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Abstract. This paper investigates the existence conditions of cusgipm the design parameter
space of the RR-2PRR parallel manipulators. Cusp points make possible nogusim assembly-
mode changing motion, which can possibly increase the sitgecaspect, i.e. the maximum sin-
gularity free workspace. The method used is based on themofi discriminant varieties and
Cylindrical Algebraic Decomposition, and resorts to Grébbases for the solutions of systems of
equations.
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1 Introduction

It is well known that the workspace of a parallel manipulai®rdivided into
singularity-free connected regions [2]. These regionseaparated by the so-called
parallel singular configurations, where the manipulatse®its stiffness and gets
out of control. The so-called cuspidal manipulators haeeathility to change their
assembly-mode without running into a singularity, whichgimay increase the size
of the singularity-free region§][9] 7]. The word “cuspidatems from the notion
of cuspidal configuration, defined as one configuration wheee direct kinematic
solutions coalesce. A cuspidal configuration in the maraifouljoint space allows
non-singular assembly-mode changing motions. Thus, m@&térg cuspidal config-
urations is an important issue that has attracted the miteot several researchers
[9,[6,[131]. In particular[T13] (resp.][1]) has analyzed thuspidal configurations
of planar 3-RIR (resp. 3-RR) manipulatoﬂ; More recently,[[6] studied the AR
2PRR, a simpler planar 3-DOF manipulator that lends itself gpebfaic calculus
[6]. In both papers, the cusp configurations were determimetboking for the
triple roots of a univariate polynomial. This approach majg/spurious solutions.
In this paper, the cuspidal configuration are determinesttly from the Jacobian of
the whole set of geometric constraints of the robot, whicargaties that only true
solutions are obtained. Then, we classify the parameteespia family of RER-
2PRR manipulators according to the number of cuspidal configpma. It is shown
that these manipulators have either 0 or 16 cuspidal cowfiigurs. The proposed

1 The underlined letter means an actuated joint
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method is based on the notion of discriminant varieties gtiddrical algebraic de-
composition, and resorts to Grobner bases for the solitibaystems of equations.

2 Mechanism under study

2.1 Kinematic equations
A RPR-2PRR parallel manipulator is @
shown in Fig[lL. This manipulator was an- 3. 0
alyzed in [6]. It has 1 actuated prismatic
joint p;, and 2 passive prismatic joints Ls
p2 and p3. The two revolute joints cen- mH a b )
tered inA; andAg are actuated while the i 3
ones centered id\;, By, B, and B3 are 1(XY) L
passive. The pose of the moving platform /Pl 2
is described by the position coordinates o\% 02
(x,y) of By and by the orientatiom of AL A2
the moving platfornB;B,. The inputvari- Fig. 1 A RPR-2PRR parallel manipulators
ables (actuated joints values) are definedth(@=1,b=2,,=2,L3=2,x=1/2y=
by p1, 62_and 6s. 'I_'he pointsE_Sl, B, and fillgd:inoéﬂ'y.-rhe actuated joint symbols were
B3 are aligned, a=Rs, By), b= (B1, Bs),
L, = (Az, Bz) andLg = (Ag, B3). ) )

The geometric constraints can be expressed by the folloBvieguations [6]:

fi:pf =3¢ +y?
f 1 x=p2+LycogB) —bcoga) fa 1 x=Lzcog63) —acoqa) 1)
f3:y=L2sin(6,) — bsin(a) fs5: y =p3+Lzsin(63) —asin(a)

Without loss of generality, we fig = 1 in the rest of the article.

2.2 An algebraic model

The singular and cuspidal equations were previously coatpusing the three fol-
lowing stepsl[6]:

1. Reduce the equation system to a polynomial equation diémgon the articular
variablespi, 61, 8, and one pose variabte g(p1, 61, 62, a) = 0 (this step is done
by eliminating variables, either with resultants or withbBner basis )

2. Addthe constrain% = 0 to define the parallel singularities

3. Add the constraing% =0 andg—z{% = 0 to define the cuspidal configurations

This approach has the advantage of reducing the problemrmopeting the cusp

configurations, to the problem of analysing the triple rawfta single polynomial.

