goal is a vector), the education
process work of the forgetful robot achieving its goal satisfies the inequality
13

a; |
—0)2 =

m

2a;

i=l1

X ()< ( ‘.

Theorem 12.4, In multivariate case, the willpower of the forgetful robot
achieving its goal satisfies the inequality

q m
2 a;
>a?

i=l

Y ()| (12.1)

52



Corollary 12.4. A forgetful robot with the unlimited willpower does not exist.

Proof. Since (12.1) holds true, the forgetful robot’s willpower is limited. Hence,
the corollary is proved.

Suppose the human’s willpower similarly to the robot’s willpower is described
by Definition 12.2.

Let us introduce one more definition.
Definition 12.3. A robot is dangerous to a man when a modulus of its willpower

becomes asymptotically (with time tending to infinity) more than a human
willpower modulus at any time point of the man’s life.

Theorem 12.3, A robot with an absolute memory and tantamount positive
emotions is dangerous to a man.

Proof. Since all the memory coefficients of the robot with an absolute memory
are equal to 1, then for tantamount positive emotions (considering (11.2)) the robot’s
education resulting from infinite quantity of education cycles is equal to infinity, i.e.
satisfies the relation

j5(r)dr

lim Y(£)=lim & — =0,
t—0 t—>w t

Even having all his emotions positive, a regular human being does not have an
absolute memory, his\her emotions are limited [8], so, according to Theorem 12.4 a
human willpower is limited, i.e. it is less than an asymptotic willpower of a robot
with an absolute memory and tantamount positive emotions.

The proof is complete.

Since a single person by nature cannot physically exist forever, his\her
willpower 1s always finite.
After a forerunning robot rests in peace, the information from its memory can be
downloaded to the successive robot’s memory (together with the information on
numerical values of all the previous generations of robots). This provides continuous
existence of a single robot’s intelligence with the time tending to infinity. As a result
of such continuous existence of generations of robots and passing on positive
tantamount emotions from “ancestors” to ‘“successors” provided with an absolute
memory we will surely come up to a moment when a robot becomes dangerous to a
man. So, we may conclude that in order to avoid this danger for a human being it is
necessary at least to design forgetful robots (robots with a non-absolute memory).

Suppose the following relation holds true:
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— l‘ —
p(Omax 1) =max | [5(0,7)dT| (12.2)
, 0
0

with: 6 the varied collections of memory coefficients; Omax the vector of
l‘ —
memory coefficients, under which the function | [5(6,7)d 7 |reaches its maximum.
0
From Definition 12.1 and Formula (12.2) we derive the following definition.

Definition 12.4. The efficiency coefficient u(¢z) of the education process is a

value satisfying the relation

X(¢) Sign[}5(émax ,7)dT]

()= - -
p(emax at)
[6(0)dr sign[] 6 @max7)dr]
_0 0
max | [5(0.7)dz |
é 0

It is easy to see that the education process efficiency coefficient has no units of
measurement and the condition u(f)e[-1,1] is valid for it. Obviously, the more is
u(t) under the given memory coefficients, the closer gets a robot to the most
effective education.

l‘ —
Provided that sign[ X (¢)] sign[[6(@max,7)d7]>0 holds true, the value wu(r)
0
satisfies the relation u(¢) €(0,1], which means that directions of real and effective
education processes coincide.
It should be noted that the efficiency coefficient makes it possible to assess
“natural” robot properties (memory coefficients) in terms of education process
effectiveness.

13. ROBOT’s TEMPERAMENT MODEL

This chapter gives mathematical interpretation of robot’s temperaments.
Definition 13.1. The elementary temperament w;(¢) is a derivative of the

function of momentary emotions module A, (¢) with respect to the time ¢, ie.
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d|M (1) y , . amo -
————, where i is the robot’s number in a group, ——— >0, i=1,n, nis

w;(t) =
0 dt dt
the quantity of robots in a group.

Psychological studies say that we can hardly meet a human being with the
pronounced temperament of one certain type. As human beings are analogues of
robots, let us give the following definition.

Definition 13.2. The robot’s temperament L is a function satisfying the relation

AR 0

) d
, with a = max
an i\t dt

dM (1)
dt

, ie[l,n].

it

It is easy to see that the suggested rule allows us to find a temperament of some
certain robot only relative to its (sub)group.

The results of investigations of human temperament and its numerical values
[3] can obviously be applied to robots (see Table 13.1).

Table 13.1. Variation intervals of robot’s temperament values

Robot’s temperament Variation intervals of
type temperament numerical value
melancholic (0; 0,3)
phlegmatic (0,3; 0,5)
sanguine (0,5; 0,8)
choleric (0,8; 1)

Intervals given in Table 13.1. allow us to introduce a concept of temperament of
a group of robots (group’s temperament).

In Chapter 2 we mentioned an example which can be described by the function
M(t)=P sin(%t
t
Similarly to this example we define a set of emotions; each of them for the

robot i. takes a form:

j with: P=const; t¥ the time step lenght.

M;t)=F sin[%t}

12

with: P. = const, tl.o the lenght of the time step i, i =1,n.
It is easy to see that in this case the robot’s temperament L, can be defined by
the following formula
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__ b
L= ‘PI‘
n’la_Xi0

i=ln !

Definition 13.3. The temperament N of the group of robots is the average
temperament of robots belonging to this group.

With the definition of finding N in mind, we can use the following formula:

n
2L
N=E_.
n

(13.1)

Having found N by (13.1), we can define the temperament type by associating
values from the right column in Table 13.1 with the left column; depending on what
interval N belongs to, the group of robots can be either melancholic, or phlegmatic,
or sanguine, or choleric.

14. INVESTIGATION OF PSYCHOLOGICAL PROCESS DYNAMICS
IN A GROUP OF ROBOTS

Here we consider the cases when some processes occur in a group of robots

with time. Terms and conventional signs used in this Chapter are the same as in
Chapter 9.

The following statements are obvious.

Theorem 14.1. If with the course of time cos(a(¢))— 0, then a group of robots
t—t,

tends to the unstable emotional situation.

Theorem 14.2. If with the course of time cos(a(¢)) — 1, then emotional activity
t—>t,

tends a group of robots to get serried (united).

Theorem 14.3. If with the course of time cos(ax(z))— —1, then emotional

t—t,
activity tends a group of robots to get dissociated (disunited).
Corollary 14.3.1. If cos(a(t))—>—1 and a(_z‘) — b(_z‘) —0, a(t)‘ is large, then
t—t, t—>t,

there is a threat of conflict in its acutest form in the group.
Note that the point #) mentioned in Theorems 14.1-14.3 and Corollary 14.3.1 is
the time value corresponding to the defined events in the statement given above.
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Corollary 14.3.2. If the conditions of Corollary 14.3.1 are valid for emotion and
education vectors simultaneously, then there is a threat of conflict in its acutest form
(i.e. simultaneous emotional and educational conflicts) in the group of robots.

Based on the things given above we introduce the following definition.

Definition 14.1. The measure of emotional or educational relationship between
sub-groups of robot within a set are the unitless values y(7), p(¢) satisfying the

relations y(t)zcos(a(_t),b(_t)j,(l)(t)ZCOS(X&), yEt)] where a(_t),b(_t) are education
vectors, and x(_t), yft) are emotion vectors.

So, the emotional condition of the two sub-groups altogether can be described

by the vector ; = (;/(t), (o(t)).

It is easy to see that if the relations y(r) € (0,1] or @(¢) €(0,1] are valid at the
moment of time ¢ then there 1s an emotional or educational concordance
correspondingly between the sub-groups; and vice versa, if 7/(1‘)6[— 1,0) or
go(z‘)e[— 1,0), then there is an emotional or educational rivalry correspondingly
between the sub-groups within the set of robots. The cases y(¢)=0 or ¢(¢)=0 are

responsible for borderline situations in between educational or snap-emotional
rivalry and concordance. The case corresponding to the inequality y(¢)@(¢) <0

defines educational concordance or emotional rivalry and vice versa.
It is obvious that the larger are y(¢) or ¢(¢) with their values positive, the more

“benevolent”, i.e. concordant is the atmosphere in the set of robots; and the smaller
are y(t) or () with their values negative, the stronger is the rivalry between the

robots. The following statement holds true: if y(¢) <0 and c_z(t) > l_)(t) , then the sub-

group which education is described by the vector l;(t) may be reeducated in favour

of the sub-group with the education c_z(t).
Let us formulate the following theorem.

