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Abstract—This paper focuses on the convergence of infor-
mation in distributed systems of agents communicating over a
network. The information on which the convergence is sought
is not represented by real numbers, rather by sefs of real
numbers, whose possible dynamics are given by the class of
so—called Boolean maps, involving only unions, intersections,
and complements of sets. Based on a notion of contractivity,
a necessary and sufficient condition ensuring the global and
local convergence toward an equilibrium point is presented. In
particular the analysis of global convergence recovers resulis
already obtained by the authors, but the more general approach
used in this paper allows analogue results to be found to
characterize the local convergence.

I. INTRODUCTION

Recent years have witnessed a constant migration of in-
terests to applications involving many distributed agents that
have to interact in order to achieve a common goal. Most of
the problems, and of the solutions that have been proposed so
far, can be formulated as consensus problems over continious
domains, where local agents exchange data that consists of
real vectors or scalars. The only difference is in the type of
rule each agent uses to combine its own information with the
one received from its neighbors in the communication graph.
In the simpler case, the evolution of the network of agents can
be described by a linear iterative rule

z(t+1)=Az()+ Bu(t),

where ¢ is a discrete time, r € R™ is the system’s state, A
is a weight matrix, and « is an input vector. Matrix 4 has
to be compliant with the available communication graph and
is designed to allow the network convergence to a unigue
decision x(oc) — al, that may or may not depend on the
initial system’ s state. Falling into this linear framework are
most of the key papers on consensus [1]-[3]. Moreover, the
nonlinear sefting encompasses other important schemes for
achieving consensus on continuous, finite variables. Within
this setting, the solution proposed by [4], based on the cen-
troidal Voronoi tessellation, allows deployment of a collection
of mobile agents so as to maximize the network’s ability to
perform a sensing task within a given environment. These
problems, and indeed many others, can be efficiently solved
by means of these agreement mechanisms.

However, new emerging issues in the field of distributed
control entail defining different forms of consensus algorithms.
Recently, [5] have addressed the sensing coverage problem
with agents that are allowed to move in a discrete, network—
like environment. The problem of averaging a set of initial
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measures, taken by a collection of distributed sensors, in the
presence of communication constraints has recently been ad-
dressed by [6]. Therein, a consensus strategy, where exchanged
data consists of symbols obtained through a logarithmic quan-
tizer, is proposed. On the furthermost part of this track are
problems over a discrete domain, where the system’s state is
a logical vector. This includes the problem of building a map
of visitors/intruders’ presence in the rooms and corridors of an
art gallery, that has been attacked by [7], through introduction
of so—called logical consensus.

Inadequacy of available solutions for distributed network
agreement are apparent also in control applications where
sensor measurement is affected by uncertainty. Consider e.g.
a set of mobile robots that have to simultaneously localize
themselves and build a map of the environment, by using
their local vision systems. Traditional approaches to model
sensors’ noise as an additive or multiplicative signal is possible
but not natural. [8] proposed a centralized solution, where
robots exchange data representing confidence sets of the
positions of items detected in the environment. Moreover, [9]
considered the problem of detecting misbehaving agents within
a collection of robots that are supposed to plan their motions
according to a share set of rules. The objective is attained by
definition of a ser—valued consensus algorithm, where local
agents exchange data representing free and occupied regions
of the environment. The algorithm overcomes limitations of
available solutions in the fact that it can operate over infinire
dormains. Finally, [10] and later [11] considered the problem
of synchronizing the clocks of a set of distributed agents, and
proposed a centralized solution to the problem. [12] have very
recently shown that this problem can be solved by means of
set—valued consensus.

So far, design of logical consensus as well as consensus
on sets have been individually addressed, and only ad-hoc
solutions have been proposed. As a matter of fact, a network
of agents running either tvpes of consensus are instances of
a Boolean iterative system, i.e. a system where the state is a
vector of elements in a Boolean domain and is updated through
operations in a Boolean algebra. In [13] the authors present
initial results toward the definition of a unified framework for
dealing with such consensus problems. With this respect, a
notion of a Boolean vector space is known since the seminal
works of [14]-[16]. However, the behavior of a Boolean
iterative system is far from been completely understood. The
work is based on and extends some available results on the
convergence of cellular automata [?], [17].

The main intent of the paper is to show that the convergence
of information defined through discrete values or through set—
valued data, combined via Boolean operations can be treated
in the same way. This is achieved by extending the notions
of convergence, local convergence, and contraction, already



given in in the binary domain, to algebras of sets, taken
with the union, intersection, and complement operations. Then,
we give results about global and local convergence of set—
valued Boolean maps, through a binary encoding of them,
which allows us to work only in the binary domain to solve
these problems. OQur main result is the characterization of the
global and local convergence of set—valued maps obtained by
means of unions, intersections, and complements, in terms of
properties of binary matrices.

