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Abstract. The paper presents a methodology for the enhanced stiffnessanalysis of parallel manip-
ulators with internal preloading in passive joints. It alsotakes into account influence of the external
loading and allows computing both the non-linear “load-deflection” relation and the stiffness ma-
trices for any given location of the end-platform or actuating drives. Using this methodology, it is
proposed the kinetostatic control algorithm that allows toimprove accuracy of the classical kine-
matic control and to compensate position errors caused by elastic deformations in links/joints due
to the external/internal loading. The results are illustrated by an example that deals with a par-
allel manipulator of the Orthoglide family where the internal preloading allows to eliminate the
undesired buckling phenomena and to improve the stiffness in the neighborhood of its kinematic
singularities.
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1 Introduction

Parallel manipulators have become very popular in many industrial applications
due to their inherent advantages of providing better accuracy, lower mass/inertia
properties, and higher structural rigidity compared to their serial counterparts [1].
These features are induced by the specific kinematic structure, which eliminates
the cantilever-type loading and allows to minimize deflections caused by external
torques and forces. One recent development in this area, which is targeted at high-
precision manipulation, is a replacing the standard passive joints by preloaded ones,
which contain internal passive springs eliminating the backlash or ensure some de-
gree of static balancing [2, 3]. This modification obviouslyimproves the manipula-
tor performances but requires some revision of existing stiffness analysis techniques
that are in the focus of this paper.

In most of previous works, the manipulator stiffness analysis was based on the
linear modeling assumptions which ignore influence of the external or internal
forces [4, 5, 6, 7, 8]. Consequently, relevant techniques are targeted at linearization
of the “force-deflection” relation in the neighborhoodof the non-loaded equilibrium,
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which is perfectly described by the stiffness matrix [9, 10]. However, in the case of
non-negligible internal and/or external loading, the manipulator may demonstrate
essentially non-linear behaviour, which is not exposed in the unloaded case [11].
In particular, the loading may potentially lead to multipleequilibriums, to bifurca-
tions of the equilibriums or to static instability of certain manipulator configurations
[12, 13].

This paper presents an extension of our previous results [14] devoted to the
stiffness analysis of parallel manipulators by generalizing them for case of inter-
nal preloading [15] in the passive joints. It implements thevirtual joint method
(VJM) of Salisbary [16] and Gosselin [17] that describes thecompliance of the
manipulator elements by a set of localized multi-dimensional springs separated by
rigid links and perfect joints. The proposed technique allows computing the loaded
equilibrium, finding the full-scale “load-deflection” relation and evaluating the cor-
responding stiffness matrices for any given location of theend-platform or actuating
drives [18]. It is also developed a kinetostatic control algorithm that allows to im-
prove accuracy of the classical kinematic control and to compensate position errors
caused by elastic deformations in links/joints due to the external/internal loading.

The remainder of this paper is organized as follows. Section2 defines the re-
search problem and basic assumptions. Section 3 deals with computing of the loaded
static equilibrium and corresponding “load-deflection” relation. Section 4 focuses
on its linearization and evaluation of the stiffness matrix. Section 5 presents the
kinetostatic control algorithm. Section 6 contains an illustrative example. And fi-
nally, Section 7 summarizes the main results and contributions.

2 Manipulator model

Let us consider a general parallel manipulator that is composed ofn serial kine-
matic chains connecting a fixed base and a moving platform Figure 1. It is assumed,
that the chain architecture ensures kinematic control of the manipulator but may
introduce some redundant constraints that improve the rigidity. Following the VJM-
concept [17], let us presents the manipulator chains as sequences of pseudo-rigid
links separated by rotational or translational joints of one of the following types:
(i) perfect passive joints ; (ii) preloaded passive joints that include auxiliary flexible
elements; (iii) virtual flexible joints that describe compliance of the actuators and
manipulator links; (iv) actuating joints. Using this notation the geometrical model
of the chain may be written as

t = g(ρ ,q,ϑ ,θ ), (1)

where the vectort = (p, ϕ)T includes the Cartesian positionp = (x, y, z)T and
orientationϕ = (ϕx, ϕy, ϕz)

T of the end-platform,ρ is the vector of actuated coor-
dinates (they are constant for static analysis), the vectorq contains coordinates of
all perfect passive joints, the vectorϑ includes coordinates of the preloaded pas-
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Fig. 1 Typical parallel manipulator and VJM-model of its kinematic chain.
(Ac - actuator; Ps - Passive joint)

Fig. 2 Examples of auxiliary springs in preloaded passive joints.

sive joints, and the vectorθ collects coordinates of all virtual springs describing
elasticity of the links and joints.

