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Abstract

We present the first polynomial time approximation algorithm for computing short-
est paths in weighted three-dimensional domains. Given a polyhedral domain D, con-
sisting of n tetrahedra with positive weights, and a real number ε ∈ (0, 1), our algorithm
constructs paths in D from a fixed source vertex to all vertices of D, whose costs are
at most 1 + ε times the costs of (weighted) shortest paths, in O(C(D) n

ε2.5
log n

ε log
3 1
ε )

time, where C(D) is a geometric parameter related to the aspect ratios of tetrahedra.
The efficiency of the proposed algorithm is based on an in-depth study of the

local behavior of geodesic paths and additive Voronoi diagrams in weighted three-
dimensional domains, which are of independent interest. The paper extends the results
of Aleksandrov et al. [4] to three dimensions.

1 Introduction

1.1 Motivation

The computation of shortest paths is a key problem arising in a number of diverse applica-
tion areas including geographic information systems, robotics, computer graphics, computer-
aided design, medical computing and others. This has motivated the study and subsequent
design of efficient algorithms for solving shortest path problems in different settings based on
the geometric nature of the problem domain (e.g., two-dimensional (2-d), three-dimensional
(3-d), surfaces, presence/absence of obstacles) and the cost function/metric (e.g., Euclidean,
Lp, link distance, weighted/unweighted, multi-criteria). In addition to its driver - the appli-
cations - the field has provided, and continues to do so, exciting challenges from a theoretical
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perspective. As a result, shortest path problems have become fundamental problems in areas
of Computer Science such as Computational Geometry and Algorithmic Graph Theory.

The standard 3-d Euclidean shortest path problem of computing a shortest path between
pair of points avoiding a set of polyhedral obstacles, denoted as the ESP3D problem, is known
to be NP -hard even when the obstacles are parallel triangles in the space. It is not difficult
to see that the number of combinatorially distinct shortest paths from a source point to a
destination point may be exponential in the input size. Canny and Reif [8] used this to
establish the NP -hardness of the ESP3D problem, for any Lp metric, p ≥ 1. In addition to
this combinatorial hardness result, Bajaj [7] has provided an algebraic hardness argument
that an exponential number of bits may be required. More recently, Mitchell and Sharir [22]
gave NP -completeness proofs for the problem of computing Euclidean shortest paths among
sets of stacked axis-aligned rectangles, and computing L1-shortest paths among disjoint balls.
Given the NP -hardness of the ESP3D problem, work has focused on exploiting the geometric
structure of the obstacles and/or on providing approximation algorithms. We will mention
some of these approaches in Section 1.4.

In many applications, the Euclidean metric does not capture adequately the nature of
the problem, for instance when the problem domain is not homogeneous. This motivates
the weighted versions of the shortest path problem. For example in the 2-d case, consider
triangulated regions where each triangle represents a particular terrain type such as water,
rock, or forest. Here different weights capture the cost of traveling a Euclidean unit-length
through each face. Incorporating weights makes the solution more difficult to obtain even
in 2-d, but it does provide more realistic answers. It is known that light and other types
of waves (e.g., seismic and sonic) travel along the shortest paths in heterogeneous media.
Hence, algorithms solving the weighted shortest path problem (WSP3D) can be used for
modeling wavefront propagation in such media. In the 3-d, a number of applications are
non-homogeneous in nature and can be expressed using the weighted model. Next, we list
some of such potential applications.

• In geology, seismic refraction and reflection methods are used based on measurements of
the travel time of seismic waves refracted at the interfaces between subsurface layers of
different densities. As such waves propagate along shortest paths and weighted shortest
path algorithms may be used to produce more accurate and more efficient estimation
of subsurface layer characteristics, e.g., the amount of oil contained in the subsurface
[14]. Another related application is the assessment of garbage dumps’ health. When
a new garbage dump is built, sensors are placed at the bottom, and when the garbage
dump starts to fill, waves from the top passing through the garbage to these sensors
are used in order to determine the decomposition rate of the garbage [14].

• Computation of 3-d shortest path have also been used to compute fastest routes for
aircrafts between designated origin and destination points while avoiding hazardous,
time-varying weather systems. Krozel et al. [17] investigate synthesizing weather avoid-
ance routes in the transition airspace. Our weighted 3-d region model can be used to
generalize that approach: instead of totally avoiding undesirable regions, one can as-
sign penalty weights to them and then search for routes that minimize travel through
such regions, while also avoiding unnecessarily long detours.
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• In medical applications simulation of sonic wavefront propagation is used when per-
forming imaging methods as photoacoustic tomography or ultrasound imaging through
heterogeneous tissue [12, 27]. In radiation therapy, domain features include densities
of tissue, bone, organs, cavities, or risk to radiation exposure, and optimal radiation
treatment planning takes this non-homogeneity into consideration.

• The problem of time-optimum movement planning in 2-d and 3-d for a point robot that
has bounded control velocity through a set of n polygonal regions of given translational
flow velocities has been studied by Reif and Sun [24]. They state that this intriguing
geometric problem has immediate applications to macro-scale motion planning for
ships, submarines, and airplanes in the presence of significant flows of water or air.
Also, it is a central motion planning problem for many of the meso-scale and micro-scale
robots that have environments with significant flows that can affect their movement.
They establish the computational hardness for the 3-d version of this problem by
showing the problem to be PSPACE hard. They give a decision algorithm for the
2-d flow path problem, which has very high computational complexity, and they also
design an efficient approximation algorithm with bounded error. The determination of
the exact computational complexity of the 3-d flow path problem is posed as an open
problem. Although, our weighted 3-d model does not apply directly to this setting,
it can be used to construct initial approximations by assigning appropriate weights
depending on the velocity and direction of the flows in different regions. In addition,
the discretization scheme and the algorithmic techniques developed here can be used
for solving the 3-d flow path problem.

1.2 Problem formulation

In this paper, we consider the following problem. Let D be a connected 3-d domain consisting
of n tetrahedra with a positive real weight associated to each of them. The 3-d weighted
shortest path problem (WSP3D) is to compute minimum-cost paths in D from a fixed source
vertex to all vertices of D. The cost of a path in D is defined as the weighted sum of the
Euclidean lengths of the sub-paths within each crossed tetrahedron. We will describe and
analyze an approximation algorithm for this problem that, for any real number ε ∈ (0, 1),
computes paths whose costs are at most 1 + ε times greater than the costs of the minimum
cost paths. In Section 2, we describe our model in detail.