The paper is organized as follows. Section II recalls the
definition of a Boolean Algebra (BA) and summarizes known
results on the convergence of maps defined over the simplest
BA, ie. the ones involving a binary domain. These results
are extended in the following sections. Section 111 studies the
global behavior of Set—valued Boolean Maps (SBM). By using
the binary encoding of a SBM that is presented in Section IV,
conditions ensuring the global convergence of a SBM and local
attractiveness of its equilibria are presented in Section V and
Section VI, respectively. The problem of reaching consensus
is solved for linear SBM in Section VII Finally, examples of
possible behaviors of SBM are presented in Section VIIL

II. BOOLEAN DYNAMIC SYSTEMS

Definition 1: A Boolean Algebra (BA) is a sextu-
ple (B, A,V,—,0,1), consisting of a domain set E, equipped
with two binary operations A (called “meet” or “and”) and
v {called “join” or “or”), a unary operation — (called “com-
plement” or “not™), and two elements O (null) and 1 (unity)
belonging to B, s.t. the following axioms hold, for all elements
a,b,ce B

Davibve =(avhVeanrbic ={arb) e

{associativity);
2y avbh=bVa,a Ab=bAa (commutativity);
Davierb) =a,ah (aVh) =a (absorption);
4y avi{bAc) = (avb)r(aVe), an(bVe) = (arb)v(aAc)
{distributivity);

5) aVv a=1, aA-a =0 (complementarity). 4

From the first three pairs of axioms above, it follows that,
for any two elements a,b B, the following relation holds:

a=anb if, and only if, avb=",

which introduces a parfial order relarion < among the ele-
ments of the domain. In particular, we will say that o < b,
if, and only if, one of the two above equivalent conditions
hold. Moreover, O and 1 are the least and greatest elements,
respectively, of this partial order relation. Then, given any two
elements a,b € B, the meet a A b and the join a V b coincide
with their infimum or supremum, respectively, wr.t. <.

An element a € B is referred to as a scalar. Consider the
set B~ composed of Boolean vectors x, provided with the
meet A, and join v with ancther vector v & ﬂé”, and the meet
A with a scalar a € B. Finally, consider the set of square
Boolean matrices A € B**™, provided with the meet and join
operation between two matrices, and the meet of a matrix A
with a scalar a.

Definition 2: Tf A = {ay;}, B = {by} € BY™ and v =
(w1, .. )T w = (wy,...,w,)T € B", we define the scalar

product w - v to be
n

\/ Vi TAN Wi,

i=1
(A wv); is defined as the scalar product between the i—th row
of A and the vector », and A B;; to be the scalar product
between the i-th row of 4 and the j-th column of B.

In other words products between matrices and vectors,
and between two maltrices, are computed in the usual way,
substituting + with v and - with A. We will denote with O
the null scalar, vector, or matrix, according to the context.
The above described partial order relation < between any two
elements of B can be extended to Boolean vectors and matrices
by assuming component—wise evaluation.

A Boolean dynamic system is s.t. its vector state, which
takes value in B*, evolves according to a map F' that combines
its input argument by using only the meet A, join v, and
complement — operations.

For the following study, we need give the following defini-
tions:

Definition 3 {Basis Vectors): The set of the vectors
€1,€2,...,6n, With e; € B™ contains 1 in the j—th element
and zeros elsewhere, is called the canonical basis of Bm.

Definition 4 (Eigenvalues and Eigenvectors): A scalar A €
B is an eigenvalue of a Boolean malrix 4 B™*" if there
exists a vector z € ﬂén, called eigenvector, s.t.

Az =Xz

Definition 5 (Incidence Mamix): The incidence matrix of a
Boolean map F' is a Boolean binary matrix B(f) = {b;;},
where b; ; = 1 if, and only if, the +th component of F(z)
depends on the j—th component of the input vector x.

A. Convergence of Binary Dynamic Systems

Consider the simplest BA that is obtained by choosing E =
B, where B = {0, 1} is the binary domain, the meet A is the
logical produect {and) - (corresponding to the minimum of the
two input arguments), the join Vv is the logical sum (or) +
(corresponding to the maximum of the two input arguments),
the complement — is the not operator, 0 and 1 are the binary
values. Consider the following notion:

Definirion 6 (Binary Spectral Radius): The spectral radius
of a Boolean matrix A € B™*" denoted with p(A), is its
higgest eigenvalue in the sense of the vector order relation <.
Consider the following propositions from [?], [17]:

Proposifion 1: BEvery binary matrix 4 € B®*™ has at least
one eigenvalue. Hence p{A) always exists.

Proposition 2: A binary matrix 4 € B"*" has binary
spectral radius p(A4) = 0 if, and only if, one of the two
following equivalent conditions hold:

+ there exists a permutation matrix P € B**" sit. PTAP
is a strictly lower or upper triangular matrix;
¢« A" =0 (meaning the n—th binary matrix power of A).

Consider studying the evolutions of a dynamic system of

the form
{$@+U—f@®%
z(0) = 20, ’



where z = (z1,. .. ,a:n)T e B™ is the system’s binary state,
foBY =B f = (ff,, )%, is an endomorphism
on B, and zU is the system’s inilial state. As B” is a
finite set, the convergence of the state sequence generated by
iterations of f corresponds to the fact that the sequence itself
becomes stationary after a certain time #. To characterize this
convergence, we first need to infroduce a metric on B™. To
this aim, consider the binary vector distance

d : B®*xB* - B"
(l',y)'_’(l'l@yl,"'

b

2T D Yy)
where & is the exclusive disjunction
& : ExB—B
(e, y:) = (0msye) + (26 —wi)
The binary vector distance is a distance on B™ as, for all
x,y, z € B™, it satisfies the axioms

d(z,y) = d(y, r),
diz,y) =0 iff z =1y,
d(z,y) < d(z,z) +d(z,y).

?