Theorem 14.4. If cos(;l,[;j:_l and

=H with n equal to 2 or 3, then

a=-b.
Proof. As the first statement of the theorem is valid, then in a two- and three-

dimensional space the vectors a and bare collinear, i.e. a =kb . By virtue of the
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second statement, the coefficient & satisfies the equality k=+1, and since

cos| a,b |=—1, then k =-1, consiquently a =-b.

Under a =—b the relations cos| a,b |=—1 and |a| =|b| obviously hold true.

This allows us also to formulate Theorem 14.5 for two- and three-dimensional

vectors: In order a =—b, it is necessary and sufficient that conditions cos| a,b |=—1

and |a| = |b| hold true simultaneously.

Due to Theorem 14.5 we can generalize Theorem 14.4: under the
dimensionality of education and emotion vectors less than four, for the worst
confrontation within the set of robots with nonzero vectors of psychoemotional
states it is necessary and sufficient that the sum vector of emotions or educations is
to be equal to the vector with zero components.

In the conclusion of this chapter we should note that Theorems 14.1, 14.3 and
Corollaries 14.3.1, 14.3.2 allow us to assess the tendency of the set of robots to
critical emotional situations. And in case these situations are undesirable, the
mentioned theorems and corollaries substantiate the necessity of effecting the robots
with subjects which are able to kill this tendency.

15. RULES AND FORECAST OF EMOTIONAL SELECTION OF
ROBOTS

Using mathematical definitions of robot’s psychological -characteristics
considered above in this chapter we try to describe one of the algorithms of robot’s
emotional behavior.

Suppose a robot has got an emotional selection problem: he is supposed to
decide in favor of either the first or the second player (educator) depending on his
education.

Below we suggest the rules of making an emotional decision for such robots.
Assume that the robot has only positive emotions. Now suppose the robot’s memory

coefficients 0; ; satisfy the correlation 0<6; ; <1, where i =1,00, the equality j = 1

meets robot’s memory coefficients for the first educator, the equality j = 2 meets
memory coefficients for the second educator.
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We adduce the First rule of the alternate selection based on the emotional
selection. This rule can easily be implemented in computer modeling of the robot’s
emotional behavior.

Suppose a robot is simultaneously effected by two players initiating robot’s
emotions. At the time point of stimulus (subject) ¢; effect the first player initiates the

I
emotion M ; causing the elementary education Rj; equal to [M] ;(z)dz, and the
0

education By =(Ry,0) where e.g. for the robot absolute memory the formula
l tk . o« . .
Ry =¥ [Mj(r)dr holds true, and the second player initiates a zero emotion at
k=10
the same time.
At the time point #; the second player initiates the emotion M, ; causing the
Lj
elementary education R, ; = M 2,j(t)dt where i# j , and the education of the

second player B, =(0,R,) where e.g. for the robot’s absolute memory the formula

I T

Ry =3 [Ry (r)dr holds true, and the first player initiates a zero emotion at the
k=10
same time.

Let us introduce the general education vector ¥ equal to (R},R,) where vector

components are sum educations obtained in the time ¢ of effects of the first and

[
second player subjects where = } #;, and / is a total number of emotional effects

k=1
of both players’ subjects upon the robot.
With these designations introduced, the rule of deciding in favor of the first or

the second player can be formulated as follows: if the angle between V and By is less

than the angle between V' and B, then the robot decides in favor of the first player;

if the first angle is wider than the second one, it means that the decision is made in
favor of the second player; but if the angles are equal the selection is not supposed to
be performed.

It is not very difficult to apply the first rule described above in case there are
more than two players. For example, if we want to implement this rule for modeling
emotional behavior of a robot it is enough to enter the number of momentary sum
educations equal to the number of players, and the number of components of the
general education vector is to be also increased. The minimal angle between the
general education vector and the education vector of each player defines the
alternate selection in favor of this or that player.
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Note that the first rule is valid not only for scalar values of sum educations and
emotions, but also for the cases when they have a form of vector.

Definition 15.1. Critical angle of alternate selection is an angle (between the
education vector and the general education vector) defining ambiguity of a robot
while making a decision in favor of the first or the second player.

Now we adduce the Second rule of alternate selection based on comparing
moduli of vectors of the sum educations 1_€1 and 1_€2. This rule can be re-formulated
as follows: if |}€1 | > |_Rz | holds true, then the decision is made in favor of the first
player; if |}€1 | <] 1_€2 |holds true, then the decision is made in favor of the second

player; if | R1 |= | R, |, then the decision is not made.

Theorem 15.1.The First and the Second rules of alternate selection are
equivalent to each other.

Proof. Suppose « is the angle between Bj and V', and S is the angle between

B2 and V. Then according to vector algebra rules, the relations

2n n -
2 2
25 =K =
cosa = = = = =, (15.1)
nooo 2n 2 no s 2n 2 -
LR LR, LR LB,
i=l 7 i=ntl i=l 7 i=ntl
2n n n
ZBg,i 2 2,1' R2
cosf= =l = =l = (15.2)
no 2n 5 LN 2n 5 =
LR X Ry IRt 2Ry
i=l 7 i=ntl i=l 7 i=ntl
hold true.
: . T T - - :
Obviously, if a>p, 0<a<5,0<ﬁ<5, then [Ri1|<|R2|; if a<p,
0<a<§,0<ﬁ<§, then |R1|>|R2|; if o =p, then |R1|=|R2|. So, we proved

that the First rule implies the Second one to be valid.
Let us prove that the Second rule implies the First one.
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Ri1l<|R2

Suppose holds true. Then by virtue of (15.1) and (15.2) the

inequality o > f 1is inevitable under 0 < & < %, 0<p< %

Validity of the following statements is proved similarly: if |R1|>|R2|, then

a < 3 under O<a<§,0<ﬁ<%;if R1|=|R2|, then a = .

The proof is complete.

Theorem 15.2. If two vectors do not have common nonzero coordinates, then
these vectors are orthogonal.

Proof. Since according to the theorem statement the vectors do not have
common nonzero coordinates, then without breaking the integrity these vectors can

take a form a = (al,az,...,an,0,0,...,O), b= (O,O,...,O,bn+1,bn+1,...,bm).

It is obvious that the scalar product of a and b equals to zero. It means that the
vectors are orthogonal. This proves the theorem.

Corollary 15.2. The vectors By and B, are orthogonal.

Proof. Since, according to the designations of the First rule, By and B, do not

have nonzero common coordinates, then by virtue of Theorem 15.2 these vectors are
orthogonal.

Let us prove one of the properties of alternate emotional selection.

Theorem 15.3. The alternate selection critical angle is equal to %

Proof. Let us note that V' =B+ B2 is valid. According to the parallelogram
law for composition of two vectors, V' is a diagonal of the parallelogram with the
adjacent sides By and B, . By virtue of Corollary 15.2 these sides are orthogonal, so

a+pf =% is valid. According to Definition 15.1 and the First rule of alternate

: : : » : T
selection, a = f holds true, i.e. the alternate selection critical angle is equal to e

Definition 15.2. Stupor is a state of ambiguity or uncertainty of a robot making
emotional selection.
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Assume that effects of the first and the second players upon the robot
correspond to tantamount emotions yielding the elementary education R,. Suppose
robot memory coefficients corresponding to emotions resulted from the first player
effect are constant and equal to 6;, and coefficients corresponding to emotional
effects of the second player are equal to 8,. Also assume that 6; €[0,1), ie{1,2},
and robot’s emotional memory of the first player effect is fully kept while the second
player is making his effect and vice versa.

