arXiv:1012.1943v1 [cs.RO] 9 Dec 2010

Stiffness Analysis of Parallel Manipulators with
Preloaded Passive Joints

A. Pashkevich, A. Klimchik and D. Chablat

Institut de Recherche en Communications et en Cydigyme de Nantes, France

Ecole des Mines de Nantes, France

e-mail:

anatol.pashkevich@emn. fr, alexandr.klimchik@emn. fr, damien.chablat@irccyn.ec—nante

Abstract. The paper presents a methodology for the enhanced stitmadgsis of parallel manip-
ulators with internal preloading in passive joints. It alakes into account influence of the external
loading and allows computing both the non-linear “load-e&fbn” relation and the stiffness ma-
trices for any given location of the end-platform or actogtdrives. Using this methodology, it is
proposed the kinetostatic control algorithm that allowsmprove accuracy of the classical kine-
matic control and to compensate position errors causedasyieldeformations in links/joints due
to the external/internal loading. The results are illusgiaby an example that deals with a par-
allel manipulator of the Orthoglide family where the intekhpreloading allows to eliminate the
undesired buckling phenomena and to improve the stiffredlse neighborhood of its kinematic
singularities.
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1 Introduction

Parallel manipulators have become very popular in manyst@l applications
due to their inherent advantages of providing better acgyiawer mass/inertia
properties, and higher structural rigidity compared tarteerial counterparts [1].
These features are induced by the specific kinematic stejcivhich eliminates
the cantilever-type loading and allows to minimize defl@us$i caused by external
torques and forces. One recent development in this areghviditargeted at high-
precision manipulation, is a replacing the standard pagsints by preloaded ones,
which contain internal passive springs eliminating thektsgh or ensure some de-
gree of static balancin@[2] 3]. This modification obviouishproves the manipula-
tor performances but requires some revision of existirffness analysis techniques
that are in the focus of this paper.

In most of previous works, the manipulator stiffness analyss based on the
linear modeling assumptions which ignore influence of thtereal or internal
forces [4]5] 6] [7,18]. Consequently, relevant techniquedageted at linearization
of the “force-deflection” relation in the neighborhood o thon-loaded equilibrium,
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which is perfectly described by the stiffness matrix [9,.Hbwever, in the case of
non-negligible internal and/or external loading, the rpatator may demonstrate
essentially non-linear behaviour, which is not exposedc unloaded caseé [11].
In particular, the loading may potentially lead to multiglguilibriums, to bifurca-
tions of the equilibriums or to static instability of certananipulator configurations
[12,[13].

This paper presents an extension of our previous resulfsdévoted to the
stiffness analysis of parallel manipulators by genenadjzhem for case of inter-
nal preloading([15] in the passive joints. It implements tual joint method
(VIM) of Salisbary [[16] and Gosselin [117] that describes tloenpliance of the
manipulator elements by a set of localized multi-dimenai@prings separated by
rigid links and perfect joints. The proposed techniquevedlaomputing the loaded
equilibrium, finding the full-scale “load-deflection” reéian and evaluating the cor-
responding stiffness matrices for any given location ofthé-platform or actuating
drives [18]. It is also developed a kinetostatic controloaithm that allows to im-
prove accuracy of the classical kinematic control and tomemsate position errors
caused by elastic deformations in links/joints due to thereal/internal loading.