Consider also the following notion:

Definition 7 (Coniractive Map): A map f:B" — B™ is
said to be contractive w.r.t. the binary vector distance d if
there exists a matrix M « B™*"™ s.t.

o p{M) <1 (which implies p{M) = 0}, and

o d{f(z), fly)) < Md{z,y), for all vectors z,y € B™.

We can readily recall the main result on the contractiveness
of a binary map [7]:

Theorem 1. A map f : B® — [B"™ is contractive w.rt.
the binary vector distance d if, and only if, the following
equivalent conditions hold:

. (B =0,

o there exists a permutation matrix P st. PYB(f) P is

strictly lower or upper triangular;

« B(/)7=0,with0 < g < n.

Maoreover, if f is contractive, there exists a positive integer
g < n st. f9, the composition of f with itself ¢ times, is a
constant map, i.e. it does not depend on the input vector. 4

Now let us focus on the local convergence [17] of a map f
about an equilibriun point x s.t. f(z) =z

Definition 8 (Von—Neumann Neighborhood (VNN)): Given
apoint z € B™, its VNN is the set V (z) of all points differing
from z in at most one component, i.e.

Viz) = {x,at,--- 5"},

where i-‘j = (CL"]_, Ty X1y gy Ty 1, .’En)T.

If B™ is represented as a hypercube and all its elements as
its vertices, 7 can be interpreted as the j—th verlex adjacent
to z. Note that, for all x € B, d(z,2%) = e; and d(z,0) = z.

Definition 9 (Discrete Derivarive): The discrete derivative
of a binary map f : B® — B™ at a generic point z € B"
is a binary matrix f'(z) = {f{;}. s.t. f{ ; =1 if, and only if,
a variation in the j—th component of = produces a variation
in the i-th component of f(z), i.e.,

(@) = filz) @ fild).

It is worth noting that, the assignment of a vector x < B",
the value of the logical map f(z), the value of its discrete
derivative f'{z) at that point, uniquely determines the value
F(y) of the logical map at any point y in the immediate
neighborhood V{z). Furthermore, if f(z) = 0, then f(y)
is constant and equal to f(z), for all points ¥ € V(z).

Finally, consider the following two notions:

Definirion 10: An equilibrium point z € B™ is said to be
arrracrive in its VNN V' () if the following two relations hold:

o fly) e V(z), forall y € V(z),

« there exists n € & s, for all y € V(z), f*(y) = =.

Definirion 11: A binary map f is said to be locally conver-
gent at an equilibrium point = if = is attractive in its VNN.
We can recall the main result on the attractiveness of an
equilibrium point [17]:

Theorem 2: An equilibrium point x € B is attractive in its
VNN if, and only if, the following two relations hold:

¢ p(f'@) =0,

¢ f'(z) contains at most one non—mll element in each

column. 4

Fxample 2.1: Consider the map

z3(z1 + —x2)

fl@) =1 =zs(z1+x2) + wa(—z1 + 22)
I
Its incidence matrix is
1 1 1
B(fy={1 11},
1 0 0

whose spectral radius is p(B{f)) = 1. which tells us that
the map is not contractive. Thus, the presence of multiple
equilibria or cycles cannot be excluded. Indeed, let us find
the equilibria states = being s.t. f{z) = z, or equivalently

“(fi(@) D ag) =1 fori =1,2,3.

After some simplification, this gives the binary equations
T1¥g+F1F3 = 1, T1 T3+ X1 -T2+ FeTs + BT = 1,
and —Zy(Zs + T3) + To + T3 = 1, which are solved by the
vectors

Moreover, the discrete derivatives of the map f at the two
equilibria are

0 0 0 1 0 1
rel-{rgg) rte-{ue)

which tell us, based on Theorem 2, that the first equilibrium
in (1) is attractive in its VNN, whereas the second one in
() is not.

To conclude consider Fig. 2.1 that is a graphical representa-
tion of the binary map f, which can be obtained by complete
inspection of the map itself. The figure clearly shows that the
VNN of z(1) “contracts” toward it, whereas this is not true for
z®), The figure also shows the existence of a cycle composed
of the states (0,0,1) and (1,0,0). 4
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Figure 1. Graphical representation of the binary map f of Example 2.1.
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III. SET-VALUED BOOLEAN DYNAMIC SYSTEMS -
GLOBAL CONVERGENCE

Thanks to Stone’s Representation Theorem [18], it is well
known that every BA is isomorphic (i.e. it possesses the same
structural properties) to an algebra of sets. Let us then focus on
the BA defined by the sextuple (P{X), U, C{-),d, X), where
P(£) is the power set of a set X, and on dynamic systems of
the form

X(t+1)=F(X®), )

where X = (X1, , X,)7, with X; € P(X), is a set-valued
state vector, and F' = (Fy,. .-, F,)7, with F; : P(X)™ —
P (%), is a set—valued map involving only the operations U,
N, C() on continuous and possibly unbounded sets. Such a
class of maps will be referred to as Set—valued Boolean Maps
(SBM). In other words, the map ¥ combines n input sets into
7 output sets via unions, intersections, and complements. In
the remainder of this section, we study under which conditions
these systems converge to a unique equilibrium.