Then, according to Chapter 3 and the Second rule of alternate selection the
following equality is obvious:

R =R : 15.3
1-9, "’1-0, (153)

with j, ¢ the quantity of emotional effects upon the robot (emotions are initiated by
the first and the second player correspondingly).
Eq. (15.3) is equivalent to the relation

1-6/ 1-6f
1-6, 1-6,

(15.4)

It is easy to see that under the assumptions mentioned above Eq. (15.4) defines
the necessary and sufficient condition for the stupor initiated by a single-type
emotion. This condition can be easily generalized in case we need to consider
emotions and an education defined by vectors (in this connection it is necessary to
consider various pairs of coefficients 6, , u 0, ;, where & indicates the order number

of an emotion in the robot’s emotion vector).

Theorem 15.4 is obvious. If a robot has only tantamount emotions and constant
memory coefficients corresponding to each of the two players, and Eq. (15.4) is
valid for each of educations, then the robot is stuporous (in stupor) with respect to all
its emotions.

Obviously, the robot never comes to this state of stupor if with any j and g (j >
1, ¢ > 1) and given 6, and 6, Eq. (15.4) is not valid.
Let us introduce one more definition.

Definition 15.4. Anti-stupor coefficients are the memory coefficients 6, and 6,

for which under any integral values j and g (j > 1, ¢ > 1) Eq. (15.4) does not become
valid.

Theorem 15.5. Anti-stupor memory coefficients exist.
Proof. Let us show that there exist the memory coefficients 8, and 6, which are

not the roots of Eq. (15.4) under any integral valuesjand g (j > 1, g > 1).
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Obviously, Eq. (15.4) is equivalent to
0J(1-6,)-0,(1-07 )+ (0, - 67 )=0. (15.5)

Suppose the following equalities

1
, 0=

0 = — 15.6
| 3 (15.6)

1
2
hold true.

If we substitute Egs. (15.6) into Eq. (15.5) and make transformations, as a result

we get

370 —1)+3/7M1-29)+ 277" =o0. (15.7)

Considering that y =3/ -1 Eq. (15.7) takes the form
39207 = 1)+ pl1-27)+ 247 0. (15.8)

24-1
Solving (15.8) relative to y we get the formula y =— = equivalent to the
2977 -2
relation
. q-1

3‘]_1 :—h. (159)

Since according to the theorem statement j > 1 is valid, then for any j and any ¢
> 2 the positive value in the left part of Eq. (15.9) is equal to the negative value in
the right part of Eq. (15.9). So, we get the contradiction. Consequently,

1 1 :
0, = > 0, = 3 are not the roots of Eq. (15.4) with any values j > 1 and g > 2.

Now let us consider the case when g=2.
It easy to see that Eq. (15.8) in this case takes the form 2 = 0, i.e. under the

. 1 l .. : .
memory coefficients 6, = > 0, = 3 this equation has no solution.

So, with any j > 1, g > 1, there are such memory coefficient values under which
Eq. (15.4) makes no sense. Consequently, anti-stupor memory coefficients do exist.
This completes the proof of Theorem 15.5.

Corollary 15.5. For two players the coefficients 6, =

1 1 .

—, 0, =— are anti-stupor
2 3

memory coefficients.

Its proof'is evident directly from argumentations given in the proof of Theorem
15.5.
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Eq. (15.4) and Corollary 15.5 allow us to forecast the robot’s behavior and see
whether our robot may get into emotional stupor.

Reasoning from the things said above we can state that the ‘resolute’ or
‘purposeful’ robot is a machine for which an alternate selection angle never equals

T : : :
R or Eq. (15.4) never holds true, or its memory coefficients are anti-stuporous, so

that this machine does not get stuporous regarding all the components of the
education vector.

16. GENERALIZATION OF ROBOT’S EMOTIONAL BEHAVIOR
RULES IN CASE THE NUMBER OF PLAYERS INTERACTING WITH
THE ROBOT IS ARBITRARY (NOT SPECIFIED)

16.1. FIRST RULE OF ALTERNATE SELECTION

Assume a robot is effected by n players nonsimultaneously. Suppose they
initiate only positive emotions and the robot performs an absolute emotional
memory ie. its memory coefficients 0, ;satisfy the identity 6; ; =1,

wherei=1,m;, j = Ln. Correspondingly, m is the quantity of subject effects of the

Jj -th player.

At the time point ¢, (with k£ =1,m, ) the first player initiates the emotion M,

1,k
causing the elementary education R, = J M, (tr)dr and education
0

_ m| Wi
B, =(R,,0,...,0) with R =), J.Ml’,(r)dr. At the same time all the rest n—1
H_J

players initiate zero emotions.
At t;, where k=1m;, t;; >t

ik > With >4 and k =1,m, the player i

lik
initiates the emotion M,, causing the elementary education R;; = J M, (t)dr and
0
_ m; ll
education B; =(0,..,0, R, ,0,..,0) where R, =), J‘Mi’,(r)dr. At the same
i—yédidio I=1 0
time all the rest n —1 players initiate zero emotions.
Let us introduce the general education vector V = (R;,R,,...,R,) where

components are sum educations (resulting from all the players’ subjects) obtained in

n my
the full course of the effect time ¢, with =3 >'#,; .
I=1 k=1
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With these designations introduced, the rule of deciding in favor of this or that
player can be formulated as follows: the emotional decision is made in favor of a
player for which min Z(V, B,) is reached with i= 1,n (this emotional decision is
made in favor of the player i). In case the minimum is reached under several i
simultaneously, the emotional selection is not supposed to be performed and the

decision is not made.
The given rule can be generalized in case the player’s effect initiates not just a

single emotion, but a full vector of emotions. Thereby at ¢;;, with k=1,m;,

tiy >t Where i>i; and k; =1,m; the player i initiates the robot’s emotion

vector M, k=M l-ljk,...,M ix) which entails the vector of elementary educations

lik .
Ry =(Rl Ry ), R/, = [ M/ (t)dr and the education
0

L,

m; il

. 1 .
_ _ : J _ J
B =(0..0 R 0..0=0..0R . k0.0 Wth R/ =3 [M/@)dr. At the
Wi oyl =1 ¢

same time all the rest players n —1 initiate zero emotions.

In this case the general education vector takes the form:
V=(R,,Ry,..R)=(R],.. R} ,...R. ...R")

Further reasoning are quite the same as those ones given above concerning the
case when the player’s effect initiates one robot’s emotion.

16.2. SECOND RULE OF ALTERNATE SELECTION

The Second rule of alternate selection is based on comparison of moduli of
vectors of the sum educations B, with i =1,n. This rule can be re-formulated as

B;| 1s

follows: the emotional decision is made in favor of a player for which max

reached with i =1,n (this emotional decision is made in favor of the player 7). In
case the maximum length is reached under several values of i simultaneously, the
emotional selection is not supposed to be performed and the decision is not made.

16.3. ORTHOGONALITY OF EDUCATION VECTORS AND
EQUIVALENCE OF ALTERNATE SELECTION RULES

As it was mentioned above, in this paper we use Cartesian rectangular
coordinates. According to Theorem 15.2 two vectors which do not have common
nonzero coordinates are orthogonal.

Thus each pair of vectors By,...,B, is orthogonal.

n
Theorem 16.1. The First and Second rules of alternate selection are equivalent
to each other.
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Proof. Let a; = Z(V,B,), 0<a; < %, i=1,n isthe angle between  and B, .

According to the rules of vector algebra and orthogonality of B,...,B, the following

B.