The remainder of this paper is organized as follows. SeQialefines the re-
search problem and basic assumptions. Section 3 dealsanitputing of the loaded
static equilibrium and corresponding “load-deflectionfat®mn. Section 4 focuses
on its linearization and evaluation of the stiffness matBection 5 presents the
kinetostatic control algorithm. Section 6 contains ansilfative example. And fi-
nally, Section 7 summarizes the main results and contadhati

2 Manipulator model

Let us consider a general parallel manipulator that is caagmfn serial kine-
matic chains connecting a fixed base and a moving platformwEigy. It is assumed,
that the chain architecture ensures kinematic control efrtfanipulator but may
introduce some redundant constraints that improve thdityjgiFollowing the VIM-
conceptl[1¥], let us presents the manipulator chains asesegs of pseudo-rigid
links separated by rotational or translational joints oé ari the following types:
(i) perfect passive joints ; (ii) preloaded passive joihtgttinclude auxiliary flexible
elements; (iii) virtual flexible joints that describe conapice of the actuators and
manipulator links; (iv) actuating joints. Using this natat the geometrical model
of the chain may be written as

t=g(p.q,9,0), 1)

where the vectot = (p, ¢>rT includes the Cartesian positign= (X, V, z)T and
orientationg = (¢x, ¢y, ¢,) of the end-platformp is the vector of actuated coor-
dinates (they are constant for static analysis), the veptwntains coordinates of
all perfect passive joints, the vect@rincludes coordinates of the preloaded pas-



Stiffness Analysis of Parallel Manipulators with Preloddassive Joints 3

Auxiliary
springs

\\\

ANSANAN

B Mobile
platform

(a) Parallel manipulator (b) VJM model of serial kinematic chain

Virtual springs —

Fig. 1 Typical parallel manipulator and VIM-model of its kinencathain.
(Ac - actuator; Ps - Passive joint)
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Fig. 2 Examples of auxiliary springs in preloaded passive joints.

sive joints, and the vectdd collects coordinates of all virtual springs describing
elasticity of the links and joints.

The above mentioned elements of the kinematic chain difféneir static char-
acteristics. In particular, the joints (i) and (iii) are debed by the standard expres-
sions [14]

Tq=0 and 19=Kg-0 (2)

where1q and 1 are the generalized force/torque reactions corresportdiriige
aggregated vectors of the passive joint coordingi@sd virtual joint coordinates;
K is the generalized stiffness matrix of all virtual springewever, the preloaded
passive joints (i) may include both linear and non-lineaxibary springs, some
examples of which are shown in Figlide 2. In this paper, we a@éHcribe statics of
the preloaded joints by a general expression

Ts =Ky -h(9 — ) 3)

wherety is the generalized force/torque reactions corresponditiget aggregated
vectors of the preloaded joint coordinai2sd, defines the preloading valuk;y
is the generalized stiffness matrix of preloaded joints| #ue vector functiom(...)
is assumed to be piecewise-linear, such that each of itarscamponents(...)
can be expresses either as the differeffe- Jip), or its positive or negative part
[ — o] T, [8i — o] (see Figure 2 for details).

Using these assumptions, let us derive the stiffness mddieé@onsidered ma-
nipulator and sequentially consider the following subkpems: (i) computing the
loaded static equilibrium and obtaining the “load-defliectirelation; (ii) lineariza-
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tion of this relations in the neighborhood of this equilibri and computing the
stiffness matrix; (iii) developing the kinetostatic casitalgorithm, which allows to
compensate position errors caused by the elastic defarnsatind preloading.

3 Static equilibrium

Let us obtain first the configuration of each kinematic cHajif8,d) and external
forceF that correspond to the static equilibrium with the end-ptmnationt. Ob-
viously, it is a dual problem compared to the classical catialysis but it is more
reasonable here because of strictly parallel structurbeotbnsidered manipulator
(see Figure 1). The latter allows applying the same teclerigall kinematic chains
(with the same end-point location) and to compute the tot@real loading as the
sum of the partial loadings.

Taking into account the assumption on the piecewise-lipeggerty of the func-
tion h(.), let us perform regrouping of the variables. In particular,each current
configuration of the chain, the coordinates of the prelogdesive joints described
by the vectord may be separated into two patlg anddq , where the first one
corresponds to the active state of the auxiliary springsla@decond part describes
non-active springs (see Figure 2 for geometrical integgi@t). This allows replac-
ing the original set of the configuration variablgg 6,3 ) by a set of two vectors
(8, 6), where§ aggregates the joint coordinatées 9q) that currently are passive
and the vectof collects all spring coordinaté®,9g) (both virtual and passive).