First, we need to introduce a metric over the Boolean
vector space P (X)". To this aim, consider the Boolean vector
distance:

D PAY X PR — PE)"
(Xa Y) = (S(Xla Yl)a s S(Xna Yn)) ’

where X;,Y; are the +—th components of the vectors X and
Y, respectively, and 5 is the symmetric difference defined as

S PR x PR — PR
(x,y) = C@)ny) U (@nCy)
Note that the Boolean vector distance D specializes to the

binary vector distance of [?], when considering the binary BA,
and it satisfies the following axioms

D(X,Y) =D(Y,X), ¥V X,Y,
DX, Y)=0 iff X=Y,
DX,Y) € DX, Z) UD(Z,Y).

Consider the following notion:

Definition 12 (Incidence matrix): The incidence matrix of
a set-valued map F = (Fy,..., F,)T, with F; : PO" —
P(X), dencte with B(F"), is a binary Boolean matrix whose
generic element is

X
bi,j—{ @

We can recall the following results concerning the incidence
matrix of a Boolean map [13]:

if F; depends on X,
otherwise .

Proposition 3: Given any two generic vectors XY €
P(A)", the following Boolean inequality holds

DF(X), F(Y)) S BF)DX,Y). ¢ 2)

Proposition 4: A Boolean matrix M satisfies the Boolean
inequality

DEFX),FY) C MD(X,Y), (3)

for all vectors X, Y = POO™, if, and only if, B(F) C M. 4

Corollary 1: For any two set—valued maps F, G : PR)™ —
P(X)", the incidence matrix of the function composition
F(G(X)) satisfies the Boolean inequality

B(F(G)) C B(F)B(G). ¢ 4

Moreover, consider the following notion:

Definition 13 (Boolean spectrum): The Boolean spectrum
of a Boolean matrix A € P(X)**™ is set of the eigenvalues
of 4, ie.,

c(A)={AePR) [Tz e PA)\D: Az =Az}. ¢

We can recall from [13] a first result about the spectrum of a
Boolean map:

Proposiion 5: A Boolean matrix 4 £ PX)"*", 4 =
{a;;}, admits the Boolean eigenvalue A = @ if, and only
if, it has at least one column for which the union of all its
elements is less than X, i.e. there exists j € {1,-- -, n} s.t.

n
| Ja; c%. ¢ (3)
i=1

Remark 1: Tt is worth noting that, if 4 has a Boolean
gigenvalue A, with assigned eigenvector X, then, for every
permutation P, the matrix 4 = P AP has the same
eigenvalue, assigned with eigenvector V = P7 X Note that P
is a permutation in the classical sense, but where every 0 and
1 are replaced with { and X, respectively.

To prove this, observe that A X = AX for hypothesis. Left—
multiplying by PT, we have PT A X = A PTX, and, from the
identity PT P = I (I being the matrix with X on its diagonal
and @ elsewhere), we have (PT AP)(PT X) = A (PT X),
which proves the statement. 4

A complete characterization of the Boolean spectrum of
a generic map is complex, whereas the following result is
already available for a subclass of these maps:

Proposition 6: A matrix 4 € {0, X}"*" admits the
Boolean eigenvalue A = X if, and only if, there exist no
permutation bringing 4 in strictly lower or upper triangular
form. 4

With the following example, we show that the spectrum of
a Boolean matrix may possess a structure that is impossible in
", e.g. different eigenvalues can be associated with the same
eigenvector, or the spectrum may be the entire set P(X).

FExample 3.1: Consider the entire real interval X =
(—o0,00). The matrix

A= ( (17(?28] 1®3 )

admits the eigenvalue A = 0, by Prop. 3, as the union of its



first row’s elements is less than X. The associated eigenvectors
are Vy, = (X,9)?, where X is any set in X,
Moreover, consider the matrix

Ag—([?‘i) jf)

By direct computation, it can be shown that any scalar A C
XN @ is an eigenvalue A, with associated eigenvector V5 =
(X, X)), with AC X. ¢

Moreover, consider the following definition:

Definition 14 (Contractive SBM): A SBM F : P(X)" —
P{A)" is said to be contractive w.rt. the vector distance if

A ¢ a(B(I).

Remark 2: From Prop. 6, F' is contractive if there exists a
permutation matrix P € {@, X}**" st. PYB(F) P is strictly
lower or upper triangular. 4

Finally, recall from [13] the following two results charac-
terizing the global convergence of a SBM I

Theorem 3: F' is contractive wr.t. the vector distance D if,
and only if, there exists a positive integer ¢ s.t. #'9 is a constant
application. 4

Corollary 2: 1f £ is the unique equilibrium point, iterations
of F' starting from any initial state X(0) € P(X)"™ converge
to £ in at most g steps. 4

Fxample 3.2: Consider a discrete—time dynamic system
X{t4+1) = F(X(), where X = (X1, X2, X3)T € P(X)3
and F' is the SBM

XU C(Xg) . (©)
C(X]_) M C(XQ) n C(Xg)

Its incidence matrix is

F(X) =

X K X
B(Fy=| x x 0 |,
X A X

and, based on Theorem 3, its spectrum contains the eigenvalue
A = X, which tells us that the map is not contractive.