Note that the WSP3D problem can be viewed as a generalization of the ESP3D problem.
Namely, given an instance of the ESP3D problem, one can find a large enough cube containing
all the obstacles, tetrahedralize the free-space (i.e., exterior of the obstacles, but in the
interior of the cube) and set equal weights to the resulting tetrahedra obtaining an instance
of the WSP3D problem.

1.3 Challenges

A key difference between Euclidean shortest path computation in 2-d and 3-d weighted
domain is the NP -hardness already mentioned. Underlying this is the fact that, unlike in 2-
d, Euclidean 3-d shortest paths are not discrete. Specifically, in 2-d, the edges of a shortest
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path (e.g., Euclidean shortest paths among obstacles in the plane) are edges of a graph,
namely, the visibility graph of the obstacles including the source and the destination points.
In contrast, in polyhedral 3-d domains, the bending points of shortest paths on obstacles
may lie in the interior of the obstacles’ edges. Moreover, in weighted 3-d settings, bending
points may even belong to the interior of the faces.

Furthermore, even in the case of weighted triangulated planar domains, the (weighted)
shortest path may cross each of the n cells Θ(n) times and may be composed of Θ(n2) seg-
ments in total. Not only is the path complexity higher, but the computation of weighted
shortest paths in 2-d turns out to be substantially more involved than in the Euclidean set-
ting. In fact, there is not even an exact algorithm known, and the first (1+ε) approximation
algorithm due to [21] had an O(n8 log(n

ε
)) time bound, where n is the number of triangles

in the subdivision. This problem has been actively researched since then, and currently the
best known algorithm for the weighted region problem on planar subdivisions (as well as on
polyhedral surfaces) runs in O( n√

ε
log n

ε
log 1

ε
) time [4]. (Also, see [4] for a detailed literature

review for the planar case.)
One of the classical tools of Computational Geometry is the Voronoi Diagram. This struc-

ture finds numerous applications (see e.g., [6]). It is also a key ingredient in several efficient
shortest path algorithms. Researchers have studied these diagrams under several metrics
(including Euclidean, Manhattan, weighted, additive, convex, abstract) and for different
types of objects (including points, lines, curves, polygons), but somehow the computation of
these diagrams in media with different densities (i.e., the refractive media) remained elusive.
One of the main ingredients in solving the problem studied here is to compute (partial)
additive Voronoi diagrams of points in refractive media. The generic techniques of Klein
[15, 16] and Lê [19] do not apply in this case, as the bisecting surfaces do not satisfy the
required conditions. In this paper, we make an important step towards the understanding
and computation of these diagrams.

1.4 Previous related work

By now, shortest path problems in 2-d are fairly well understood. Efficient algorithms have
been developed for many problem instances and surveys are readily available describing the
state of the art in the field.

In 3-d, virtually all the work has been devoted to the ESP3D problem. Papadimitriou
[23] suggested the first polynomial time approximation scheme for that problem. It runs
in O(n

4

ε2
(L + log(n/ε)) time, where L is the number of bits of precision in the model of

computation. Clarkson [11] provided an algorithm running in O(n2λ(n) log(n/ε)/(ε4) +
n2 log nρ log(n log ρ)) time, where ρ is the ratio of the longest obstacle edge to the distance

between the source and the target vertex, λ(n) = α(n)O(α(n))O(1)

, and α(n) is the inverse
Ackermann’s function.

Papadimitriou’s algorithm was revised and its analysis was refined by Choi et al. [9] un-
der the bit complexity framework. Their algorithm runs roughly in O(n

4L2

ε2
µ(X)) time,

where µ(X) represents the time (or bit) complexity of multiplying X-bit integers and
X = O(log(n

ε
) + L). In [10], the same authors further developed their ideas and pro-

posed a precision-sensitive algorithm for the ESP3D problem. In [5], Asano et al. proposed
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and studied a technique for computing approximate solutions to optimization problems and
obtained another precision-sensitive approximation algorithm for the ESP3D problem with
improved running time in terms of L.

Har-Peled [13] proposed an algorithm that invokes Clarkson’s algorithm as a subroutine
O(n

2

ε2
log 1

ε
) times to build a data structure for answering approximate shortest path queries

from a fixed source in O(log n
ε
) time. The data structure is constructed in roughly O(n

6

ε4
)

time. Agarwal et al. [1] considered the ESP3D problem for the case of convex obstacles and
proposed an approximation algorithm running in O(n + k4

ε7
log2 k

ε
log log k) time, where k is

the number of obstacles. In contrast to all other algorithms discussed here, the complexity
of this algorithm does not depend on the geometric features of the obstacles. In the same
paper, the authors describe a data structure for answering approximate shortest path queries
from a fixed source in logarithmic time.

In the weighted (non-Euclidean) 3-d case no previous algorithms have been reported
by other authors. In [3], we have announced and sketched a polynomial time approxima-
tion scheme for WSP3D problem that runs in O( n

ε3.5
log 1

ε
( 1√

ε
+ log n)) time. The run-time

improves to O( n
ε3
log 1

ε
logn) when all weights are equal. This algorithm can be used to

efficiently solve the ESP3D problem. In this paper, we apply that approach, but develop
the required details, apply new techniques, improve the complexity bounds, and provide a
rigorous mathematical analysis.

1.5 Contributions of this paper

In this paper, we make several contributions to the fields of shortest path computations and
the analysis of weighted 3-d regions model, as listed below.

• We provide an approximation algorithm for solving the WSP3D problem in a poly-
hedral domain D consisting of n weighted tetrahedra. The algorithm computes ap-
proximate weighted shortest paths from a source vertex to all other vertices of D
in O(C(D) n

ε2.5
log n

ε
log3 1

ε
) time, where ε ∈ (0, 1) is the user-specified approximation

parameter and C(D) is a geometric parameter related to the aspect ratios of tetrahe-
dra1. The cost of the computed paths are within a factor of 1 + ε of the cost of the
corresponding shortest paths.