However, this only gives a necessary condition for the maatpr to have cusp
configurations. In particular it is possible that 3 confidimas of the robot coalesce
in one coordinate but not in the others.



Cusp points in the parameter space ofRREPRR parallel manipulators 3

Let us come back to the theoretical definitions, using Jacoiatrices to define
directly the triple roots of the original system of equatémall the input and output
variables. IfP is a list of polynomials an a list of variables, let(P, X) be the
union of P ={py,..., pm} and of all thek x k minors of the Jacobian matrix of the
p; with respect to the;.

For the analysis of the RPR-2PRR manipulator, we introduce:

Y =[xY,a,02,p3] W:=[bLlsL3p1,6:,6]  S:={fy,.... s}

Using these notations, the parallel singularities of thaimalator are defined by
{ve R p(v) =0,q(v) > 0,Yp € J5(SY),vq € {b,Ls,Ls,p1} so that the cuspidal
configurations are fully characterized by :

7 ={ve R p(v)=0,q(v) >0,Vpe I5(Js(SY),Y),vq e {b,Lo,Ls,p1}}

3 Main tools from computational algebra
The algebraic problem to be solved is basically related éaésolution of polyno-
mial parametric systems.

More specifically, one needs to solve a system of the follgviamm :

E={veR" pi(v)=0,...,pm(v) =0,q1(v) > 0,...q(v) > 0}

wherepy, ..., Pm,d1,---,q are polynomials with rational coefficients depending
on the unknownX = [Xy, ..., X,] and on the parametels= [U4,...,Uq].

There are numerous possible ways of solving parametriesyssin general. Here
we focus on the use of Discriminant Varieties (DV, [8]) andi@grical Algebraic
Decomposition (CAD,[[B]) for two reasons. It provides a falnrdecomposition of
the parameter space through an exactly known algebraietydrio approximation).

It has been already successfully used for similar mathealatiasses of problems
(seel[4]).

To reduce the dimension of the parameter space to three sd tan be dis-
played, we set, = L3. Not that the proposed method can treat the general case
L, # L3 without any problems. Wheh, = L3, the system to solve is” with the
unknownsx,y, a, pz, p3, 6, 63] and the parametefb, L, p1].

3.1 Basic black-boxes

First experiments are often performed for specific valuethefparameters, espe-
cially singular and/or degenerated cases. Here, we magdyenMact computations,
namely formal elimination of variables (resultants, Qrébbases) and resolution of
systems with a finite number of solutions, including unisggipolynomials.

Let us describe the global solver for zero-dimensionaksyst It will be used as
a black box in the general algorithm we describe in the sequel

Given any system of equatiops =0, ..., pm = 0 of polynomials ofQ[Xy, ..., Xn],
one first computes a Grobner basis of the idegd, ..., pm > for any ordering.

At this stage, one can detect easily if the system has or hanitely many
complex solutions.
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If yes, then compute a so called Rational Univariate Repitasien or RUR (see
[10)) of < p1,-...,pm >, which is, in short, an equivalent system of the form :

{f(T)=0,X = %1(%),...7Xn = g;((TT))}, T being a new variable that is indepen-

dent of Xy,..., Xn, equipped with a so calleseparating elemen(injective on the
solutions of the system) € Q[Xq, ..., Xs] and such that :

V(ps o) S V() S V(P )

g Xe) > B U)o (S S0

defines a bijection between the (real) roots of the systemofgel by (pa, ..., pm))
and the (real) roots of the univariate polynomial (denoted bf )).

We then solve the univariate polynomifl computing so called isolating in-
tervals for its real roots, say non-overlapping intervalthwational bounds that
contain a unique real root df (see [[11]). Finally, interval arithmetic is used for
getting isolating boxes of the real roots of the system (gayaverlapping products
of intervals with rational bounds containing a unique resdtrof the system), by
studying the RUR over the isolating intervalsfofln practice, we use the function
RootFinding[Isolate]from Maple software, which performs exactly the computa-
tions described above.