IV. BINARY ENCODING OF SET-VALUED BOOLEAN
DYNAMIC SYSTEMS

In this section, we show how a dynamic system of the form
in Eg. 1 can be translated into a binary dynamic system

z(t+1) = fz(t), N

where x € B is binary state vector, and f : B® — B is a

binary iterative map, and s is a suitable dimension [19]. We

say that the system in Eg. 7 encodes the original system in

Eg. 1, in the sense that every execution of the original system

can be obtained by simulating the binary one and vice—versa
Consider the collection of sets

Z, = XinXen.-onX, 1nX,,
e = X]_ﬂXQﬂ---ﬂXn_]_ﬂC(Xn),
Zy = XinXen - nC(Xy_1)n Xy,
Zw_1 = CXynCXo)n  NnC{Xu_1) N Xy,
Zw = CX)NCX)n- nC{X,_ 1) NC(Xy),

with ' = 27 Let us denote with Z = (71, Za,..., Z:)7
the vector composed of the non—empty sets of the previous
collection {note that in general & < &"). Tt is straightforward to
verify that these sets are a partition of X, i.e. X; N X; =0, and
X1 U U X, =X. Inthe remainder of this section, we show
that every set X; € X, and indeed all unions, intersections,
and complements obtained from the X; can be obtained as
the union of some of the above sets, which allows us to find
a binary encoding of the SBM F'.

Consider an encoder map associating a set X; with a binary
vector whose h—th component is 1 if, and only if, X; has non—
null overlapping with the set 7, i.e.

L PR —B-
zi
i _{ 0 ifX;NZ,=0,
PR 1 otherwise.

Xi>—>l‘i:

i
T

Thus, given a set Xj;, the corresponding associated binary
vector is x; = L(X;). The original set X; can be cbtained
via the decoder map

Ll B PX)
zg — X = Uh=1,“' w5, 2h=1 Zp,

)

which allows us to write X; = £~!(z;). Furthermore, consider
any two sets, X; and X, of the given collection, and their
logical encoded vectors, x; = L£(X;), and z; = L(X;).
Consider first the their combination via set intersection:
X;n Xj = ﬁ_l(.l"',g) M ﬁ_l(.’ﬂj) =
= (Uz=1,x;=1 Zh) a (U?:ngﬂ Zi) ’

which can be expanded, by distributing the set intersection,
as the union of the sets given by the intersection of one Zj,
with one Z;. As all Z; are disjoint, only those Z; appearing in
both the original sets, X; and X, remain in the intersection.
Therefore, we can write

Xi 0 Xy Uzzl,(wizl)/\(mizl) Zh =

= Uhe1 v Zn = £71(z) , with ¢ = 25 25,

which proves the equivalence relation:

£
XiﬂXj = I;T;. (8)
-t

Moreover, consider the two sets” combination via set union:
X;UX; = LY z)UL Yzy) =
= (UZ:ngﬂ Zh) Y (U?=1,a:{=1 Zl) -
- Uzﬂ,(z;:n/z;:n Zh = 2:1,a:h=1 Ip =
L7 z),with z = z; + 74,
which proves the equivalence relation:

L
XiUX; = aita;. ©)
.



Finally, consider the complementation of one of the two sets:

C(Xy) = C(L Mz =C (Uz=1,x;=1 Zh) =
= ﬁgﬂ,mgﬂ C{Zn) .

By definition C{Z) is the set of points not belonging to Zp,
that can be obtained as the union of all the other partition sets:

Zn = ClZn) =UpcipunZh=

WU Z U U Zp Uy U U Z =

= L7MepUL YN U. o UL Nz, 1)U
UL Hepp) U ULz =

= U?:l,&g,hZI Zl ?

with op, =21+ 2+ 4+ 251+ 211+ + 2. Basy com-
putation gives a logical vector ap = (1,...,1,0,1,...,1)T
containing all entries to 1 except for the h—th one. Finally,
intersection of all Zj yields:

CXy) = ﬂﬁ:l,xi:lzﬁ:

1 .
= ﬂh:l,cxhzl Zn,witha =aj1as ...0,,

where 7 is the number of z;’s non—mull components. As all
these components are assigned with a logical vector a; con-
taining a null element at position {, and as all these components
are considered, the sets that remain in the intersection are those
not belonging to X, or in other words, for which 93;} = 0.
Hence, we have

CX:) = Uﬁ:l,x;L:o In = Uz=1,a:;l=1 Zh =
= L7y, with y; = —aq,

which proves the equivalence relation:

L

C(X) = - (10)
h

Remark 3: From the above results, it follows that the in-
tersection {union, complement) of any two sets X; and X is
equivalent, via the encoder map, to the bitwise logical prod-
uct (sum, complement) of the corresponding binary vectors
Iy = L(Xz) and Ty = ﬁ(XJ)

In Boolean logic, the notion of Algebraic Normal Form
(ANF) [20] of a binary map is often used for formal theorem
proving. The following proposition gives a generalization of
this notion for SBMs:

Proposition 7 (Normal Form (NF)): For each SBM F
P(£) — P({X) depending on n sets, the Normal Form

FX)=Dg—oq,...n (AJ a (ijJXj)) ’
J e 8{n, k)

where Ay € {0,%}, X3 — % and § : N x N — 227 is
st S(n, k) are all combinations of & elements out of the
first n integers in lexicographical order {(S(n,0) = {{0}} by
definition), fully describes F'. Moreover, it holds

A; =D

where ny = card(J)—1and y; = (y1,- - ,yn)?, withy; = X

P(xy) [ Ap Agy
0, X110, XN =X, [ [
XU X, X UX p:4 @
X1,X4 UXl,XlﬂXl,XlLJ@,XlﬂX ] b 4
C(X1) £ X
Table I