Using these notations and applying the virtual work techajdhe static equilib-
rium equation of the kinematic chain may be written as

Jj-F=Kg-(8—6);  Jj-F=0 (4)

whereF is the external force applied at the end-point of the chaiavectord] =
[or, pg] aggregates the spring preloadings (which is obviously fmrthe virtual
springs) K g = diagKg,K ), andJg, Jq are the kinematic Jacobians derived from
(1) by differentiating it with respect t, §. This system of equation (4) combined
with the geometrical model (1), which must be rewritten inrte of the redefined
variables

t=9(4.6). (5)
This yields the desired joint coordinates of the static lopiiim for a separate kine-
matic chain with given end-point location.
Since the derived system is highly nonlinear, in generad @adesired solution
can be obtained only numerically. In this paper, it is praubt use the following
iterative scheme



Stiffness Analysis of Parallel Manipulators with Preloddassive Joints 5

[Fm] _ [je(ai,i)-Rgl-jé(aif.) jq(ﬁi,Nl)]l [&]
~Qi+1 ) i,6) ) ©)
9|+1=K9 JT(qI,G)-F|+l+90

& =t—0(8,8)+3q@.8) G+o(@.6) (8 +6)

where the starting poir(téo,qo) is also computed iteratively, started from a near-
est unloaded configuration where the joint coordinates aséyeobtained from the
inverse kinematic model. On the following iterations, tqimve convergence, the
system variables are slightly randomly disturbed. As fefidrom computational
experiments, the proposed iterative algorithm possesgherrgood convergence
(3-5 iterations are usually enough).

4 Stiffness matrix

To compute the desired stiffness matrix, let us considemtighborhood of the
equilibrium configuration and assume that the externalef@ed the end-effector
location are incremented by some small vala€s ot. Besides, let us assume that
a new configuration also satisfies the equilibrium condgidfence, it is neces-
sary to consider simultaneously two equilibriums corregjiiog to the manipulator
state variable$F,q, 0,t) and(F + 6F,q + 8q,6 + 66,t + dt). Relevant equations
of statics may be written as

JGF=Ke(8—Bo); JGF=0;
~ o xxa e e T (7)
+339)" (F+0F) =Kg (6—80+036); (Jg+33q) (F+0F)=0

wheredJq(d, 8) anddJg(d, 8) are the differentials of the Jacobians due to changes
in (g, 6). Besides, in the neighborhood(@f, 8), the kinematic equation (5) may be
also presented in the linearized form:

8t =Jo(d. 6)-06+Jq(d, 6)- 54, ®)
Hence, after neglecting the high-order small terms and rdipg the differen-
tials via the Hessians of the functidh= g(q, é)TF

Afq=0%w/06% A =02w/082% Ay = (A" =0%w/0408, (9)
equations (7) may be rewritten as

35(@,6)-6F +Hb,(d,6) -

J35(@,0) - 6F +AE(a,0) - 56+ H

1 Qz
Iz
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Besides, here the variab® can be eliminated analyticallgf = k§ - 3} - 6F +
kG A5, 56, wherek§ = (R — Fi5g) . This leads to a system of matrix equations
with unknownsdF andd{
Jo KE- 3] 3q+39-|2’;~|:|';q1.[5|:]_[6t]

- - IR - - o = 11
T AE, RE.3) AR 4 AE k5 AE | sg| o] MY

from which the desired Cartesian stiffness matrix of thercla may be obtained
by direct inversion of the the left-hand side and extracfiogn it the upper-left
sub-matrix of size & 6:

[ 2)-

Finally, when the stiffness matrices for all kinematic ctsware computed, the
stiffness of the entire multi-chain manipulator can be iy simple summation
Ks =73 ,Kqi. It should be noted that, because of presence of the paesivs jthe
stiffness matrix of a separate serial kinematic chain i@gsingular, but aggrega-
tion of all the manipulator chains of a parallel manipulgtosduce a non-singular
stiffness matrix.