The above mentioned elements of the kinematic chain differ in their static char-
acteristics. In particular, the joints (i) and (iii) are described by the standard expres-
sions [14]

τq = 0 and τθ = K θ ·θ (2)

whereτq and τθ are the generalized force/torque reactions correspondingto the
aggregated vectors of the passive joint coordinatesq and virtual joint coordinatesθ ;
K θ is the generalized stiffness matrix of all virtual springs.However, the preloaded
passive joints (ii) may include both linear and non-linear auxiliary springs, some
examples of which are shown in Figure 2. In this paper, we willdescribe statics of
the preloaded joints by a general expression

τϑ = K ϑ ·h(ϑ −ϑ0) (3)

whereτϑ is the generalized force/torque reactions corresponding to the aggregated
vectors of the preloaded joint coordinatesϑ ; ϑ0 defines the preloading value;K ϑ
is the generalized stiffness matrix of preloaded joints, and the vector functionh(...)
is assumed to be piecewise-linear, such that each of its scalar componentshi(...)
can be expresses either as the difference(ϑi −ϑi0), or its positive or negative part
[ϑi −ϑi0]

+, [ϑi −ϑi0]
− (see Figure 2 for details).

Using these assumptions, let us derive the stiffness model of the considered ma-
nipulator and sequentially consider the following sub-problems: (i) computing the
loaded static equilibrium and obtaining the “load-deflection” relation; (ii) lineariza-
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tion of this relations in the neighborhood of this equilibrium and computing the
stiffness matrix; (iii) developing the kinetostatic control algorithm, which allows to
compensate position errors caused by the elastic deformations and preloading.

3 Static equilibrium

Let us obtain first the configuration of each kinematic chain(q,θ ,ϑ) and external
forceF that correspond to the static equilibrium with the end-point locationt. Ob-
viously, it is a dual problem compared to the classical static analysis but it is more
reasonable here because of strictly parallel structure of the considered manipulator
(see Figure 1). The latter allows applying the same technique to all kinematic chains
(with the same end-point location) and to compute the total external loading as the
sum of the partial loadings.

Taking into account the assumption on the piecewise-linearproperty of the func-
tion h(.), let us perform regrouping of the variables. In particular,for each current
configuration of the chain, the coordinates of the preloadedpassive joints described
by the vectorϑ may be separated into two partsϑθ andϑq , where the first one
corresponds to the active state of the auxiliary springs andthe second part describes
non-active springs (see Figure 2 for geometrical interpretation). This allows replac-
ing the original set of the configuration variables(q,θ ,ϑ) by a set of two vectors
(q̃, θ̃ ), whereq̃ aggregates the joint coordinates(q,ϑq) that currently are passive
and the vector̃θ collects all spring coordinates(θ ,ϑθ ) (both virtual and passive).

Using these notations and applying the virtual work technique, the static equilib-
rium equation of the kinematic chain may be written as

J̃T
θ ·F = K̃ θ · (θ̃ − θ̃0); J̃T

q ·F = 0 (4)

whereF is the external force applied at the end-point of the chain, the vectorθ̃ T
0 =

[0T , ρT
0 ] aggregates the spring preloadings (which is obviously zerofor the virtual

springs),K̃ θ = diag(K θ ,K ϑ ), andJ̃θ , J̃q are the kinematic Jacobians derived from
(1) by differentiating it with respect tõθ , q̃. This system of equation (4) combined
with the geometrical model (1), which must be rewritten in terms of the redefined
variables

t = g̃(q̃, θ̃ ). (5)

This yields the desired joint coordinates of the static equilibrium for a separate kine-
matic chain with given end-point location.