As we stated above, the ESP3D problem, i.e., the unweighted version of this problem,
is already NP -hard even when the obstacles are parallel triangles in the space [8]. The
time complexity of our algorithm, which is designed for the more general weighted
setting, compares favorably even when applied in the Euclidean setting to the existing
approximation algorithms.

• Our detailed analysis, especially the results on additive Voronoi diagrams derived in
Section 2, provides valuable insights into the understanding of Voronoi diagrams in
heterogeneous media. This may open new avenues, for example, for designing an
algorithm to compute discretized Voronoi diagrams in such settings.

1See Lemma 3.1 for details on the value of C(D).
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• Our approximation algorithms in 2-d have proven to be easily implementable and
of practical value [18]. Our algorithm for WSP3D presented here, in spite of being
hard to analyze, essentially uses similar primitives, and thus has the potential to be
implementable, practical, and applicable in different areas.

• Our work provides further evidence that discretization is a powerful tool when solving
shortest path-related problems in both Euclidean and weighted settings. We conjecture
that the discretization methodology used here generalizes to any fixed dimension.

Furthermore, our discretization scheme is independent of the source vertex and can be
used with no changes to approximate paths from other source vertices. This feature
makes it applicable for solving all pairs shortest paths problem and for designing data
structures for answering shortest path queries in weighted 3-d domains.

• The complexity of our algorithm does not depend on the weights assigned to the
tetrahedra composing D, but it depends on their geometry. We analyze and evaluate
that dependence in detail. Geometric dependencies arise also in Euclidean settings and
in most of the previous papers. For example, in Clarkson [11], the running time of the
algorithm depends on the ratio of the longest edge to the distance between the source
and the target vertex. Applying known techniques (see e.g., [1]), such dependency can
often be removed. Here, this would be possible provided that an upper bound on the
number of segments on weighted shortest paths in 3-d is known. However, the increase
in the dependency on n in the time complexity that these techniques suffer from, which
is of order Ω(n2), appears not to justify such an approach here. In our approach, the
dependency on the geometry is proportional to the average of the reciprocal squared
sinuses of the dihedral angles of the tetrahedra composing D. Thus, when n is large,
many tetrahedra would have to be fairly degenerate so that this average to play a major
role. We therefore conjecture that in typical applications, the approach presented here
would work well.

1.6 Organization of the paper

In Section 2, we describe the model used throughout this paper, formulate the problem,
present some properties of shortest paths in 3-d, and derive a key result on additive Voronoi
diagrams in refractive media. In Section 3, we describe our discretization scheme which is
a generalization of the 2-d scheme introduced in [4]. In Section 4, we construct a weighted
graph, estimate the number of its nodes and edges and prove that shortest paths in D can be
approximated by paths in the graph so constructed. In Section 5, we present our algorithm
for the WSP3D problem. In Section 6, we conclude this paper.

2 Problem formulation and preliminaries

2.1 Model

Let D be a connected polyhedral domain in 3-d Euclidean space. We assume that D is
partitioned into n tetrahedra T1, . . . , Tn, such that D = ∪ni=1Ti and the intersection of any
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pair of different tetrahedra is either empty or a common element (a face, an edge, or a vertex)
on their boundaries. We call these tetrahedra cells. A positive weight wi is associated with
each cell Ti representing the cost of traveling in it. The cost of traveling along a boundary
element of a cell is the minimum of the weights of the cells incident to that boundary element.
We consider paths (connected rectifiable curves) that stay in D. The cost of a path π in D
is defined by ‖π‖ =

∑n
i=1wi|πi|, where |πi| denotes the Euclidean length of the intersection

πi = π ∩ Ti. Boundary edges and faces are assumed to be part of the cell from which they
inherit their weight.

Given two distinct points u and v in D, the shortest path problem in D is to find a
minimum cost path π(u, v) between u and v that stays in D. We refer to the minimum cost
paths as shortest paths. For a given approximation parameter ε > 0, a path πε = πε(u, v) is
an ε-approximation of the shortest path π = π(u, v), if ‖πε‖ ≤ (1 + ε)‖π‖. Without loss of
generality, we may assume that the points u and v are vertices of D, since, if they are not, we
can make them such by partitioning the cells where they belong. In this paper, we present
an algorithm that, for a given source vertex u and an approximation parameter ε ∈ (0, 1),
computes ε-approximate shortest paths from u to all vertices of D.

In this setting, it is well known [21]2 that shortest paths are simple (non self-intersecting)
and consist of a sequence of segments, whose endpoints are on the cell boundaries. The
intersection of a shortest path with the interior of a cell, a face, or an edge is a set of disjoint
segments. More precisely, each segment on a shortest path is of one of the following three
types:

(i) cell-crossing – a segment that crosses a cell joining two points on its boundary;
(ii) face-using – a segment lying along a face of a cell;
(iii) edge-using – a segment along an edge of a cell.

We define linear paths to be paths consisting of cell-crossing, face-using, and edge-using
segments exclusively. A linear path π(u, v) can be represented as the sequence of its segments
{s1, . . . , sl+1} or, equivalently, as the sequence of points {a0, . . . , al+1}, lying on the cell
boundaries that are endpoints of these segments, i.e., si = (ai−1, ai), u = a0, and v = al+1.
The points ai that are not vertices of cells are called bending points of the path.

The local behavior of a shortest path around a bending point a, lying in the interior of a
face f , is fully described by the directions of the two segments of the shortest path, s− and
s+, that are incident to a. The direction of each of these two segments is described by a pair
of angles, which we denote by (ϕ−, θ−) and (ϕ+, θ+), respectively. The in-angle ϕ− is defined
to be the acute angle between the direction normal to f and the segment s−. Similarly, the
out-angle ϕ+ is the acute angle between the normal and the segment s+. The angles θ− and
θ+ are the acute angles between the orthogonal projections of s− and s+ with a reference
direction in the plane containing the face f , respectively (see Figure 1).

It is well known that when π is a shortest path it is a linear path such that the angles
(ϕ−, θ−) and (ϕ+, θ+) are related by Snell’s law as follows:

2The 2-d case was treated there, but the arguments readily apply to the 3-d model considered in this
paper.
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θ+

s+

θ− a

ϕ+

s−

ϕ−

f

Figure 1: An illustration of the Snell’s law of refraction.