SUMMARY OF NF’S SET COEFFICIENTS FOR A ONE PARAMETER
SET-VALUED BOOLEAN FUNCTION,

if i € J, or T; = 0 otherwise.
Proof: Let us proceed by induction. The NF of a SBM
depending on n = 1 input set is

F(X) = D4y, AmynXy) =
= (A@) M C(A{l})) U (C(A@) M A{l} M Xl) 1
U (e

To show that the proposition holds it is sufficient to show that,
for each function of one input argument, there exists a choice
for the sets Ag and Ay correctly describing the function (see
Table 7).
|
As an example of Prop. 7, consider a map computing the
union of its two input sets, i.e., F (X, Xg) = Xq U Xy, The
NF of a generic map with n = 2 arguments is

F(Xy, Xs) AU
A{l} M Xl) L (A{Q} QXQ) U
ApgynXin Xy,

with Ap, Ay, Aggy, Aoy = {0, X}, Set union can be
obtained by choosing Ag = @, Agy, Ay, Aoy = X
ie. (X1, X)) = X7 U XpU (XN Xg). Moreover, in the
binary case, saving that a binary map is fully described by its
Algebraic Normal Form (ANF) means that the two maps have
the same truth table.

We can now state the main result of this section, which
proves that Remark 3 is valid for any SBM:

Theorem 4 (Binary Encoding of SEM): A dynamic system
of the form

C C |

X{t+1) = F(X®),

where F' is a generic SBM, with initial state X (0), can be
simulated by s copies of a binary dynamic system

2'(t+1) = f(=' 1),
where the binary map is
f : B*"— B

T

fori=1,---,x,

—di_y (dreseomar Mierzy)

T

in which & is determined by the binary encoding, ay = £{A )
for all J, A7 are the coefficient sets of the NF of ¥, and initial
states given by = = L{X(0)).

Proof: First note that every Aj; can be associated with
logical vectors via the above encoding:

&J—L(AJ)—{ (Oa"'ao)T lfAJ:Qj:

(1, DT Ay =%.



The NF of a generic SBM F(X) can be rewritten as

FEX) =D g_g.. Yo,
J € 8(n, k)

where Y; = A; N (ﬂjg Xj). Note that every set Y can

be associated with a logical vector 7 = £{Y7) as it is given
by the intersection of sets that can be associated with logical
vectors by the above encoding (see the equivalence relation in
Eq. 8). Therefore, we can write

PX)=D p_q... p L7y,
JeS(n k)

with Yy = ﬁ(YJ) = aj HjEJ S‘L‘j.

Furthermore, the distance between two vector sets is
XYY = C(X)nY) U (X nC(Y)), which involves
only unions, intersections, and complements. Based on the
equivalence relations in Eq. 9, 8, 10, the set—valued distance D
is equivalent to the binary distance d. Therefore, we can also
write F(X) = L1 (d2=0ak), with az = d]es(ﬂ’k)yj. This
implies that F'(X') can be evaluated by decoding the result of
the logical function

o) =di_y (dresmmar ey )

where ay = £(A;) for all J, which gives the thesis. [ |
Corollary 3: f is obtained from F by k copies of a function
obtained by replacing every set X; € P(X) with a binary
vector z; = L(X;) € B and all unions, intersections,
and complements with logical bitwise sums, products, and
negations, respectively. In this sense, we will write

f=L(F).

Proof: Consider the sequence of operations reducing the
NF of I into its original expression. A similar sequernce can be
applied to the ANF of f of Theorem 4, where each operation
in the original algebra is replaced with the corresponding in
the binary ones. |
Example 4.1: Consider again the system of Example 3.2.
We want to compute the corresponding binary dynamic sys-
tem. The partition sets are

21 = XinXenXs,

Jy = XinlXs ﬂC(Xg),

Zs = XinC(X2)nXs,

e = Xy ﬂC(XQ)ﬂC(Xg),
Zs = C(X)nXanXs,

Zg = C(X1)NnXenC(Xsy),
A a— C(X]_) ﬂC(XQ)ﬂXg,
Zs — C(X1)NC(Xa)NC(Xs),

Each state X; is associated with a binary vector z; € BS.
Based on Theorem 4, the corresponding logical system is
z(t+1) = flz(1), with z = («], 2, 24)T and

flz) = (z11+ 20131, %18+ TasTag,
T1,8%2.8, * +L1,58%2,8,

T11%21%3,1, - ,E1,8%2,5T3,3) .

Consider a numeric example in which the unity is X =
[0,00) and the original system is initialized with the sets

X1(0) = [2,5], X2(0) = [4,7], and X5{0) = [§ 11].
According to the update rule in Eq. 6, the original system’s
state after one step is

X(1) = FX(0) = 2,

(0,2)u
with 4 = ([0,8) L (11,00)) N ([0,4) N (7, o)), which yields
2, 5]
x(1) = 0,5] U (7,00) a1

[0,2) U (7,8 U {11,00)
The same result can be obtained via the binary encoding. The
values of the partition sets are:
Zl - [4’ 5]1 ZQ = [234): ZS = [51 T],
Zy=[8,11], Z5 =10,2) U (7,8 U (11,00).