Since the derived system is highly nonlinear, in general case a desired solution
can be obtained only numerically. In this paper, it is proposed to use the following
iterative scheme
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[

Fi+1

q̃i+1

]

=

[

J̃θ (q̃i , θ̃i) · K̃−1
θ · J̃T

θ (q̃i , θ̃i) J̃q(q̃i , θ̃i)

J̃T
q (q̃i , θ̃i) 0

]

−1[
εi

0

]

θ̃i+1 = K̃−1
θ · J̃T

θ (q̃i , θ̃i) ·Fi+1+ θ̃0

εi = t −g(q̃i, θ̃i)+ J̃q(q̃i , θ̃i) · q̃i + J̃θ (q̃i , θ̃i) · (θ̃i + θ̃0)

(6)

where the starting point(θ̃0, q̃0) is also computed iteratively, started from a near-
est unloaded configuration where the joint coordinates are easily obtained from the
inverse kinematic model. On the following iterations, to improve convergence, the
system variables are slightly randomly disturbed. As follows from computational
experiments, the proposed iterative algorithm possesses rather good convergence
(3-5 iterations are usually enough).

4 Stiffness matrix

To compute the desired stiffness matrix, let us consider theneighborhood of the
equilibrium configuration and assume that the external force and the end-effector
location are incremented by some small valuesδF, δ t. Besides, let us assume that
a new configuration also satisfies the equilibrium conditions. Hence, it is neces-
sary to consider simultaneously two equilibriums corresponding to the manipulator
state variables(F,q,θ , t) and(F+ δF,q+ δq,θ + δθ , t + δ t). Relevant equations
of statics may be written as

J̃T
θ F = K̃ θ (θ̃ − θ̃0); J̃T

q F = 0;
(

J̃θ + δ J̃θ
)T

(F+ δF) = K̃ θ
(

θ̃ − θ̃0+ δ θ̃
)

;
(

J̃q + δ J̃q
)T

(F+ δF) = 0
(7)

whereδ J̃q(q̃, θ̃ ) andδ J̃θ (q̃, θ̃ ) are the differentials of the Jacobians due to changes
in (q̃, θ̃ ). Besides, in the neighborhood of(q̃, θ̃ ), the kinematic equation (5) may be
also presented in the linearized form:

δ t = J̃θ (q̃, θ̃) ·δθ + J̃q(q̃, θ ) ·δ q̃, (8)

Hence, after neglecting the high-order small terms and expanding the differen-

tials via the Hessians of the functionΨ = g̃(q̃, θ̃ )T
F

H̃F
qq = ∂ 2Ψ/∂ q̃2; H̃F

θθ = ∂ 2Ψ/∂ θ̃ 2; H̃F
qθ = (H̃F

θq)
T = ∂ 2Ψ/∂ q̃ ∂ θ̃ , (9)

equations (7) may be rewritten as

J̃T
θ (q̃, θ̃ ) ·δF+ H̃F

θq(q̃, θ̃ ) ·δ q̃+ H̃F
θθ (q̃, θ̃ ) ·δ θ̃ = K̃ θ ·δ θ̃

J̃T
q (q̃, θ̃ ) ·δF+ H̃F

qq(q̃, θ̃ ) ·δ q̃+ H̃F
qθ(q̃, θ̃ ) ·δ θ̃ = 0

(10)
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Besides, here the variableδ θ̃ can be eliminated analytically:δ θ̃ = k̃F
θ · J̃T

θ ·δF+

k̃F
θ ·H̃

F
θq ·δ q̃, wherek̃F

θ =
(

K̃ θ − H̃F
θθ
)

−1
. This leads to a system of matrix equations

with unknownsδF andδ q̃
[

J̃θ · k̃F
θ · J̃T

θ J̃q + J̃θ · k̃F
θ · H̃F

θq

J̃T
q + H̃F

qθ · k̃
F
θ · J̃T

θ H̃F
qq+ H̃F

qθ · k̃
F
θ · H̃F

θq

]

·

[

δF

δ q̃

]

=

[

δ t

0

]

(11)

from which the desired Cartesian stiffness matrix of the chain K c may be obtained
by direct inversion of the the left-hand side and extractingfrom it the upper-left
sub-matrix of size 6×6:

[

K c ∗

∗ ∗

]

=

[

J̃θ · k̃F
θ · J̃T

θ J̃q+ J̃θ · k̃F
θ · H̃F

θq

J̃T
q + H̃F

qθ · k̃
F
θ · J̃T

θ H̃F
qq+ H̃F

qθ · k̃
F
θ · H̃F

θq

]

−1

(12)

Finally, when the stiffness matrices for all kinematic chains are computed, the
stiffness of the entire multi-chain manipulator can be found by simple summation
K Σ =∑n

i=1K ci. It should be noted that, because of presence of the passive joints, the
stiffness matrix of a separate serial kinematic chain is always singular, but aggrega-
tion of all the manipulator chains of a parallel manipulatorproduce a non-singular
stiffness matrix.

5 Kinetostatic control

In robotics, the manipulator motions are usually generatedusing the inverse kine-
matic model that allows computing the input (reference) signals for actuatorsρ cor-
responding to the desired end-effector locationt. However, for manipulators with
preloaded passive joints, the kinematic control becomes non-applicable because of
changes in the end-platform location due to the internal loading. Hence, in this case,
the control must be based on the inverse kinetostatic model that takes into account
both the manipulator geometry and elastic properties of itslinks and joints [12].

Using results from the previous sections, the desired inverse kinetostatic trans-
formation can be performed iteratively, in the following way:

Step#1. For given target location of the end-platformt, compute initial values of
the actuated coordinatesρ0 by applying the inverse kinematic transformation.

Step#2. For current values of the actuated coordinatesρi and target location of
the end-platformt, find the equilibrium configuration for each kinematic chain
and compute the corresponding total external loadingFi

Σ required to achieve the
target location.

Step#3. If the computed external loading is less than the prescribederror, i.e.
∣

∣Fi
Σ
∣

∣< εF , stop the algorithm, otherwise continue the next step
Step#4. Repeat Step#2 several times in the neighborhood of the current solution

ρi and evaluate numerically the matrixSi
Fρ = ∂Fi

Σ/∂ρi describing the sensitivity
of F with respect toρ .
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Fig. 3 Architecture of the Orthoglide manipulator and its planar version.

Step#5. Compute new value of the actuated coordinatesρi+1 = ρi −Si
Fρ

−1
·Fi

Σ
and repeat the algorithm starting from Step#2.

As follows from simulation results, this algorithm demonstrates good conver-
gence and can be used both for on-line and off-line trajectory planning. It was suc-
cessfully applied to the case-study presented in the following Section.

6 Application example

Let us apply the proposed techniques to the stiffness analysis of the planar manip-
ulator of the Orthoglide family (Figure 3). For illustration purposes, let us assume
that the only source of the manipulator elasticity is concentrated in actuated drives,
while the passive joints may be preloaded by (i) standard linear springs, or (ii) non-
linear springs with mechanical stop-limit (see Figure 2 fordetails).

For this manipulator, the kinematic model includes a singleparameterL (the
leg length) and the dexterous workspace was defined as the maximum square area
that provides the velocity (and force) transmission factors in the range[0.5, 2.0].
Using the critical point technique developed for this type of manipulators [19], it was
proved that the desired square vertices are located in the points Q1(−p, − p) and
Q2(p, p), wherep = 0.45 L. Besides, the square centreQ0(0, 0) is isotropic with
respect to the velocity and force transmission. The parameters of the actuating drives
are also assumed identical and their linear stiffness is denoted asKθ . The auxiliary
springs incorporated in the passive joints adjacent to the actuators are described
by two parameters: the angular stiffness coefficientKϑ and the activation angleϑ0

that defines the preloading activation point. During simulation, the manipulator end-
point was displaced by value∆ in the directionQ0Q1 or Q0Q2, and it was computed
corresponding magnitude for external forceF.

The stiffness analysis results are summarized in Figures 4,5 and in Table 1. As
follows from them, the original manipulator (without preloading in passive joints)
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Fig. 4 Force-deflection relationsF = f (∆/L) in critical points:
(1) Kϑ = 0; (2) Kϑ = 0.01Kθ L2; (3) Kϑ = 0.1 Kθ L2

(case of preloading with linear springs).