1

q

relation holds true: cosa; =

Obviously, if min Z(V,B,) is reached under i =k, then according to the First
rule of alternate selection the decision is made in favor of the player k. At that from

B

reached under i = k. The last one describes the Second rule of alternate selection.

the formula given above it follows that ‘Ek‘ > ‘E j‘ with j# k. Thus max 1s

On the other hand if max|B,

Second rule of alternate selection the decision is made in favor of the player k. At

is reached under i =4k then according to the

that ‘Ek‘ > ‘E j‘ with j # k holds true, and following the formula given above we get

o <a; with j# k. From the things stated above we conclude that min Z(V,B,) is

reached under i =k, and this is according to the First rule of alternate selection.
This completes the proof.

17. EMOTIONAL SELECTION AND CONFLICTS BETWEEN
ROBOTS

It is not difficult to see that Eq. (15.4) coincides completely with Formula (3.7)
obtained while describing a conflict between two robots with equal tantamount
emotions. This fact makes us conclude that inner emotional conflicts of a robot can
be described by the same formulas as conflicts between different robots, and
consequently, theories applicable for groups of robots can be successfully used for
inner emotional conflicts of a single robot without any alterations.

As an example of this we present the following theorem.

Theorem 17.1. If two uniformly forgetful robots have the same (equal)
tantamount emotions, then there are such robot memory coefficients that the robots
never get into education conflict.

Proof. For conflicting robots Eq. (3.7) holds true; if tantamount emotions are
equal (3.7) is transformed into Eq. (15.4). According to Theorem 15.5 there exist
anti-stupor coefficients transforming Eq. (15.4) to a strict inequality. But at the same
time these anti-stupor coefficients are the memory coefficients of two different
robots, and moreover, with these coefficients robots would never get into conflict.

This completes the proof.
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Logic makes us introduce a new definition.
Definition 17.1. Anti-conflict memory coefficients are memory coefficients of
two different robots under which the robots never get into conflict.

Now it is time to give the following theorem.

Theorem 17.2. Anti-conflict memory coefficients of two uniformly forgetful
robots with equal tantamount emotions coincide with anti-stupor coefficients.

Proof is analogous to the one of Theorem 17.1.

Corollary 17.2. When the conditions of Theorem 17.2 are valid, then the

, 1 1 . :
memory coefficients of two robots 01=5 and 02=§ are anti-conflict.

Proof. According to Corollary 15.5, anti-stupor coefficients satisfy the

.. 1 . : .
equalities 6y =—, 6, =—. By virtue of Theorem 17.2, anti-stupor coefficients are
1 5 2 3 y p

anti-conflict ones.
So, the corollary is proved.

18. DIAGNOSTICS OF EMOTIONAL ROBOT’s “MENTAL DISEASES”

Let us recall the definition of robot’s emotion given in the beginning of the
book for better understanding of this chapter.

Definition 1.3. The robot’s inner emotional experience function M(z) is called
an ‘emotion’ if it satisfies the following conditions:

1. Function domain of M(¢): t € lO, tol 9> 0;

2. 10 <¢ (note that this condition is equivalent to emotion termination in case
the subject effect is either over or not over yet);
3. M(?) is the single-valued function;

4. M(0)=0;
5. M%) =0;
6. M(?) is the constant-sign function;
. . dM@)| .. . .
7. There is the derivative 7W1th1n the function domain;
8. There is the only point z within the function domain, such that z =0, =z # ¢
d\M(t
and —‘ ( )‘ =0;

dt /=2

d ‘M (t)‘ , _
9. ————>0 with < z;

dt
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d‘M (t)‘

10. <0 witht<z.

Let us introduce a couple more definitions.
Definition 18.1. Let us consider a robot to be “healthy” if its inner emotional
experience function is an emotion.

Definition 18.2. Let us consider a robot to be “ill” if its inner emotional
experience function does not satisfy at least one of the conditions in the definition of
emotion.

This definition allows us to introduce such concept as seriousness or severity of
a robot’s disease.

Since Definition 1.3 includes 10 conditions defining a disease, then the degree
of severity of this disease is characterized by H taking on integral values from 1 till
10 to indicate a number of conditions which do NOT hold true (as those are the
conditions under which the inner emotional experience function becomes an
emotion).

The more severe is the disease the greater is H.

Definition 18.3. The vector X of disease symptoms is a vector with the numbers
of emotion conditions (given in Definition 1.3) which do not hold true.

Definition 18.4. A robot’s disease with the symptom vector X is a special case

of a robot’s disease with the symptom vector X, if all the elements of the symptom
vector X» occur among the elements of the symptom vector X .

Below we give examples of robots’ diseases.
1. Let us take some inner emotional experience function f{z) satisfying all
the conditions of becoming an emotion except Condition #2, i.e. the function differs

from an emotion and this is described by the relation O>" Obviously, in this case
the disease severity degree is equal to 1. We consider that a robot having such an
emotional experience function is neurasthenic. It is also obvious that for
neurasthenia  the disease symptom vector has the form X=(2).

2. Let us take some inner emotional experience function f{z) satisfying all

the conditions of becoming an emotion except Conditions #2, 5, 8, 10. f(¢) = —% is

a good example of such a function. Obviously, in this case the disease severity
degree is equal to 4. A robot which emotional experience function differs from an
emotion regarding Conditions #2, 5, 8, 10 is psychopathic. For psychopathy the
disease symptom vector has the form X=(2, 5, §, 10).
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The forms of vectors in these examples make us conclude that symptoms of
neurasthenia and psychopathy have one thing in common, which is Condition #2
unsatisfied, and, according to Definition 18.4 psychopathy is a special case of
neurasthenia.

Sometimes one unsatisfied condition of the emotion definition implies that
some other conditions get unsatisfied, too.

Let us consider the inner emotional experience function which has the form:
f()=P sin ( %
t

At first sight Function (18.1) does not satisfy only Condition #5, and the disease

severity degree is equal to 1 and the symptom vector containing only one element

has the form X=(6). But it is not correct. Applying mathematical analysis we can

conclude that if Condition #6 is unsatisfied it implies that Conditions #4, 5, 7, 9, 10

are not satisfied for the function f{z), as well. I.e. the disease severity degree is equal
to 6, and the symptom vector satisfies the relation X=(4, 5, 6, 7, 9, 10).

1
z‘j—zp, P=const P>, te[O,tO]. (18.1)

The example illustrating Formula (18.1) demonstrates the method (based on
mathematical analysis) for detection of the major symptom of an emotional robot
disease. Elimination of this symptom directly implies that all the rest conditions
become valid and satisfied.

Thus for Function (18.1) the major reason of a rather severe disease is that Condition
#6 remains unsatisfied.

19. MODELS OF ROBOT’s AMBIVALENT EMOTIONS

Suppose we have the robot’s emotion vector M (r) defining ambivalent

emotions. This vector takes the form
—J
M (1)= (Ml/ (7),....,M/ (T))
with: n the quantity of displayed emotions in the robot’s ambivalent emotion,
T the current time of the emotion effect.

If the education goal is known and it is defined by ;lz(Al,.. A,) where

oy L1y

A; = const, i=1,_n then the value of goal achievement extent 6 of the education
process is specified by the following equality:

Zn: AiRij(f)
sy 2 (19.1)

> A
i=1
with: Rij (¢) the robot’s education obtained as a result of effect of the i-th emotion (at

that Rl.j ()= ;»l.j (1) + Ql.j () Rl.j . ®)), Q’ (1) the memory coefficient satisfying the
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relation @’ (1) €[0,1], j the order number of an education time step, ¢ the time of the

education process, ;- () the elementary education satisfying the relation

(@)= jM ) ,t=t;+7.

D1fferent1at1ng (19.1) with respect to ¢, we obtain

1 dRJ (t)
do(1) g‘

i = (19.2)

2

> A

i=1
According to Chapter 2 the sum emotion Vj (¢) satisfies the relation

Vi = dR/ (1) _dr/ (1) P )def(z) dR;” ‘(z)gj() (19.3)

e dt dt
It easy to see that for the robot with an absolute memory this formula is
equivalent to

. dR/ (¢) :
V) =—-"—"—=M{().
7 () o i ()
So, Eq. (19.2) takes the form
2 AV (0
dzf) _ izl (19.4)
2
2 A
i=1
Modern psychologists believe that an emotion is positive if it makes an entity (a
person or a robot) to approach its preset goal. Thus if df:) > ( holds true then the
: : : : .. . do(?) :
ambivalent vectorial emotion is positive; if 7 <0 holds true then this

ds(t)
dt

ambivalent emotion is negative; if =0 holds true then it has no sign.