The initial state of the corresponding binary dynamic sys-
tem is is «(0) = (27 (0), 2L (0), z5(0))T), with 2;(0) =
L{X;(0), for i = 1,2,3, and is given by

z1(0) = (1,1,0,0,0), z2(0) = {1,0,1,0,0),
z3(0) = (0,0,0,1,0).
Application of the logical iteration f gives the next state

(1) = f(z(0)) with

z1(1) =(1,1,0,0,0), z,(1) = (1,1,0,1,1),
z3(1) = (0,0,0,0,1).
This corresponds to
21\ Zy
Z1UZs U7, U7 ,
Zs

which gives the same result as in Eq. 11.

X(1) =£7z(1) =

V. GLOBAL CONVERGENCE OF SET-VALUED BOOLEAN
SYSTEMS - A REVISED VIEW

We now present the first main result of the paper, concerning
the way of proving that a Boolean map is contractive (i.e.
converge) globally. Suppose that a map £ : P(X)" — P(X)"
is given, s.t. it can be described using unions, intersections, and
complements only. Let f : B®*** — B"** be its translation
L{F). By Theorem 3, F is contractive < if there exists
a positive integer ¢ st. F'? is a constant application <
X & a(B(F)). We show that properties such as the map’s
contractivity can indeed be investigated in the binary domain.

Lemma 1: Define B(f) as the incidence matrix of f in the
same way as B(F) is for F. Then
{B(F)}i; =X
=
{B(f)}ant-1) 41:200-1) 2nG-t) 41200 -10 = 1.

where [ is the identity matrix.



Proof: Write the map F' in the following way:
F (Xii,._.,Xii )
1 kg
s Xn) - 3
F, (Xi?,.. Xk)

F(X1,...

where the Xiz are the actual variables on which the I-
th component of the image of F' depends. Now, from the
definition of the map £, we have

0 o Id o “1d
BH=1: .. .
0 ... Id 0 ... Id 0
o o
i iy
,',:1
ki
Td ... 0
Jdd .0
i}:n

(B(f) € B™*™) where every 0 and [ are zero matrices
and identity matrices, respectively. The thesis now follows
easily since B(F) € {0, 1" has exactly the same form,
substituting @ to 0 and ¥ to I:

it i
o ~
0 0 X 0 p:4
B(F) = .
0 X U b4 0]
S~ S~
i 2
-1
iy
——
b4 U
Lo
zgn

Theorem 5: Suppose that F . P(A)"™ — P(X)" uses
unions, intersections, and complements only. Then F' is con-
tractive if, and only if, £(F) : {0,1}™ — B™ is contractive.

Proof: By Theorems 1 and 3 it is sufficient to prove that
X ¢ o(B(F)) & o(B(f) =0.

By remark 2 X ¢ «(B(F)) if, and only if, there exists a
permutation matrix P s.t. PT B(F) P is strictly lower or upper
triangular, while proposition 2 assures that p(B(f)) = 0 is
and only if there exists a permutation matrix p s.t. p* B(f)p
is strictly lower triangular. Now, by Lemma 1 it holds

{B(F)}; =X
<:>
{B(f)}ant-141006-1) 2nG-1 f1206-1) = L.

This immediately implies that
g a(B(F)) < p(B(f))=0.

|
Remark 4: p(B(f)) = 0 if and only if p (B(F)) — 0,

where B(f) is the matrix obtained substituting 1 to X and 0
to @. This can be easily seen using the equivalent formulations

in terms of permutation matrices given by proposition 2 and
remark 2. ¢

VI. LocAL CONVERGENCE OF SET-VALUED BOOLEAN
DYNAMIC SYSTEMS

In the same way we can investigate the local convergence
properties of a set-valued map in the binary domain: while
equivalent formulations in boolean domain exist for global
convergence, this method give a novel technique to prove local
convergence (see also Remark 6).

Definirion 15: Given a  generic vector X =
(X1,.., Xp o, X)T € PR, its j-th neighbor

18
X = (Xpyo OO, X

Definition 16 (Neighborhood): Given a vector X € P(X)",
neighborhood of X is the set V (X) of all points that differ in
at most one complemented component from X:

VIX)={X,X',... X"} ¢

Definition 17: An equilibrium point X of # : P(X)" —
P(L)" is attractive in its neighborhood if

« F{VX) C VXD,

« FHY)Y=X VY e V(X).

Suppose now given a map F : P{X)"™ — P(X)", that can be
described only in terms of unions, intersections, and comple-
ments. Computing £(F) we obtain the map f: B™* — B™%.

Theorem 6: A map F : P(A™) — P(A") that can be
described only in terms of unions, intersections, and com-
plements, is attractive in the immediate neighborhood of an
equilibrium set X if and only if £(F) : B¥"® — B"" is
attractive in the immediate neighborhood of the equilibrium
point « corresponding to X.

Proof: The key point of the proof is the fact that,
once given an initial condition, we can indifferently see the
dynamics of F in P{X)™ or the dynamics of f in B™. In
particular it's straightforward to verify comparing definitions
8 and 16, that

FV(X) e V(X) & f(V(2)) € V(z),
FrY)=X, ¥Y eV(X) & ) =z, YueV(z).