Snell’s Law of Refraction: Let a be a bending point on a geodesic path π lying in the
interior of a face f of D. Let the segments preceding and succeeding a in π be s− and s+,
respectively. Let the weights of the cells containing s− and s+ be w− and w+, respectively.
Then s+ belongs to the plane containing s− and perpendicular to f and the angles ϕ− and
ϕ+ are related by w− sinϕ− = w+ sinϕ+.

We refer to linear paths that are locally optimal (i.e., satisfy the Snell’s law) as geodesic
paths. Hence, the shortest path between pair of vertices u and v is the geodesic path of
smallest cost joining them. In the following we discuss some of the implications of Snell’s
law on the local behavior of geodesic paths.

Hereafter, we denote by κ the ratio w+/w−. Without loss of generality, we assume that
w− ≥ w+, i.e., κ ≤ 1. Let ϕ∗ be the acute or right angle for which sinϕ∗ = κ. We refer to
this angle as the critical angle for the face f . From Snell’s law, it follows that ϕ− ≤ ϕ∗. The
case where ϕ− = ϕ∗ deserves a special attention. In this case, ϕ+ must be a right angle and
therefore the segment s+ is a face-using segment. Furthermore, if the second endpoint a1 of
s+ is in the interior of f , then the segment following s+ is inside the tetrahedron containing
s−, and the out-angle at a1 is equal to ϕ∗ (see Figure 3 (b)). In summary, if s is a face-using
segment, then it is preceded and followed by segments lying in the cell with bigger weight
and their corresponding in-angle and out-angles are equal to the critical angle ϕ∗.

In the next subsection, we study the properties of simple geodesic paths joining points
in neighboring cells or in the same cell through a face-using segment. We define a function
related to the cost of these geodesic paths and prove a number of properties that it possesses.
These properties are essential to the design and the analysis of our algorithm.

2.2 Weighted distance function

Let F be a plane in the three-dimensional Euclidean space. We denote the two half-spaces
defined by F by F− and F+ and assume that positive weights w− and w+ have been asso-
ciated with them, respectively. We extend our model by assigning a weight w to F , so that
w = min(w−, w+) if w− 6= w+, and 0 < w = w+(= w−) if w− = w+. The latter case models
the situation where the geodesic path joins two points in the same cell through a face-using
segment on the boundary of that cell.
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F

a

z+

y+

y = y+ + y−

θ x = x+ + x−

z−

x−

ℓ ακx

α

ϕκ

ϕ

z

v

Figure 2: The geodesic path π̄(v,x) joining v and x is illustrated. The weighted distance
function c(v, x) equals to the cost of π̄(v,x), i.e. c(v, x) = ‖π̄(v,x)‖ = w−|va|+ w+|ax|.

We refer to the half-spaces F− and F+ as the lower and the upper half-space, respectively.
Let v be a point in the lower half-space F− at distance z− from F and ℓ be a line parallel
to F in the upper half-space F+ at distance z+ from F . Let Oxyz be a Cartesian coordinate
system such that the plane Oxy coincides with F , v has coordinates (0, y,−z−), and the line
ℓ is described by {ℓ : y = 0, z = z+}.

We consider a point x = (x, 0, z+) on ℓ and denote by π̄(v,x) the geodesic path between
v and x. In this setting, the geodesic path is unique and thus coincides with the shortest
path. We denote the cost of this path by c(v, x), where x is the x-coordinate of x. So, for
fixed l, c(v, x) can be viewed as a function defined for any real x. We call c the weighted
distance function from v to l (Figure 2).

The local structure of the geodesic path π̄(v,x) is governed by Snell’s law. In the case
where w− 6= w+, the shortest path between v and x consists of two segments (v, a) and
(a,x), where the bending point a is uniquely determined by Snell’s law (Figure 3 (a)). In
the case where w− = w+, the structure of the path π̄(v,x) is as follows. It is a single segment
(v,x), provided that the angle ϕ between (v,x) and the direction normal to the plane F is
smaller than or equal to the critical angle ϕ∗ defined by sinϕ∗ = w/w−. Or, if ϕ > ϕ∗, it
is in the plane perpendicular to F containing v and x and consists of three segments (v, a),
(a, a1) and (a1,x), where the acute angles between the segments (v, a) and (a1,x), and the
direction normal to the plane F are equal to the critical angle ϕ∗, and the segment (a, a1) is
in F (Figure 3 (b)).

From these observations, it follows that, in all cases, weighted distance function can
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(b)(a)

xℓ

a

a1

ϕ∗

v

ϕ∗

a

s−

s+

ϕ+

ϕ−

θ+

θ−

ℓ x

v

F F

Figure 3: The diagrams illustrate the local structure of geodesic paths in different cases.

equivalently be defined by

c(v, x) = ‖π̄(v,x)‖ = min
a,a1∈F

(w−|va|+ w|aa1|+ w+|a1x|). (1)

In the case where w− 6= w+, the minimum is achieved when a = a1 = (τx, (1−τ)y, 0), where
τ is the unique solution in (0, 1) of the equation

w−τ
√

τ 2(x2 + y2) + (z−)2
=

w+(1− τ)
√

(1− τ)2(x2 + y2) + (z+)2
, (2)

where v = (0, y, z−) and x = (x, 0, z+). The latter leads to an algebraic equation of degree
four and it is infeasible3 to evaluate c(v, x) explicitly.

The case where w− = w+ is easier, as in that case the geodesic path is either a straight
line, or a three segment path as described above and illustrated in Figure 3 (b) and the
function c(v, x) has an explicit representation, which is

c(v, x) =

{

w−
√

x2 + y2 + z̄2 if
√

x2 + y2 ≤ z̄/w̄

w(
√

x2 + y2 − z̄w̄) if
√

x2 + y2 > z̄/w̄,
(3)

where z̄ = z− + z+ and w̄ =
√

(w−/w)2 − 1. We refer to this case as the explicit case. In
the next lemma we state and prove some useful properties of the function c(v, x).

Lemma 2.1 For a fixed v, the weighted distance function c(v, x) has the following properties:

(a) It is continuous and differentiable.

(b) It is symmetric, i.e. c(v, x) = c(v,−x).
(c) It is strictly increasing for x > 0.