Jo-KE-3f  Jq+Je-K5-AE, |7
6" Rp Yo q 6 Kp Tgq (12)

3§ +HEg kG -35 A+ AL -KG-AE,

5 Kinetostatic control

In robotics, the manipulator motions are usually generag#dg the inverse kine-
matic model that allows computing the input (referencefaig for actuatorp cor-
responding to the desired end-effector locatiohlowever, for manipulators with
preloaded passive joints, the kinematic control becomesapplicable because of
changes in the end-platform location due to the internalitga Hence, in this case,
the control must be based on the inverse kinetostatic mbdelakes into account
both the manipulator geometry and elastic properties dihiks and joints[[12].

Using results from the previous sections, the desired s#/&inetostatic trans-
formation can be performed iteratively, in the followingywva

Step#l. For given target location of the end-platfotptompute initial values of
the actuated coordinatgg by applying the inverse kinematic transformation.

Step#2. For current values of the actuated coordingseand target location of
the end-platfornt, find the equilibrium configuration for each kinematic chain
and compute the corresponding total external Ioaﬂ?'ggequired to achieve the
target location.

Step#3. If the computed external loading is less than the prescréyear, i.e.
\F'Z| < &g, stop the algorithm, otherwise continue the next step

Step#4. Repeat Step#2 several times in the neighborhood of therdigotution
pi and evaluate numerically the matﬁ§gp = 0Fiz/dpi describing the sensitivity
of F with respect t.
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Fig. 3 Architecture of the Orthoglide manipulator and its planarsion.

Step#5. Compute new value of the actuated coordinates = p; — S-prl : FiZ
and repeat the algorithm starting from Step#2.

As follows from simulation results, this algorithm demaasts good conver-
gence and can be used both for on-line and off-line trajggitanning. It was suc-
cessfully applied to the case-study presented in the fatig@ection.

6 Application example

Let us apply the proposed techniques to the stiffness asalfshe planar manip-
ulator of the Orthoglide family (Figure 3). For illustratigpurposes, let us assume
that the only source of the manipulator elasticity is cotiaad in actuated drives,
while the passive joints may be preloaded by (i) standashlisprings, or (i) non-
linear springs with mechanical stop-limit (see Figure 2details).

For this manipulator, the kinematic model includes a simgeametel (the
leg length) and the dexterous workspace was defined as thenonaxsquare area
that provides the velocity (and force) transmission facfarthe rangd0.5, 2.0].
Using the critical point technique developed for this typmanipulators[19], it was
proved that the desired square vertices are located in timésgg, (—p, — p) and
Q2(p, p), wherep = 0.45 L. Besides, the square cent@g(0, 0) is isotropic with
respect to the velocity and force transmission. The parrsef the actuating drives
are also assumed identical and their linear stiffness istéenasy. The auxiliary
springs incorporated in the passive joints adjacent to tteators are described
by two parameters: the angular stiffness coeffickeptand the activation angid,
that defines the preloading activation point. During sirtiala the manipulator end-
point was displaced by valukin the directionQgQ; or QuQ», and it was computed
corresponding magnitude for external fofee

The stiffness analysis results are summarized in Figurésa#d in Table 1. As
follows from them, the original manipulator (without praliting in passive joints)
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Fig. 4 Force-deflection relatior’s = f(A/L) in critical points:
()Kg =0; (2)Kg =0.01Kg L%, (3)Ky =0.1Kg L2
(case of preloading with linear springs).
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(a) without preloading (b) with non-linear preloading

Fig. 5 Compliance maps for cases of: (a) manipulator without jadiltg;
(b) manipulator with preloading non-linear springs with = 0.5 Kg L2 anddq = 11/12 (b).

demonstrates rather low stiffness in the neighborhood efpthint Q,, which is
roughly 4 times lower than in the isotropic poiRg. In contrast, the linear stiffness
in the pointQ; is twice higher than in the poir@y. Besides, in the poind,, the
external loading may provoke the buckling phenomenon thaaiised by a local
minimum of the force-deflection relation. In this case, tisgtahce-to-singularity is
essentially lower that it is estimated from the kinematmabiel and the manipulator
may easily loose its structural stability.