But modern vector algebra in the general case does not operate with such terms
as “positive” or “negative” vectors. Therefore let us advanced a hypothesis that there
is a unified characteristic for ambivalent emotions of the vector which specifies a
sign of the ambivalent vectorial emotion. Obviously, this characteristic is a sign of

ds(t)
dt

the value

Let us introduce series of definitions.
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Definition 19.1.The average function [ f (z‘)] of robot’s inner emotional

experience is the function of the form

S A4V (@)
[f@]==—— (19.5)
2.4
=1

n
under the stipulation that » 4, #0, t € [0,,], 7, is the minimum value of all the
i=1
time steps of component emotions of the ambivalent emotion vector.
Thus the average function of robot’s inner emotional experience represents a
special function, such that when this function is substituted for all the sum

ds(t)
dt

component emotions in the ambivalent emotion vector we get the value equal

to the value of the function without this substitution. I.e.

iAiVij () iAi Lr@)]
i=1 i=l

AL XA
i=1 ]

holds true for this substitution

Definition 19.2. The average emotion [M(f)] is an average function of inner

emotional experience which appears to be an emotion.

Definition 19.3. If an average function of inner emotional experience is not an
emotion then a robot is considered to be mentally ill and an ambivalent emotion
causes the disease.

Definition 19.4. The average elementary education [D] is a value satisfying the

relation [D]= JQ[M(T)]dT.
0

Definition 19.5. The average education [R] is a value specified by the formula
n :
;E:f4ileg n
[R]==L—— with Y 4, #0.

n .
Y4, 0
i=1
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Definition 19.6. The prevailing emotion M, (¢) in the ambivalent emotion

vector is an emotion for which its order number £ in the vector of ambivalent
emotions implies that

i ~[D]=min

i=l,n

v -]
1s satisfied.

Definition 19.7. The prevailing elementary education is the elementary
education corresponding to the prevailing emotion.

Obviously for each current time step j of the robot’s education there can be its
average function of inner emotional experience, average emotion, prevailing
emotion, prevailing elementary education, average elementary education, average
education and value characterizing an ambivalent emotion sign.

Let the emotion vector M ij (t),i=1,n of the vector of ambivalent emotions
have the form

Ml»j(t)zPijsin[tﬂt} Pl»j =constz0, i=1n, te[O,to]' (19'6)
0

Now let us prove the theorem.

n :
Theorem 19.1. If Y A4,P/ # 0 then for the robot with an absolute memory the
i=1
average function of inner emotional experience satisfying Eqs (19.6) is an emotion.

Proof. It is quite easy to see that with (19.6) valid the value [ f (z‘)] satisfies the
following relation:

ﬁr} (19.7)

Obviously (19.7) satisfies the definition of emotion.
Quod erat demonstrandum.

n
Theorem 19.2. If ) 4; >0 then the sign of the average emotion coincides with
i=1
the sign of the ambivalent emotion
Its_Proof becomes obvious when we compare Formulas (19.4) u (19.5).
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n
Theorem 19.3. If )’ 4; <0 then the sign of the average emotion and the sign of
i=1
the ambivalent emotion are opposite.
Its_Proof is analogous to the proof of Theorem 19.2.

20. ABSOLUTE MEMORY OF ROBOTS

Let us consider robots with memory coefficients satisfying the eqs.

0; =1, i=1,n, where n is the number of time steps in the education process.

Obviously, in this case the education R,, is defined by the formula
n
R,=>rn, (20.1)
i=1
where 7; is the elementary education corresponding to the i-th time step.

According to Eq. (20.1), the infinite education process R can be described by
the equality

o0
R=1m R,=>r. (20.2)
n—>00 i=1
Now let us formulate the following theorems.
Theorem 20.1. An infinite education process based on tantamount emotions for
the robot with an absolute memory diverges.

Proof. Since the emotions are tantamount, then the equalities. r; =¢q, i=1,00
are valid. By virtue of them Relation (20.2) takes the form
n
R=1Im Y>g=qg lim n=zco.
n—0 ;=1 n—>0
The theorem is proved.

Theorem 20.2. If an infinite education process converges, then elementary
educations which this process is based on tend to zero with an infinite increase in the
number of time steps.

o0
Proof. Since the education process converges, then the mequality | > 7; |[< o
i=1
holds true. Consequently, lim »; =0.
[—0
The theorem is proved.

Note one more thing: the education process convergence corresponds to the
education satiety presence under an increase in the number of time steps. Taking this
into account we can rephrase_Theorem 20.2 as follows: if an education process is

73



satiated, then the elementary education in the basis of this process tends to zero with
an infinite increase in the number of time steps.

In Chapter 1 we gave an example of an emotion which can be described by the
.

0

function M (¢)=P sin(
t

j, where P=const, tVis the time step length.

Similarly to this example, we define emotions corresponding to the i-th time
step by

M;t)=F sin[%t}

fi (20.3)

where P; = const, tlo 1s the length of the i-th time step, i =1,00.
It is easy to see that the elementary education 7; corresponding to Emotion

. ) 2 0
(20.3) satisfies the equality 7; = ;Pl-tl- .

So, by virtue of Theorem 20.2, if an education converges, the equality
lim Pl-tlO =0 has to be valid, and this is the necessary convergence condition.
[—

Let us prove the following theorems.

Theorem 20.3. If Iim tlo =0, then lim 7; =0.
I—>0 —>0
Proof. According to Definition 1.3,

PZ-‘<L<oo is valid. Consequently, the

<L lim ¢!

[—0

lim P
i—>00

=0 holds true. This completes the

chain of relations | lim 7;|=
[—
proof of Theorem 18.3.

Theorem 20.4. If lim P =0, then lim 7; =0.

I—>0 —>00

1}

Proof. According to Definition 1.3, <§ <o is valid. Consequently, the

chain of relations | lim 7;|=| lim Pl-tlO <S§| lim P |=0 holds true. This completes the
i—0o0 i—>00 [—>00
proof of Theorem 20.4.

As is obvious from the foregoing, the condition necessary for education

convergence is satisfied if lim tlo =0,or lim P =0, or lim Pz =0 holds true.
i—>00 i—>00 o
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The following statement is obvious as well: if there are limits of tlo and P

under an infinite increase in the number of time steps., and lim tlo #0 and
[—0

lim P, # 0 hold true, then the education process is divergent.

[—0

The theorems proved above direct us to one of the way of designing robots with
an absolute memory and without education satiety. E.g., in order to develop this kind
of robots it is enough just to select the sequences of amplitudes F; and the time steps

tlo such that their limits under an infinite increase in the number of time steps i are

nonzero. According to Theorem 20.1, an example of a divergent education is the
education  with  tantamount emotions, 1e. when the  conditions

P, = P =const, z‘lo Y = const, i=1,00 hold true.

To build a robot with a satiated education one may select the predetermined
convergent series as the infinite education, then on its basis define the sequences

P, z‘lo , 1=1,00 satisfying Definition 1.3 and the statements of Theorems 20.3 or

20.4, and then based on this selection preset the emotions for each of time steps by
Formula (20.3).

Based on Chapter 3 we can state that an education conflict between two robots
with an absolute memory by the time point ¢ occurs if the following conditions are
satisfied:

i J
>all=3 3 0= 3 = S 72, (20.4)
k=1 k=1 k=1 k=1
where r[l] rlgz] are the elementary educations of the first and the second robot,

(1 (2]

;" Ty are the corresponding education time steps of these robots.