3Although the roots of a quartic can be expressed as a rational function of radicals over its coefficients,
they are too complex to be analytically manipulated and used here.

10



(d) It is convex.

(e) It has asymptotes for x→ ±∞ as follows:
(e1) if w+ < w− then the asymptotes are w+(z− cotϕ∗ ± x),
(e2) if w− < w+ then the asymptotes are w−(z+ cotϕ∗ ± x),
(e3) in the explicit case w+ = w− ≥ w the asymptotes are ±wx,

where ϕ∗ is the critical angle.

Proof: In the explicit case (w− = w+), all these properties follow straightforwardly from
the explicit representation (3). So, we consider the case w− 6= w+

From (1) and a1 = a = (τx, (1−τ)y, 0) it follows that c(v, x) = w−√τ 2(x2 + y2) + (z−)2+

w+
√

(1− τ)2(x2 + y2) + (z+)2, where τ is the root of the equation (2). The root τ can
be viewed as a function of x, which by the implicit function theorem is continuous and
differentiable. Hence property (a) holds.

The property (b) follows from the observation that the value of the function c(v, x) is
determined by the distance between the projections of the points v and x on F , which is
√

y2 + x2 where y is fixed.
To prove (c) we consider a point x′ = (x′, 0, z+) such that x′ > x ≥ 0 and de-

note by τ ′ the corresponding root of (2). We have c(v, x′) = w−√τ ′2(x′2 + y2) + (z−)2 +

w+
√

(1− τ ′)2(x′2 + y2) + (z+)2. Using the fact that the function c(v, x) is defined as the
cost of the shortest path joining v and x we have

c(v, x) ≤ w−√τ ′2(x2 + y2) + (z−)2 + w+
√

(1− τ ′)2(x2 + y2) + (z+)2

< w−√τ ′2(x′2 + y2) + (z−)2 + w+
√

(1− τ ′)2(x′2 + y2) + (z+)2 = c(v, x′).

In order to prove (d), we show that for any three equidistant points x1 < x0 < x2 on
ℓ, i.e., such that 2x0 = x1 + x2, the second finite difference △2(c; x1, x0, x2) = c(v, x1) −
2c(v, x0) + c(v, x2) of the function c(v, x) is positive. We denote by a1 and a2 the bending
points of the shortest paths from v to x1 and x2, respectively. Let a′0 be the middle point
of the segment (a1, a2). Then, using the definition of c(v, x0) and the convexity of the
Euclidean distance function we obtain 2c(v, x0) ≤ 2(w−|va′0| + w+|a′x0|) < w−(|va1| +
|va2|)+w+(|a1x1|+ |a2x2|) = c(v, x1)+ c(v, x2), which implies △2(c; x1, x0, x2) > 0 and (d).

Finally, we prove (e). Let us assume that w+ < w−. In this case, using
Snell’s law we observe that when x → +∞ the bending point a(x) of the shortest
path π̄(v,x) converges to the point (z− tanϕ∗, y, 0) (see Figure 2). Hence, we have
limx→+∞(w+

√

(x− z− tanϕ∗)2 + y2 + (z+)2 + w−z−/cosϕ∗ − c(v, x)) = 0. On the other
hand

lim
x→+∞

(w+
√

(x− z− tanϕ∗)2 + y2 + (z+)2 + w−z−/ cosϕ∗ − w+(z− cotϕ∗ + x))

= w+ lim
x→+∞

(
√

(x− z− tanϕ∗)2 + y2 + (z+)2 − (x− z− tanϕ∗))

= w+ lim
x→+∞

y2 + (z+)2

(
√

(x− z− tanϕ∗)2 + y2 + (z+)2 + (x− z− tanϕ∗)
= 0.

Combining these two limits we obtain limx→+∞(c(v, x) − w+(z− cotϕ∗ + x)) = 0 and thus
(e1) is valid for x→ +∞. The case where x→ −∞ is symmetric.
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In the case where w− < w+ we use Snell’s law and observe that the bending point a(x) of
the shortest path π̄(v,x) converges to x−z+ tanϕ∗, that is limx→+∞(a(x)−x−z+ tanϕ∗) = 0.
Then (e2) is established analogously to (e1). ✷

2.3 Refractive Additive Voronoi diagram

Next we study Voronoi diagrams under the weighted distance metric defined above. Given
a set S of k points v1, . . . , vk in F−, called sites, and nonnegative real numbers C1, . . . , Ck,
called additive weights, the additive Voronoi diagram for S is a subdivision of F+ space into
regions V(vi, F+) = {x ∈ F+ | dist(x, vi) + Ci ≤ dist(x, vj) + Cj for j 6= i}, where ties are
resolved in favor of the site with smaller additive weight. The regions V(vi, F+) are called
Voronoi cells. In the classic case, dist(·, ·) has been defined as the Euclidean distance. Here,
for dist(·, ·), we use the weighted distance function c(v, x).

Let v and v′ be two points in F−. We wish to study the intersection of the additive
Voronoi diagram of v and v′ with ℓ with respect to the weighted distance function. Without
loss of generality, we assume that C ′ = 0 and C ≥ 0, where C and C ′ are the additive
weights assigned to v and v′, respectively. We denote the intersection of the Voronoi cell of
v with ℓ by V(v, v′, ℓ;C), or simply by V(v) when no ambiguity arises. We have

V(v, v′, ℓ;C) = V(v) = {x ∈ ℓ : c(v, x) + C < c(v′, x)}.

In Theorem 2.1, we will show that if v and v′ are at the same distance to F , then the Voronoi
cell V(v) restricted to the line ℓ has a very nice structure (i.e., it is an interval). Furthermore,
in Remark 2.1, we will show that if v and v′ are not at the same distance to F then Theorem
2.1 does not hold. In our algorithm, presented in Section 5, we use the information about the
shape of V(v) in order to propagate approximate shortest paths in D and it turns out that
we need to only consider the sites that are restricted to be within a half-space of F and at
the same distance to F . But, as we will see, this case in itself is mathematically challenging
and provides valuable insights into the combinatorial structure of these diagrams.

Theorem 2.1 The Voronoi cell V(v, v′, ℓ;C) is an interval on ℓ – possibly empty, finite or
infinite.