Fig. 5 Compliance maps for cases of: (a) manipulator without preloading;
(b) manipulator with preloading non-linear springs withKϑ = 0.5 Kθ L2 andϑ0 = π/12 (b).

demonstrates rather low stiffness in the neighborhood of the point Q2, which is
roughly 4 times lower than in the isotropic pointQ0. In contrast, the linear stiffness
in the pointQ1 is twice higher than in the pointQ0. Besides, in the pointQ2, the
external loading may provoke the buckling phenomenon that is caused by a local
minimum of the force-deflection relation. In this case, the distance-to-singularity is
essentially lower that it is estimated from the kinematicalmodel and the manipulator
may easily loose its structural stability.

To improve the manipulator stiffness and to avoid the buckling in the neigh-
borhood ofQ2, the passive joints were first preloaded by linear springs with ac-
tivation angleϑ0 = 0. As follows from Figure 4, the preloading with parameter
Kϑ = 0.1 Kθ L2 allows completely eliminate buckling and improves the stiffness by
the factor of 2.3. On the other hand, the stiffness in the points Q0 andQ1 changes
non-essentially, by 10% and 5% respectively. Hence, with respect to the stiffness,
such preloading has positive impact.

The only negative consequence of such preloading is relatedto changes of the
actuator control strategy. In fact, instead of standard kinematic control, it is nec-
essary to apply the kinetostatic control algorithm presented in Section 5. It allows
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Table 1 Manipulator stiffness for different linear preloading.

Stiffness in preloaded joints Kϑ = 0 0.01Kθ L2 0.05Kθ L2 0.1 Kθ L2

PointQ0 (isotropic point)

Actuating joint coordinatesρ L L L L
Manipulator stiffnessK c Kθ 1.01Kθ 1.05Kθ 1.10Kθ

PointQ1 (neighborhood of “bar” singularity)

Actuating joint coordinatesρ 0.437L 0.433L 0.419L 0.402L
Manipulator stiffnessK c 2.276Kθ 2.286Kθ 2.329Kθ 2.382Kθ

PointQ2 (neighborhood of “flat” singularity)

Actuating joint coordinatesρ 1.345L 1.356L 1.399L 1.453L
Manipulator stiffnessK c 0.24Kθ 0.27Kθ 0.39Kθ 0.55Kθ
Critical forceFcr 0.020Kθ L 0.027Kθ L — —

compensating the position errors caused by elastic deformations due to the internal
preloading and to achieve the target end-point location with modified values of the
actuated joint coordinates. As follows from Table 1, corresponding adjustments of
the joint coordinates may reach 0.1 L and are not negligible for most of applications.

The most efficient solution that eliminates this problem is using of non-linear
springs with mechanical stop-limits that are activated while approaching toQ2. For
instance, as follows from dedicated study, the preloading with the parametersKϑ =
0.5 Kθ L2, ϑ0 = π/12 provides almost the same improvements inQ2 as the linear
spring while preserving usual control strategies if the preloading is not activated.
The efficiency of this approach is illustrated by the compliance maps presented in
Figure 5.

7 Conclusions

Recent advances in mechanical design of robotic manipulators lead to new parallel
architectures that incorporates internal preloading in passive joints allowing to im-
prove accuracy but leading to revision of existing stiffness analysis techniques. This
paper presents new results in this area that allow simultaneously evaluate influence
of internal and external loading and compute both the non-linear “load-deflection”
relation and the stiffness matrices for any given location of the end-platform or
actuating drives. Using this methodology, it is proposed the kinetostatic control al-
gorithm that allows to improve accuracy of the classical kinematic control and to
compensate position errors caused by elastic deformationsin links/joints due to the
external/internal loading. The efficiency of this technique is confirmed by an appli-
cation example that deals with a parallel manipulator of theOrthoglide family where
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the internal preloading allows to eliminate the undesired buckling phenomena and
to improve the stiffness in the neighborhood of its kinematic singularities.

In future, these results will be generalized to other types of preloading that may
be generated by external gravity-compensation mechanismsand also applied to mi-
cromanipulators with flexure joints.
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de la Loire” (project RoboComposite).
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