Let the robots get their educations based on tantamount emotions with the

[1]

andr(gz]. Consequently, reasoning from

[2]

conflict relations (20.4) we obtain ir(g = JT5

corresponding elementary educations 7

, 1.e. conditions for two robots to get

into conflict at the time point ¢ takes the form

7
i.:%, Z T[l] Z T (20.5)
J 0

If
r}{] =7l = const, r,[f] =12 = const , (20.6)

hold true, then Relations (20.5) are equivalent to the formula
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L2121
,
i.:O—:T—, which defines the conditions for an education conflict to start
j AT
between two robots with an absolute memory under tantamount emotions for each
robot and equal time steps of these emotions.
For emotions given by Formula (20.3) and considering Egs. (20.6) we get the
following equality:
: [2],0 0
i Py i
i [1]1,0 0’
0

where P[l], P[z], t[l]? t[02] are the amplitudes of emotions and the values of time steps

(20.7)

of the first and the second robot, correspondingly. From (20.7) it is evident, that in
this case the conflict between robots emerges only when the conditions
0
N
P = pl2) gpg £ =121
1 0

are valid.

We want to dwell on the relations determining fellowship (see Chapter 4) of
robots with an absolute memory. In this case (under tantamount emotions) a number
of education time steps necessary for achieving fellowship (concordance) between
two sub-groups with equal fellowship values can be found by solving the following
problem:

solve for

min (jg + Ry — Pp), (20.8)
j>1

under jg+ Rg—Fy=0.

It is easy to see that this problem always has a solution, what means that robots
with an absolute memory at any time can be brought to fellowship with any
fellowship value preset.

Now let us solve the problem of developing the equivalent educational process
(see Chapter 5) for robots with an absolute memory.
Obviously, in order to define the elementary education value g corresponding to
the equivalent process, we have to solve the following problem:
solve for:
2

min J(q)=min ¥ [R; R —(j-1)q] . (20.9)
q q j=2
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Problem (20.9) can be reduced to solving the equation d{i(q) =0 which
expanded form is !
ﬁz[Rj—Rl—(j—l)q](j—l):o. (20.10)
It is easy to see thatjtl_le solution ¢ of Eq. (20.10) is defined by

S Rj(j-D)-R (-1
j=2 j=2
q= "
S(j-D?
j=2

21. ALGORITHM OF EMOTIONAL CONTACTS IN A GROUP OF
ROBOTS

In this chapter we suggest a rule of mutual contacts between robots in their

group.
In Chapter 2 we showed that the robot’s education R; by the end of the i-th time

step is specified by the formula
R, =r,+0.R (21.1)
where 0; 1s the robot’s memory coefficient which characterizes memorization of the

i—1»

education R;_; by the end of the i-th education time step.
Suppose robots contacting each other in a group randomly exchange emotions

which initiate elementary educations.

Let Ri[L] be the education of the L-th robot by the end of the i-th time step, and

L
also let /i~ be the elementary education corresponding to this time step. Similarly,
let us introduce the corresponding educations Ri[j ] and ri[j ] for the Jj-th robot.

Assume both robots are effected by the subject S(z) initiating emotions M Z[L]
(robot L) and M l[j | (robot j).
Let us consider that if RZ[E%RZ[Z % <0 1s valid then M Z[L]M l[j <0 holds true, and

the formula RZ[E%RZ[Z % >0 implies M z[L] Mz[j] >0,

The emotions M Z[L] and M l[j I initiate the elementary education rl-[L] and rl-[j ]
ti 1 4 .
correspondingly, and rl[L] = jMZ[L](T)dT and rl-[J I M Z[J ](T)dT, where ¢; 1s the
0 0
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length of the i-th time step. Obviously the sign of the elementary education equals to
the sign of the emotion generating this education, and vice versa.

Let us assume that the sign of the education by the end of the i-1* time step is
equal to the current sign of the emotion during the i-th time step and the elementary
individual education by the end of this time step.

Now let us introduce the following definition.

Definition 21.1. The suggestibility coefficient ki[j L] is the value permitting the
emotion i of the robot L to be replaced by the corresponding emotion of the robot j
<k with € > 0.

It is obvious that kl-[j =y,

Assume that when two robots come in contact and start communicating, the
education of each of them (according to Formula (2.1)) satisfy the relations
_[L] _[/] ,
RH =ri +0.R%, RV =ri +0,RU] with:

itY-1>»

_[1] - ] l-/fk[j,L]‘ .[L}‘:maxﬂ IZ] ki[j,L]‘I?[j]‘}
ri —maxﬂrl” L ]‘ % ‘}Szg
] =ma R |
/] A if )] —maxﬂ }
i 4 7 -
7i —max{[ 1171, 1 }Slg 0 el . ’
Ty }

kl[j L1 the suggestibility coefficient of j-th robot’s emotions to the robot L,
kl[L’j I the suggestibility coefficient of L -th robot’s emotions to the robot j,
il 5o (i)

Let us introduce the following definitions.

[/.L]

Definition 21.2. With kl' |

,,i[L}‘ — max { L] il

’}[J]‘ } satisfied the

Jj-th robot is called the agitator.

Definition 21.2. Re-education (re-bringing) of a robot is a sign reversal of the
robot’s individual education.

Obviously, signs of individual educations of robots in a group can reverse only
if there are both robots with oppositely signed educations and robots-agitators.
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According to Theorem 3.1 proved in Chapter 3, a conflict in a group occurs
only if the sum education of this group equals to zero. Based on this we worked out
the following theorem.

Theorem 21.1. A conflict in a group of robots can occur only if initial
educations of these robots are oppositely signed and if there are agitators in this

group.

This opens a way to software modeling of an emotional behavior of a closed
group of intercommunicating robots. The input parameters of the corresponding
software for modeling are supposed to be memory coefficients of each of the robots
in this group, their initial individual educations and paired suggestibility coefficients.
As the software runs the emotions of robots are initiated at random and so occur the
corresponding elementary educations due to random contacts of robots. As a result
we may obtain the computed sum education specifying conflicts in the group, as
well as individual educations of each robot in this group. Due to numerical
experiments it is possible to find critical values of suggestibility coefficients and
memory coefficients causing conflicts in the group of robots after several paired
contacts (contacts between two robots).

An algorithm of a robots’ behavior in a group with a leader differs from an
algorithm of a robots’ behavior in a group without a leader due to the fact that in the
first case while selecting a robot-educator which is a major agitator in the group it is
necessary to find the order number of the greatest value of robots’ individual
educations. A robot with this number is supposed to act the part of a permanent
agitator-and-leader.

22. ON INFORMATION ASPECTS OF E-creatures

Currently U.S. researchers discuss the question concerning creation of an
electronic copy of a human being which can be called an E-creature [1].

We tried to study this idea of our American colleagues in terms of information.

Let us make a series of remarks:

1. There is no human being with an absolute memory, i.e. he\she always
forgets a part of perceived information as this is his\her natural feature.
2. A human being is able to accumulate information — without forgetting

immediately a part of it — by finite portions.

Now let us give the following definitions:

Definition 22.1. A portion is an amount of new information which is
remembered completely by a human being.

Definition 22.2. An information time step is an arrival time of a portion.

Let us note one obvious property of the portion: a number of bits s; in the
portion i is limited, i.e. there is such g for which the inequalities
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si<q, qg=0, i=0,00
always hold true.
Let us record the following formula according to the methods given in Chapter
2:

Si+1 = Si+1 + 4i+15i » (22.1)
with: i the number of the information time step, i = 0,7; sj4] the i+1% portion, S;j1]
the total amount of information memorized by a human through i+1 information
time steps, 4;4] the human information memory coefficient (characterizes the part
of total memorized information which was received during the i previous
information time steps).

Obviously the human information memory coefficient corresponding to the end
of the information time step satisfies the relation A; € [0, 1) where there is A with

A=, i=0,0, 1€(0,1).
By virtue of the information property, s; =0 holds true, consequently all the

accumulated information is greater than or equal to zero.
Suppose we have an electronic copy of a human created. Let us prove one of
the information properties of this copy.