Proof: First, consider the case when C = 0. We denote the set of points x in F+ such
that c(v,x) = c(v′,x) by B(v, v′) and observe that it is a half-plane perpendicular to F .
Therefore, the set of points x on ℓ for which c(v, x) = c(v′, x) is either a single point, the
whole line ℓ, or empty. Correspondingly, the Voronoi cell V(v, v′, ℓ; 0) is either a half-line,
empty, or the whole line ℓ and the theorem holds for C = 0.

So, we assume that C > 0. We consider the equation c(v′, x) − c(v, x) = C and claim
that it cannot have more than two solutions. Before we prove that claim (Claim 2.1 below),
we argue that it implies the theorem.

Assume that the equation c(v′, x)− c(v, x) = C has at most two solutions. If it does not
have any or has just one solution, then the theorem follows straightforwardly. In the case
where it has exactly two solutions, the cell V(v, v′, ℓ;C) has to be either a finite interval on ℓ,
or a complement of a finite interval on ℓ. From the definition of the Voronoi cell V(v, v′, ℓ;C)
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−→e 1

α(x0)

α′(x0)

F

−→e 1

−→e 1

α′κ(x0)

ακ(x0)

a′(x0)

ℓ

a(x0)

v

v′

x0

Figure 4: If the function g(x) has a local extremum at the point x0 then the angles α(x0)
and α′(x0) must be equal.

and C > 0 it follows that V(v, v′, ℓ;C) ⊂ V(v, v′, ℓ; 0). We know that V(v, v′, ℓ; 0) is either
empty, a half-line, or the whole line. If it is either empty or a half-line then V(v, v′, ℓ;C)
must be either empty or a finite interval and the theorem holds.

It remains to consider the case where V(v, v′, ℓ; 0) is the whole line ℓ. We argue that
V(v, v′, ℓ;C) can not be a complement to a finite interval. We have V(v, v′, ℓ; 0) = ℓ and
therefore the line ℓ must be parallel to the half-plane B(v, v′). Furthermore, the plane
containing B(v, v′) is a perpendicular bisector of the segment (v, v′) and thus the point v′

must have coordinates (0, y′, z−) (Figure 2). In this setting, using Lemma 2.1(e), we observe
that c(v, x) and c(v′, x) have same asymptotes at infinity and thus limx→∞(c(v′, x)−c(v, x)) =
0. Therefore, the cell V(v, v′, ℓ;C) must be finite. The theorem follows. ✷

Next we establish the validity of the claim used in the proof of Theorem 2.1.

Claim 2.1 The equation c(v′, x)− c(v, x) = C has at most two solutions.

We will prove the claim by showing that the function g(x) = c(v′, x)− c(v, x) is unimodal,
i.e., it has at most one local extremum. We establish this property in two steps. First, we
prove a characterization property of a local extremum of g (Proposition 2.1). Then, we show
that there may be no more than one point possessing that property.

We focus our discussion on the case w− 6= w+, since the other case is either simpler or
can be treated analogously. We denote by a(x) and a′(x) the bending points defining the
shortest paths from v and v′ to x, respectively. We assume that ℓ is oriented and denote
by −→e1 the positive direction unit vector on ℓ. Furthermore, let α(x) and α′(x) be the angles

between vectors
−−−→
va(x),

−−−−→
v′a′(x) and −→e1 , respectively (see Figure 4).

These angles are completely defined by the angles ϕ and θ defining the corresponding
shortest paths at the bending points a(x) and a′(x). Precisely, we have cosα = sinϕ cos θ.
Next, we prove that the angles α(x0) and α′(x0) must be equal at any local extremum x0.

Proposition 2.1 If x0 is a local extremum of the function g, then α(x0) = α′(x0).
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ℓ
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2)
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1)
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2)
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Figure 5: Illustration of the proof of inequality (5).

Proof: The proof is by contradiction. Let us assume that α(x0) 6= α′(x0). We denote by

ακ(x0) the angle between vectors
−−−−→
a(x0)x0 and

−→e1 . Similarly, α′
κ(x0) denotes the angle between

vectors
−−−−−→
a′(x0)x0 and −→e1 (Figure 4). The relation cosα = cos θ sinϕ and Snell’s law readily

imply that κ cosακ(x0) = cosα(x0) and κ cosα′
κ(x0) = cosα′(x0), where κ = w+/w−. Thus,

we have that ακ(x0) 6= α′
κ(x0). Without loss of generality, we assume that ακ(x0) < α′

κ(x0).
Under these assumptions, we show the existence of two points on x1 and x2 on ℓ, such that:

x1 < x0 < x2, g(x1) = g(x2), and |a(x2)x2|+ |a′(x1)x1| > |a(x2)x1|+ |a′(x1)x2|. (4)

By the assumption that x0 is a local extremum of g, it follows that, for any positive real
number δ > 0 inside the interval (x0 − δ, x0 + δ), there are reals xδ

1 and xδ
2, such that

x0 − δ < xδ
1 < x0 < xδ

2 < x0 + δ and g(xδ
1) = g(xδ

2).

On the other hand, if δ converges to zero, then a(xδ
2) converges to a(x0), and a′(xδ

1) converges
to a′(x0). Therefore, the inequality ακ(x0) < α′

κ(x0) implies that for a small enough δ0, the
inequalities

ακ(x
δ0
1 ) < α′

κ(x
δ0
1 ) and ακ(x

δ0
2 ) < α′

κ(x
δ0
2 )

hold. From these inequalities, it follows that if we make the quadrilateral a(xδ
2)a

′(xδ
1)x

δ
2x

δ
1

planar by rotation of the point a(xδ
2) around ℓ, then the obtained planar quadrilateral will

be convex (Figure 5). Therefore we have

|a(xδ0
2 )xδ0

2 |+ |a′(xδ0
1 )x

δ0
1 | > |a(xδ0

2 )x
δ0
1 |+ |a′(xδ0

1 )xδ0
2 |, (5)

which proves (4) for x1 = xδ0
1 and x2 = xδ0

2 .
Next, we estimate the sum c(v, x1) + c(v′, x2) we show that there may be no more than
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one point possessing that property. We use (4) and obtain

c(v, x1) + c(v′, x2) = c(v, x2) + c(v′, x1)

= w−|va(x2)|+ w+|a(x2)x2|+ w−|v′a′(x1)|+ w+|a′(x1)x1|
= w−(|va(x2)|+ |v′a′(x1)|) + w+(|a(x2)x2|+ |a′(x1)x1|)
> w−(|va(x2)|+ |v′a′(x1)|) + w+(|a(x2)x1|+ |a′(x1)x2|)
= w−|va(x2)|+ w+|a(x2)x1|+ w−|v′a′(x1)|+ w+|a′(x1)x2|.