Now Theorem 2 implies the thesis. |
Remark 5: In other words Theorem 5 states that we can
check local attractivity by working on binary matrices.
Remark 6: It's worth noting that the proof of theorem 2
cannot be adapted to the local convergence in set-algebra
domain. Indeed the notion of discrete derivative has its natural
set-domain generalization in the definition of boolean deriva-
tive given in [19]. This definition however gives rise to set-
matrices whose elements are not only the empty and the whole



set: this prevent from using the techniques in [13]. In this paper
there is no need of the notion of a derivative in the set domain.
+

In the following proposition we show that Theorems 5 and
6 can be applied when the definition of the map F involves
other (usual) operations, that can be defined in terms of unions,
intersections, and complements, also with the help of some
tricks.

Proposition 8: Theorems 5 and 6 can be applied also when
the definition of the map F" involves set difference, symmetric
difference, or constant sets.

Proof: Set difference is defined to be

X\Y={zeX:zd¥Y}={XNnCY)},

which proves that the set difference can be defined only with
unions, intersections, and complements. Symmetric difference
is defined to be D(X,Y) = XUY \ XY, which proves that,
also symmetric difference can be defined only with unions,
intersections, and complements. |

With regards to the maps involving not only operations
among the arguments, but also operations involving constant
sets, say Ay,...,Ar, we use the following trick: define
another function F, modifying adding & new components in
the definition of ¥

Xl F(Xl:---aXnaAla-“aAk)
ol X || PG XA

Xn+1 »Al

Xn+k: -/4..11:

In this way the map F contains only unions, intersections, and
complements among its arguments, and Theorems 5, 6 apply.
+
Remark 7: Thanks to proposition 8, given a map [

PAE®) — P(A™), defined in terms of intersections, unions,
complements, set differences, symmetric differences, and in-
volving also constant sets, Theorems 5, 6 apply: we can check
contractivity and local convergence working only with binary
matrices.

VII. APPLICATION TO LINEAR SBM

Consider a linear system X = AX of the form

Xfr a11 Ql1n Xi
XTT anl Qnn Xn
11 n X1

U U O‘Jlnan

an1 M X1 U U G M Xy

Following proposition 8, we have to consider the following
system, given by the introduction of matrix constants as
additional variables which remains constant in time:

Xf:anﬂXl U U alnan

X?:f:anlle U U Q.fnfnmen

+
X pp=on
X?j—i—'rﬂ = Opn

By remark 4, we can write the incidence matrix with 1
instead of X, and without the map L:

"B(o11) Bo1s)
LB(an1) Blap,)o
0 ... 0
0 - 0
L0 ... 0.
B (an) B(aln)—' .L.TO PN o
L0 ... 0o o LB(on1) Blann)
r T
Iz, 2
L |

where Blas;) = 1 if ay; # 0, and B(as;) = 0 otherwise.
Now, global contractivity is equivalent, by Theorem 3, to the
fact that A9 is a constant application. This happens if and
B(CL]_]_) B(aln)
only if the matrix B(A4) = : is
Bla:) Blayy,)
nilpotent, and this latter condition holds, by remark 2, if and
only if p(B(A4)) = 0, that is if there exists a permutation
matrix P s.t. PTB(A)P is strictly triangular.

Proposition 9 (Consensus of linear systems): Simple cal-
culations shows that a linear systems of type XT = A4X,
has a consensus fixed point if and only if

7
ﬂ &ilU&iQU...Uain 7é @
=1

Proof: Observe that there exists a consensus fixed point &
if and only if

<I>ﬂ(a11Ua12U...Ua1ﬂ) &

@ﬂ(amUalgu...Uann) &

This implies that the matrix A has a consensus algorithm if
and only if the intersection in the statement of the proposition



Figure 2. Tterations of the system (12) given by initial conditions
(a). The first and the second iteration are shown in (k) and (c)
respectively, while the third iteration, (d) is the fixed point of the
systern.

is non-empty. 4

VIII. EXAMPLES

Example 8.1: Consider the following map
F : P([0,200]) — P([0,200]) given by the following
updating rule:

:n:ir =z3 U (z2 MNzs)
l‘; = ¥3
+ _
z3 = z3(0)
a:;f =z U{ze Nzg)U (x5 M xg) (12)
a:;' =x2Mx3
oF = (#1Nas) Uz Uas
The incidence matrix B(F') is then
011 01 0
0 0 1 0 0 0
0 0 0 0 0 0
B(F) = 1 11 011
01 1 0 0 0
1 11 01 0
000100
01 0 0 0 0
. . 1 0 0 0 00 )
The permutation matrix P = 00000 1 is s.t.
00 1 0 0 0
000010

PTB(F)P is a strictly lower triangular matrix, therefore the
system (12) is contractive, by Theorems 5 and 1. In figure 8.1 a
particular orbit is shown, which converge to a consensus given
by the initial condition z5(0). Moreover, since the system is
contractive, the fixed point does not depends on the initial
conditions, and the system always reaches a consensus given
by the initial condition z5(0). 4

IX. CONCLUSIONS

This paper focused on the convergence towards consensus
on information in distributed systems, where agents share data
that is not represented by real numbers, rather by logical
values or sets. We showed that both types of information
convergence problems can indeed be attacked in a unified way
in the framework of Boolean distributed information systems.
Based on a notions of contractivity and local convergence
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for Boolean dynamical systems, a necessary and sufficient
condition ensuring the global and local convergence toward
an equilibrium point is presented. Application of achieved
results to some examples was finally shown. Future works will
address the convergence of more general set-valued maps.
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