Theorem 22.1.The total information S which can be memorized by the
processor of the human-like copy is limited.

Proof. Applying the methods given in Chapter 2, portion properties and Eq.
(22.1) we easily obtain the inequality

1—/1”1

1-4
Proceeding to the limit in Ineq. (22.2) with an infinite increase of time steps
(time of existence of an immortal human) we get the chain of relations

Y
S= lim Sj<q lim % — 4
i—>00 i—»ol-4 1-4
Thus, the theorem is proved.

Si+1<4q (22.2)

< 00,

Corollary 22.1. It is impossible to create an E-creature with a nonabsolute
memory which would be able to accumulate information infinitely.
Its proof is evident from the formulation of Theorem 22.1.

So, we can conclude that it is impossible to create the only infinitely existing E-
creature which would be an evolving copy of a human being (at least, in terms of
information).
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An immortal (infinite) electronic creature able to accumulate information
infinitely [1] is possible only in case if it has an absolute information storage

(information memory) with the conditions A; =1, i=1,00 satisfied; but this sort of

creature would have nothing to do with a human being, forgetful and oblivious; this
sort of creature could be called just a robot unit.

For the infinite information evolution of the E-creature with an absolute
memory we can state that it is necessary that the information from a chip of the
“ancestor” E-creature with the nonabsolute memory shoul be downloaded to a chip
of the “successor” E-creature (also with the nonabsolute memory) when the amount
of the accumulated information becomes close to S. For the purpose of further data
accumulation by the E-creature (which is a copy of a human being with a
nonabsolute memory) it is necessary to re-download all the information from the
ancestor’s chip to the chip of the successor on a regular basis, 1.e. s, is supposed to

be equal to S, with £ the number of information time steps performed by the E-
creature in the full course of its existence.

Let us note one property of memory information coefficients varying during the
information time step length ¢ with t €[t,, 7,,,].

Theorem 22.2. A,,,(0) =1.
Proof. Similarly to (22.1), let us write the formula

S..1(0)=s,,,(0)+ A, (0)S,. (22.3)

But at the initial moment of the information time step the relations
Si(0)=5;, 5.,(0)=0 (22.4)
hold true.
Substituting (22.4) into Relation (22.3) and solving the obtained equation
relative to 4., (0) we get A,,,(0) =1, which was to be proved.

Let us define a linear dependence allowing approximately describe the change
in the memory information coefficient during the information time step.
Obviously, S, =s,, + 4,1 (#:.,)S;. Consequently,

S - _y.
A :/ﬁti+1(l‘i+l):%sl+l- (22.5)
holds true.
Suppose that A,,,(¢) = at + b holds true.
By Theorem 22.2 and Formula (22.5) the system of linear equations
A () =b=1, (22.6)
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Ai(ti) = Ay = alty —1;) +b. (22.7)
holds true.
Solving this system of equations (6) — (7) we get
1 —1
a= , b=1.
lin —1;

1

Thus we can write down the following formula
Si+1;Si+l -1
Aoy —————1+1,
with tet;, 2., ].
It is easy to see that many proposition and provisions of the emotional robot
theory given in the previous chapters can be easily adapted to the aspects of data

accumulation by the E-creature. We suggest that you, our dear reader, should do it
yourself as some brain exercises for pleasure at your leisure.

23. SOFTWARE REALIZATION OF SIMPLE EMOTIONAL ROBOT’s
BEHAVIOR

In order to illustrate the theory given in Chapter 2 let us set the task of
developing software which would model the emotional behavior of a robot taking
and responding audible cues (sounds) which are put in this software through a
microphone plugged to a computer.
Assume this computer program is to execute the following: according to a sound
amplitude the program determines a type of “smile” which is outputted by a
computer monitor as a response (reaction) to the sound effect (so finally we will see
different “shades” of sad or happy smiles).

23.1. INPUT PARAMETERS OF SOFTWARE

Assume the modeled robot is uniformly forgetful. As the input parameters for
the model implemented by this software we use the robot’s memory coefficient 6
equal to some constant value from 0 to 1, and the time step.

23.2. ALGORITHM FOR MODELLING ROBOT’s MIMIC
EMOTIONAL REACTION

In this section we suggest an algorithm  which helps to model the mimic
emotional reaction of the robot effected by a sound (audio signal).

This algorithm represents a sequence of steps which would make a robot
(software) emotionally react (mimic) to sounds produced by a human, animal, etc.

Let us present this algorithm as the following sequence of steps with some
explanations:
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1. Convert analog sound signals received from a microphone, to a sequence of
numbers representing momentary values of a signal amplitude. Analog-digital [A/D]
converters are pretty suitable devices for such a purpose. And the conversion method
itself is called the pulse-code modulation.

2. Collect data necessary for the following analysis.

3. Analyze and aggregate the collected data.

4. Reveal and evaluate the degree of the predefined emotional stimuli. In other
words, specify subject values effecting the robot (software). Predefined sound
characteristics can be used as the emotional stimuli; sound characteristic data
collection is to be done at Step 2 and 3.

5. Compute momentary emotional characteristics of the robot (software) on the
basis of the emotion and education model considered in Chapter 2.

6. Compute elementary educations on the basis of momentary emotional
characteristics.

7. Compute the education on the basis of elementary educations and the robot’s
(software’s) memory coefficient which is to be preset before the algorithm is started.

8. Enjoy a visualization of the robot’s (software’s) emotions based on the
computed education.

Let us consider each step of the algorithm in more detail.

Step 1. In order to go through the 1-st step we need an analog-digital converter.
Every modern soundcard is usually equipped with it, so in order to get an access to it
we need to interact with a soundcard driver. It can be fulfilled in a variety of ways,
some of which we will consider below. Generally speaking, it is very important to
setup the conversion itself, i.e. its characteristics. It is necessary to select and preset
the sound sampling frequency, signal discreteness, number of channels and other
characteristics.

Step 2. This step deals with data collection from the soundcard in the course of
the pulse-code modulation. The data can be stored in a variety of ways, e.g. in files
of different formats, or just store the internal data  structure.
However here we should take into consideration that the data size (even if the
interaction of the stimulant and the robot (software) is very brief) may grow pretty
big. E.g. with the sampling frequency of 22050 Hz, discreteness of 8 bits, mono
channel and 10-second stimulant — robot interaction, the robot (software) is
supposed to receive 220500 bytes from the soundcard.

Step 3. The data is analyzed and aggregated, i.e. some certain preset
characteristics are computed on the basis of a whole data bulk or just a part of it.

Step 4. The 4-th step is matching, which means that on the basis of certain
values of the computed characteristics evaluation of subjects’ values takes place.
Correct matching is achieved experimentally.

Steps 5 is similar to 4, only at this step the momentary emotional characteristics
are matched to the degrees of the effecting subjects. Correct matching is achieved
experimentally as well.

Steps 6 and 7 imply computations based on the mathematical model formulas
described in Chapter 3.
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At the final step of the algorithm the robot’s emotion is to be expressed
visually. This can be fulfilled by some of the ways of emotion visualization (e.g. a
‘smile”’).

Also we should note the following. If we want to develop an ‘interactive’ robot
(software) i.e. the robot responding to sounds instantly then data collection and data
processing are to be executed simultaneously.

Thus the 2-nd step of the algorithm is to be executed simultaneously to Steps 3
- 8.

23.3. SoundBot SOFTWARE ARCHITECTURE
Let us examine an architecture of the developed software SoundBot [11]

implementing the algorithm given above (Fig. 23.1.). Figures in circles mean the
steps of the algorithm.
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Fig. 23.1. Architecture of SoundBot software

It is easy to see that the architecture is directly associated with the algorithm
given above. It includes two modules:

1. A sound module, which is responsible for interaction with the soundcard and
collection of the necessary numerical data.

85



2. An implementation module, which is responsible for implementation of the
given mathematical model of emotions and education, it also computes the smile
parameters to show the mimic emotional response of the system.