On the other hand, by the definition of the weighted distance function (1), we have the
inequalities

c(v, x1) ≤ w−|va(x2)|+ w+|a(x2)x1| and c(v′, x2) ≤ w−|v′a′(x1)|+ w+|a′(x1)x2|,

that contradict the previous strict inequality. Therefore, the angles ακ(x0) and α′
κ(x0) and

consequently α(x0) and α′(x0) must be equal. ✷

Our next step is to show that there cannot be two points on ℓ satisfying Proposition 2.1.
To do that, we study in more detail the relationship between the position of points v and
x, and the angle α(x). We observe that, for any fixed y (the y-coordinate of v), there is a
one-to-one correspondence between the real numbers x and the angles α. That is, for a fixed
v, there is a one-to-one correspondence between the points x on ℓ and the angle between the
shortest path π̄(v,x) and the positive direction on ℓ. Hence, we may consider and study the
well defined function x = x(y, α). We prove the following:

Proposition 2.2 The second mixed derivative of the function x = x(y, α) exists and is
negative, i.e., xyα < 0.

Let us first show that Proposition 2.2 implies Claim 2.1.

Proof of Claim 2.1: We assume that Proposition 2.2 holds and will show that the function
g(x) has at most one local extremum. Recall that the point v has coordinates (0, y, z−) and
let us denote the coordinates of the point v′ by (x′, y′, z−).

We first consider the case where y = y′. In this case, we observe that α′(x) = α(x+ x′).
In addition, the function α(x) is strictly monotone and, therefore, for any x, the angels α(x)
and α′(x) are different. From Proposition 2.1 it follows that in this case the function g(x)
has no local extremum.

Next, we consider the case y 6= y′. We assume, for the sake of contradiction, that g(x) has
two local extrema, say x1 and x2. By Proposition 2.1, α(x1) = α′(x1) and α(x2) = α′(x2).
We denote α1 = α(x1) = α′(x1) and α2 = α(x2) = α′(x2). Then, the difference x2 − x1 can
be represented, using the function x(y, α), in two ways

x2 − x1 =

∫ α2

α1

xα(y, α) dα and x2 − x1 =

∫ α2

α1

xα(y
′, α) dα. (6)

Subtracting the last two equalities, we get

0 =

∫ α2

α1

xα(y, α) dα−
∫ α2

α1

xα(y
′, α) dα =

∫ y

y′

∫ α2

α1

xyα(y, α) dα dy. (7)
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The integral on the right side is negative since by Proposition 2.2, the derivative xyα is
negative, α1 6= α2, and y 6= y′. Hence, we have a contradiction and Claim 2.1 follows. ✷

The proof of Proposition 2.2 is rather long and uses elaborate mathematical techniques
and manipulations. On the other hand, the rest of the paper is independent of the details
in that proof. So, we present the full proof for the interested readers in Appendix A.1.

Corollary 2.1 Consider a plane H in F+ parallel to F and two points v and v′ in F−

lying at the same distance from F . For any non-negative constant C, the Voronoi cell
V(v, v′,H;C) = {x ∈ H : c(v, x) + C < c(v′, x)} is convex.

What can we say about the Voronoi cell of v in F+? The above corollary implies that the
intersection between the Voronoi cell and any plane, parallel to F , is convex. This, as such,
is not sufficient to conclude that the cell is convex. We close this section with the following
conjecture.

Conjecture 2.1 In the above setting, the Voronoi cell of v in F+, V(v, v′, F+;C) = {x ∈
F+ : c(v, x) + C < c(v′, x)}, is convex.

Remark 2.1 Examples showing that equal distance of the points v and v′ from the bending
plane F is a necessary condition for c(v′, x) − c(v, x) to be unimodal in Theorem 2.1 is not
difficult to construct. In fact, if we take arbitrary points v and v′ in F− at different distances
from F , it is very likely that c(v′, x)−c(v, x) will have more than one local extrema and hence,
for a proper choice of C, the equation c(v′, x)−c(v, x) = C will have more than two solutions.
Such examples can be constructed by choosing arbitrary points v in F− and x1, x2 on ℓ and
then computing a point v′ ∈ F− so that α(v, xi) = α(v′, xi), for i = 1, 2, where α’s are the
angles between the line ℓ and the shortest paths coming from v and v′, respectively. As a
result c(v′, x)− c(v, x) will have local extrema at x1 and x2.

3 Discretization of D
In this section, we describe the definition of a carefully chosen set of additional points placed
in D, called Steiner points. These Steiner points collectively form a discretization of D,
which is later used to approximate geodesic paths in D. Steiner points are placed on the
edges of D and on the bisectors of the dihedral angles of the tetrahedra in D. While it
may seem more natural to place the Steiner points on the faces of the tetrahedra, placing
them on the bisectors proves to be more efficient, leading to a speed up of approximately
ε−1 compared to the alternate placement. Recall that ε is an approximation parameter in
(0, 1). We provide a precise estimate on the number of Steiner points which depends on ε
and aspect ratios of tetrahedra of D.

3.1 Placement of Steiner points

We use the following definitions:

16



Definition 3.1
(a) For a point x ∈ D, we define D(x) to be the union of the tetrahedra incident to x. We
denote by ∂D(x) the set of faces on the boundary of D(x) that are not incident to x.

(b) We define d(x) to be the minimum Euclidean distance from x to any point on ∂D(x).

(c) For each vertex v ∈ D, we define a radius r(v) = d(v)/14.

(d) For any internal point x on an edge in D, we define a radius r(x) = d(x)/24. The radius
of an edge e ∈ D is r(e) = maxx∈e r(x).

Using radii r(v) and r(x) and our approximation parameter ε, we define “small” regions
around vertices and edges of D, called vertex and edge vicinities, respectively.