For example, withlf = 2, L, = 2, L3 = 3, p1 = 2), the polynomial systeny’
defining the cuspidal configurations has 16 real solutiome @f these solutions is
(p2 =2.30,p3 =1.86,90 = —2.36,x=1.79,y = 0.885,6, = —2.88, 03 = —0.999).
We observe the three coalescing configurations arounddbisby calculating the
direct kinematic solutions with, = —2.892 andf; = —1.007. These solutions are
shown in Figuré.

A A

2 | o/

By
ozt At
AL o, AL @pi
By BEB,

Fig. 2 A cuspidal configuration (left), and the three convergingfigurations (right).

3.2 Discriminant varieties
The above method allows one to study instances of the proafeirmay be used
together with a discretization of the parameter space t@adiest idea of the com-
plexity of the general problem to be solved. But the truedsmidressed in this paper
is to find criteria on the parameters that allow classifying tonfigurations to be
studied (for example to distinguish the manipulators hgweinspidal configurations
from the others). This leads to a more general problem sinegtten has to study
non zero-dimensional, semi-algebraic sets.

Let p1,...,Ppm,d1,---,q be polynomials with rational coefficients depending on
the unknownsy, ..., X, and on the parametels, ..., Uy. Let us consider the con-
structible set :
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¢ ={veC" , pi(v)=0,....pm(v) =0,01(v) #0,...q(v) # 0}

If we assume tha¥ is a finite number of points for almost all the parameter
values, a discriminant varielyy of ¢ is a variety in the parameter spa€€ such
that, over each connected open4esatisfyingZ NVp = 0, ¢ defines an analytic
covering. In particular, the number of points@fover any point of% is constant.

Let us now consider the following semi-algebraic set :

7 ={veR p(v)=0,q(v) > 0,Vp(v) € J5(5(SY),Y),vq(v) € {b,L2,L3,p1}}

If we assume that” has a finite number of solutions over at least one real point
that does not belong M, thenVp NRY can be viewed as a real discriminant variety
of .7, with the same property : over each connected operset RY such that
% NV = 0, ¥ defines an analytic covering. In particular, the number afsoof
R over any point ofZ is constant.

Discriminant varieties can be computed using basic and kmellvn tools from
computer algebra such as Grobner bases (See [8]) and aaftkhge computing
such objects in a general framework is available in Mapléwsoe through the
RootFinding[Parametricjpackage. Figurgl3 represents the discriminant variety of
the cuspidal configurations of the R2PRR manipulator.

3.3 The complementary of a discriminant variety

At this stage, we know, by construction, that over any simgapnected open set
that does not intersect the discriminant variety (so-dakgions), the system has a
constant number of (real) roots.

The goal of this part is now to provide a description of theaeg for which the
number of solutions of the system at hand is constant. Fgntleecompute an open
CAD ([3,8]).

Let Z4 C Q[Uy,...,Uq] be a set of polynomials. Foe=d —1...0, we introduce
a set of polynomials?; C Q[U4,...,Uq_;] defined by a backward recursion:

e 4 :the polynomials defining the discriminant variety
o 7 : {Discriminantp,U;),LeadingCoefficierfip,U;), Resultantp,q,U;),
p.ae 7.}

We can associate to each an algebraic variety of dimension at mostl :V; =
V(Mpes, P). Figure3 and# represent respectivédyandV, for the manipulator at
hand.

TheV; are used to define recursively a finite union of simply consgaipen
subsets ofR' of dimensioni: uﬂi:ﬂ/i,k such thatv, N % x = 0, and one pointy k
with rational coordinates in eack .