The data is processed, analyzed and aggregated directly between the modules.
Both modules function simultaneously for the system to be interactive.

Now let us examine main features, operation principles and visual interface of
this software.

23.4. MAIN FEATURES OF SoundBot

This software is written in C++ using Visual Studio 2008 development
environment. It works on IBM PC compatible computers under Windows XP and
elder OS. The software also requires .NET Framework 2.0. The exe file size is 100

Kbytes.
The major functions of this software are the following:
1. SoundBot is able to detect main capabilities of PC multimedia devices.
2. SoundBot is able to play wav files.
3. SoundBot is able to record sounds in wav files (mono only).
4. SoundBot can perform an emotional response to the played wav files.

SoundBot can emotionally response in an interactive mode to the sounds
inputted via a microphone.

23.5. SoundBot OPERATION PRINCIPLES

Major operation principles of SoundBot which are to be viewed in details are:

1. Sound module operation,
2. Principle of simultaneous operation of both modules.
3. Emotional stimuli considered by the software and principles of their

degree assignment.

As it was said before, there are a variety of ways for working with a soundcard.
The methods considered above use system libraries of MS Windows, so these
methods can be used only with this OS.

The simplest approach is to use MCI command-string interface or MCI
command-messages interface. MCI is a universal interface independent of hardware
characteristics. MCI is meant for controlling multimedia devices (soundcards and
videocards, CD- and DVD-ROMs) [12, 13].
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In most cases capabilities of this interface meet the needs of any multimedia
applications used for recording and playing audio or video files.
But it has a drawback: the data received from the soundcard cannot be read and
processed interactively. It means that this method will not work here.

This approach is based on the MCI command-string interface or MCI
command-message interface and the drawback of this method can be overcome if we
use a low level interface.

The low level interface can be used for playing wav files as follows.
First, the wav file header is read and its format is checked, the output device is
opened and the sound data format 1s specified.
Next, the audio data blocks are read directly from the wav file to get prepared by a
special function for output and then they are passed to the driver of the output
device. The driver puts them out to the soundcard [12, 13]. The application totally
controls the playback process because it prepares the data blocks in RAM itself.

The audio data is recorded the same way. First, the input device is to be opened
and the audio file format is to be specified to the device. Next, one or more blocks of
RAM are to be reserved and the special function is to be called. After that, as the
need arises, the prepared blocks are passed to the input device driver which fills
them with the recorded audio data [12, 13].

For the recorded data to be saved as a wav file the application has to generate
and record the file header and audio data to the file from the RAM blocks prepared
and filled by the input device driver.

The low level interface requires all the record-and-playback details to be very
thoroughly considered, as opposed to the MCI interface where most of parameters
are just taken by default. These extra efforts are compensated with pretty good
flexibility and the opportunity to work with the audio data in real time [12, 13].

To provide the interactive mode of the SoundBot, i.e. make it interact with a
user in real time, its modules have to operate simultaneously.

Each SoundBot’s module is executed as a separate thread and it makes possible
the following:

1. The software can simultaneously receive new data from the soundcard
and analyze it for further computing of the education which reflects the emotional
state.

2. The software can simultaneously play, record and select the audio data
for its analysis.

Besides, the visualization of mimic emotional response is also executed as a
separate thread to make it drawn as fast as possible.

Still the SoundBot considers only one emotional stimulus (subject) which is
amplitude of the effecting audio signal. Every audio signal count generates
stimulations in the SoundBot system and initiates momentary emotions according to
the sine-shaped emotion function. Subjects are matched to emotions by value ranges
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specifying what subject initiates positive emotions and what subject initiates
negative ones.

23.6. SoundBot VISUAL INTERFACE

A main window includes two inlays: the first one deals with playback and
training of the SoundBot system on .wav samples (Fig. 23.2).
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Fig. 23.2. First inlay in the main window of the SoundBot software.

The second inlay is used for recording wav files and interactive communication
with the SoundBot system (Fig. 23.3).
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Fig. 23.3. Second inlay in the basic window of the SoundBot software.

Besides, the main window shows a smile expressing the emotional response of
the modeled robot and the current value of the momentary emotion and education.

88



In a main menu we may set the major parameters (parameters of the emotion
math model, parameters of operation principles and parameters of audio data
processing).

Below we show a couple of dialogue windows for setting up different
parameters (Fig.23.4 and 23.5).
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Fig.23.4. Model parameters
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Fig.23.5. Record parameters

To find out characteristics of pulse-code conversion supported by the soundcard
we are to select the option “Info” —> “Driver parameters...” of the main menu (this
is strongly recommended for the correct record parameters settings especially when
the software is run for the first time).

After you submit the settings you will see a window containing the description of
multimedia hardware (Fig.23.6).
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Fig.23.6. Multimedia hardware Parameters

The suggested algorithm can be used for building emotional robots. But the
input audio data should be analyzed more thoroughly to single out as much stimuli
as possible. That is why the SoundBot system can be considered as the first

approximation of emotional robot software.

Also it should be considered that both the algorithm and Soundbot itself are
meant for interaction with only one user. Interaction with several users requires
some other much more complicated mathematical model.

The described software can be applied, for instance, for proper communication
and rehabilitation of hearing-impaired patients, or used by actors for placing a voice
outside an opera house. This software can also be used for predicting the emotional
reaction of other people to the user’s behavior (the software response shows the

possible reaction of the surrounding people).
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CONCLUSION

We hope you managed to read this book through. The authors made an attempt
to build up and describe the virtual reality of emotional robots.

Concerning real mental processes of living organisms, it is not easy to define
dependencies between emotions and time, and, perhaps, in the general case, this
problem is unsolvable. But in the process of building robots a roboticist can preset
mathematical functions of emotions altering with time (same as memory
coefficients, and derivatives of emotion functions). In this case the theory given in
this book allows of designing robots with the preset psychological characteristics,
with further analyzing and computing of emotional behavior of robots on the basis
of numeric data read in their memory.

As an example, below we give a description of a closed chaotic virtual reality of
emotional robots based on software implementation of mathematical models shown
in this book. In this description we use the terms defined above.

Let the virtual reality include some finite number of robots. Each of robots has
its own memory with its special individual memory  coefficients.
In their virtual reality robots effect upon each other with different subjects in a
random way to initiate emotions and alter each other’s educations. Robot the
educator (the one from which emotions are passed to the educatee) is that with the
greatest education modulo. Concordance groups — ‘fellowships’ of robots occur as a
result of emotional contacts between robots, the greater their fellowship value, the
more united is the group. Some groups may get into conflicts with each other. These
conflicts emerge when sum educations of the groups became equal to zero.
Each robot has a goal which is common for their reality in a whole. As a result of
this goal presence in the course of time the leaders may appear which are robots
with the greatest willpower and best abilities. Education effectiveness of each robot
is characterized by the education process efficiency coefficient. Finding their
efficiency coefficients can help us to select robots with natural characteristics
making them the most educationally inclined.
Some of robots feature satiated education;, when these robots get to some certain
level of satiety, emotional effect of other robots upon them stops.
If there are robots which do not have education satiety in this virtual reality, then
other robots educate them in the most active way, and this causes leaders to occur in
the robots’ community. Based on equivalent processes developed for each of robots
with further ranking of limit educations, a leader of the robots’ community defines
its distant successor to be a new leader in  future.
The robots may get ill due to some software faults or computer virus attacks. A
physician in this robots’ community heals its ill inhabitants by correcting their
emotions. As robots-members of this community keep communicating and
interacting with each other their educations alter with the course of time. This
causes the leaders to change and new fellowships and conflicting groups to occur.
This is the way emotional robots live in their virtual reality.

This book appeared as a result of investigations described in [3, 11 — 33], it
includes new results and prepares a basis for new problems.

91



We hope that this book is useful for roboticists and program developers
designing software for emotional robots and their groups.

Any your ideas and opinions about this book are welcome. Please feel free to e-
mail to the authors at ogpensky(@mail.ru or kirillperm@yandex.ru .
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