To improve the manipulator stiffness and to avoid the bungkiin the neigh-
borhood ofQ», the passive joints were first preloaded by linear springh wac-
tivation angledy = 0. As follows from Figure 4, the preloading with parameter
Ks = 0.1 Kg L2 allows completely eliminate buckling and improves thefiséigs by
the factor of 2.3. On the other hand, the stiffness in thetsd)g andQ; changes
non-essentially, by 10% and 5% respectively. Hence, wispeet to the stiffness,
such preloading has positive impact.

The only negative consequence of such preloading is retatelanges of the
actuator control strategy. In fact, instead of standareiatic control, it is nec-
essary to apply the kinetostatic control algorithm preséimh Section 5. It allows
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Table 1 Manipulator stiffness for different linear preloading.

Stiffness in preloaded joints Ky =0 001Kg L2 0.05Kgl?2 0.1KglL2

Point Qg (isotropic point)

Actuating joint coordinatep L L L L
Manipulator stiffnes¥ Ko 1.01Ky 1.05Ky 110Ky

PointQ; (neighborhood of “bar” singularity)

Actuating joint coordinatep  0.437L 0.433L 0.419L 0.402L
Manipulator stiffnes¥¢ 2.276Ky 2.286Ky 2.329Ky 2.382Ky

PointQ, (neighborhood of “flat” singularity)

Actuating joint coordinatep  1.345L 1.356L 1.399L 1.453L
Manipulator stiffnes¥ 0.24Kg 0.27Kg 0.39Kg 0.55Kg
Critical forceF¢, 0.020Ky L 0.027Kg L — —

compensating the position errors caused by elastic defansadue to the internal
preloading and to achieve the target end-point locatioh wibdified values of the
actuated joint coordinates. As follows from Table 1, copesding adjustments of
the joint coordinates may reachlQ. and are not negligible for most of applications.

The most efficient solution that eliminates this problem sing of non-linear
springs with mechanical stop-limits that are activated@hpproaching t&,. For
instance, as follows from dedicated study, the preloadiitiy the parameterky =
0.5 Kg L2, 39 = /12 provides almost the same improvement®jnas the linear
spring while preserving usual control strategies if thdqading is not activated.
The efficiency of this approach is illustrated by the commiamaps presented in
Figure 5.

7 Conclusions

Recent advances in mechanical design of robotic manipslétad to new parallel
architectures that incorporates internal preloading gsjy@ joints allowing to im-
prove accuracy but leading to revision of existing stiffnasalysis techniques. This
paper presents new results in this area that allow simudtasig evaluate influence
of internal and external loading and compute both the nioeali “load-deflection”
relation and the stiffness matrices for any given locatibrthe end-platform or
actuating drives. Using this methodology, it is proposetkimetostatic control al-
gorithm that allows to improve accuracy of the classicakkiatic control and to
compensate position errors caused by elastic deformatidimiks/joints due to the
external/internal loading. The efficiency of this techrédsi confirmed by an appli-
cation example that deals with a parallel manipulator of2hihoglide family where
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the internal preloading allows to eliminate the undesirecking phenomena and
to improve the stiffness in the neighborhood of its kinemaingularities.

In future, these results will be generalized to other tydgzreloading that may
be generated by external gravity-compensation mecharsiathalso applied to mi-
cromanipulators with flexure joints.
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