In order to define the i, we introduce the following notations. jifis a univari-
ate polynomial withn real roots:

—ooif [ <0
Root(p,1) = thel™™ real roots ofpif 1 <1 <n
+ooif | >n
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Fig. 3 Discriminant Variety of the cuspidal Fig. 4 V, for the cuspidal configurations of
configurations the manipulator.
Moreover, if p is an-variate polynomial, ang is an— 1-uplet, thenp¥ denotes
the univariate polynomial where the first- 1 variables have been replacedwby
Roughly speaking, the recursive process definingZheis the following:

e Fori=1,letpy =[]pcp, p. Taking1 x =|Root(p, k); Root( p,k+1)[ for k from
0 tonwherenis the number of real roots @f, one gets a partition d that fits
the above definition. Moreover, one can chose arbitrarily @tional pointuy x
in each?7 .

e Then, letp; = [yc, P- The regions’; x and the pointsi x are of the form:

Uk ={(Vi, . Vi1, Vi) [Vi= (V1,..,Vio1) € %1,
vi €JRoot(p/,1),Root(p}, | +1)[}
o . : (By,.-,Bi-1) = Ui_1j
e = PP, il {Bi €IRootpY 1), Rootpt 1+ 1)

wherej,| are fixed integer.

For our example, we get fops a trivariate polynomial of degree 33, f@p a
bivariate polynomial of degree 113, and for a univariate polynomial of degree
59. The zero-dimensional solver then provides the posited roots ofp; (Table
@), from which we easily deduce the open intervajg. We then use the zero-
dimensional solver to solve evepy(uyk,Uz2) and deduce all the tests points of
the % in each cells of Figurkl4. Finally we use the zero-dimendieaber to
solve everyps(uzk,Us) and deduce all the tests points of thg s, describing so
the complementary of the discriminant variety.

Table1l Numerical values of the positive roots pf

bl{by| by | b3 | by | bs | bg [b7]| bg | by |bio| b1 (b1
0.0/0.5330.5640.6170.6560.7071.0{1.41]1.5211.621.771.8

3.4 Discussing the number of solutions of the parametric system.

At this stage, we have a full description of the complemantdithe discriminant
variety of the system to be solved : a recursive process &camstruction of each
cell 4 and a test point (with rational coordinates) in each of tfeedis. By def-
inition of the discriminant variety, we know that the systéias a constant finite
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number of solutions over each of these cells and computisgnttmber for each
cell is the only remaining step. This can be done simply byiaglall the systems
ZU=uq K= 1...nq using the zero-dimensional solver.

For our example, the process described in 3.3 returns 34stafedimension 3
(%1,..., %3344 ). We solve the systeny’ for each of the 344 associated sample
points, and we get always either O or 16 solutions. By selgainly the cells where
the manipulator has 16 cuspidal configurations, we obt@&®&cells shown in Fig-
ure[§. TabléR provides the different formula bounding thre¢hdimensional cells
U3, ..., %3,3aa and Tabl€B represents the 58 cells of Figure 5, where thepulani
tor has 16 cuspidal configurations.

Table2 Formula describing the boundaries of the cells in Table 3.

by = 0,by = Roo8b8 — 1164+ 6b2 — 1,2) Ly, ()= Root((b2+1)3|.g —3<b2+3b+ 1) (b2—3b+ 1) (b-1)2(b+12L5+
bg = Root4b2 4 b8 — 3b% —1,2), by = Rootb8 + 368 + 3b% + b2~ 1,2) 3 (b2+ 1) (b-1*(b+1)*3 - (b-1%(b+ 1)5.2)

bg = Root—2b% + b0 + 362 — 1,2), bg = 1/v/2, by = 1,bg = /(2) Lo, (b) = 1-b2, Log(b) = 1/vV/1-12, Lo, (b) = (1-b2)/b, PRORE

bg = Roo(2b2 +b% —3b% ~1,2), by g = Rootb® —b® —3b% —32-1,2) Log(b) = b2/vV/1-b2, Lo, (b) = 1/vVb2 -1, Log(b) = p2/vVb2 1

byq = Root—4b% + b8 362 - 1,2) Log(b) = (b2 1) /b, Loyo(b) = b2 -1

byo = Rootb® —6b% +11b2—8,2) bjz=
p1, (b.Lp) = Root—pfb0 + 364 (Lzbz +1- LZ) pf 302 (~7302 + 713+ 14 + Lg0* — 20467 + 1) of+ (L%bz +1- L%)d,z)

3
p1, (b.Lp) = Rootpf + ( 3b* 31502 - 3L2) o+ (21L§b5 +3140% 61402 1308 - 211304 +3L‘2‘) 0§+ (L%bz - Lg) 2)
p1, (bLp) =b% p1,(b.Ly) = 1/b

Table 3 Cells of R® where the manipulator has cuspidal configurations.

Jby by (L2, L2, [1P14 P1,D): (L2, Log [1P15 01, ) (L2g L2, [1P15 P1, D) (Lo, Log [ P15 P2, D)

Jbg bz[ (IL2g Logl:1P1y P15 D): (L2g L2, 11014 P15 D): (L2, L25 11015 P15 D): Loz Loy P15 P1, D (Lo, Log [ JP15 P1, 1)
Jbg by (L2, Logli1P1y P, D) (l2g L2, [:1P1y P15 D), L2y L2, [1P15 P15 D) (L2 L2z [:P15 01, D (L2g L2g [ P15 1, 1)
Jog bs[ (L2, Logl1P1y P, D) (L2 L2, [Py P15, L2y L2, [1P15 P15 D) (L2 L2g P15 01, D (L2g Log [ P15 1, 1)
Jbs bg[ (IL2g L2, l-1P1g P15 D): (L2, L2g 11015 01, )- (IL2g L2, 1015 P15 - (L2, Loz [: P15 1, D Loz Log [ JP13 1, 1)
Jbg b7[ (IL2; L2, [1P1y P1,D)- (L2, L2, 1015 01, D)- (L2, L2g 1015 P1,D)- (Log Loz [ P15 1, D Loz Log [ JP15 1, D)
Jb7 bg[ (L2, L2gl.lP1, P14 D (L2g '—210[ 1p1, P14 s (L24 g L27 [:1P14 P15D). (L2, L2gl]P1, P15 D). (Log Log [:1P1, P13
Jbg bg[ (IL2g Logl:1P1, P14 - (L2g L2, 101, P14 D)- (L2, L2g o 1P1, P14 - (IL2g g L2g P14 P15 D) (L2g L2g 1P1, P15 )
Jbg by o (L2, Lo, [[]P1, P14 D (]Lz7 L2g 11, 1, D)- (L2g L2 o1 1P1, P14 ). (IL2g g Log[-1P1, P15 D)- (L2g L2g [ 1P1, P151)
1b1obyl (L2; L2, L1P1, P1y D). (L2, Log 1P1, P14 D) (Log L2y o 1P1, P14 . L2y g Logl1P1, P15 D). (L2g Log 1 1P1, P15 1)
Jby1 by (IL2; L2, l-1P1, P14 - (L2, L2g - 1P1, P14 D): (JL2g L2g 11P1, P11 D): (ILog L2y ol 1P1, P14 |- Loy g Log |11, P15 1)
Jb12by 3| (IL2; Logl-1P1, P14 - (L2g L2gl:1P1, P14 1): (L2g L2y ol 1P14 P14 - L2y g Log - P1, P15 D)

4 Conclusion

We have proposed a general method to describe rigorouslgesign parameters
for which a manipulator has cuspidal configurations. Thishoé can be applied
directly to other mechanisms, such as the ones studiéd [i2]4or example. The
tools used to perform the computations were implementedale library called
Slrop@ For 3D illustration purposes, we have detailed the mainpmaations to
be performed with manipulators satisfyihg = L3. However, the proposed method
allows one directly to solve the general cake # L3) by computing a discrimi-
nant variety of the system with 4 parametbrk,, L3, p1, and by decomposing*
with a CAD adapted to the discriminant variety. This ded@rip generalizes and

2 http://www.irccyn.ec-nantes.fr/ moroz/siropa/doc
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completes the analyse donelin [6]. There is still some litiites though. In particu-
lar, when the system that defines the cuspidal configuraliasso solution, it may
mean that there exists a manipulator with no cuspidal cordtgns, but it may also
mean that no manipulator can be assembled with these desigmpters. Thus it
is essential to be able to describe precisely the set of dg@gameter values for
which a manipulator can be assembled.

Fig. 5 The cells ofR® where the manipulator admits cuspidal configurations,tfview (left) and
back view (right).
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