Definition 3.2
(a) The convex hull of the intersection points of the ball B(v, εr(v)) having center v and
radius εr(v) with the edges incident to v is called the vertex-vicinity of v and is denoted by
Dε(v).

(b) The convex hull of the intersections between the “spindle” ∪x∈eB(x, εr(x)) and the faces
incident to e is called the edge-vicinity of e and is denoted by Dε(e).

On each edge e = AB of D, we define a set of Steiner points as follows. Denote by AA′

and BB′ the intersections of e with vertex vicinities Dε(A) and Dε(B), respectively. Points
A′ and B′ are Steiner points. All other Steiner points on e are placed between A′ and B′.
Let Me be the point on e, such that d(Me) = maxx∈e d(x). The point Me is defined to be a
Steiner point. Next, we define a sequence of points Mi, for i = 0, 1, . . . on MeA

′, by

M0 = Me and |Mi−1Mi| = εr(Mi) for i = 1, 2, ... (8)

All such points Mi between Me and A′ are defined as Steiner points. Analogously, we define
the set of Steiner points on MeB

′. The number of Steiner points defined in this way on e is
bounded by

Ce
1

ε
log

2

ε
, where Ce <

33

sinα(e)
log

|AB|
√

r(A)r(B)

and α(e) is the minimum angle between e and the faces on ∂D(e). (All logarithms with
unspecified base are assumed to be base 2.) The total number of Steiner points placed on
the edges of D is bounded by 6Γ1

n
ε
log 2

ε
, where Γ1 is the average of the constants Ce over

all edges of D.
The remaining Steiner points lie on the bisectors of the dihedral angles of tetrahedra in

D. Steiner points in any tetrahedron T of D are defined to lie on the six bisectors of the
dihedral angles of T . Let the vertices of T be A, B, C, and D and let us consider one of
the bisectors of the dihedral angles of T , say ABP (see Figure 6(a)). Next, we describe the
placement of Steiner points in the triangle ABP .

Let the dihedral angle at AB of T be γ and let PH be the height (altitude) of ABP (see
Figure 6(b)). First, we define an infinite sequence of points P0, P1, . . . on PH by

P0 = P, |Pi−1Pi| =
√

ε/8|HPi| sin(γ/2), for i = 1, 2, . . . (9)
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Figure 6: (a) A tetrahedron ABCD and one of its bisectors ABP . (b) Placement of Steiner
points on ABP .

Then, we consider the sequence of lines Li in the plane ABP , parallel to AB, and containing
Pi, for i = 1, 2, . . . . Let the intersection points of these lines with AP and BP be Ai and
Bi, respectively. Points Ai and Bi lying outside of the vertex vicinities Dε(A) and Dε(B)
are defined to be Steiner points, respectively. The intersection points of these lines with
the boundary of the union of the edge vicinity Dε(AB) and vertex vicinities Dε(A) and
Dε(B), are defined to be Steiner points. On each of the segments AiBi, we define a set of ki
equidistantly placed Steiner points Pi,j, j = 1, . . . , ki, where

ki =

⌊ |AiBi|
|PiPi+1|

⌋

and |Pi,jPi,j+1| =
|AiBi|
ki + 1

, for j = 0, 1, . . . , ki. (10)

In the above expression, we have assumed that Pi,0 = Ai and Pi,ki+1 = Bi.

Definition 3.3 The set of Steiner points in the triangle ABP consists of
(a) all points Pi,j outside the union Dε(AB) ∪Dε(A) ∪Dε(B),
(b) the intersection points of the lines Li with the boundary of that union.

Next, we estimate the number of Steiner points placed in the triangle ABP . We denote
h = p0 = |PH| and pi = |PiH| for i = 1, 2, . . . In this notation, we have pi−1 − pi = |PiPi−1|
and |PiPi−1| = pi

√

ε/8 sin(γ/2), which implies

pi = hλi, where λ = (1 +
√

ε/8 sin(γ/2))−1. (11)

Let i1 be the smallest index such that the line Li1 is at distance smaller than εr(e) from
AB. We denote by K1 the number of Steiner points lying on lines Li, with i < i1, and by K2

the number of the remaining Steiner points in ABP . Let us estimate the number K1 first.
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The number of Steiner points on a line Li, with i < i1, is ki + 2. Using (10) and (11), we
have

ki =

⌊ |AiBi|
|PiPi+1|

⌋

=

⌊

(h− pi)|AB|
h(pi − pi+1)

⌋

=

⌊

(1− λi)|AB|
hλi(1− λ)

⌋

.

Thus, for the number K1, we obtain

K1 =

i1−1
∑

i=1

(2 + ki) ≤ 2(i1 − 1) +
|AB|

h(1− λ)

i1−1
∑

i=1

1− λi

λi
(12)

= 2(i1 − 1) +
|AB|

h(1− λ)

(

1− λi1

(1− λ)λi1−1
− i1

)

≤ 2(i1 − 1) +
|AB|

h(1− λ)2
1− λi1−1

λi1−1
.

From the definition of i1 and (11), we have hλi1 < εr(e) ≤ hλi1−1. Therefore,

i1 − 1 =

⌊

logλ
εr(e)

h

⌋

. (13)

From (12) and (13), we obtain

K1 <
|AB|

εr(e)(1− λ)2
+ 2 logλ−1

h

εr(e)
. (14)

Next, we estimate K2, that is the number of Steiner points lying on segments AiBi with
i ≥ i1. By our definition, on the segment Ai1Bi1 there is a point M1, such that the triangle
ABM1 lies entirely inside the edge vicinity. LetM ′

2 be the intersection point of the boundaries
of the edge vicinity Dε(AB) and the vertex vicinity Dε(A) that lies in the triangle ABP .
Similarly, let M ′′

2 be the intersection point of the boundaries of the edge vicinity Dε(AB),
the vertex vicinity Dε(B), and the triangle ABP . Furthermore, let i′2 be the smallest index
such that the segment Ai′2

Bi′2
is closer to AB than M ′

2 and similarly, let i′′2 be the smallest
index so that the segment Ai′′2

Bi′′2
is closer to AB than M ′′

2 . All Steiner points on segments
AiBi, with i ≥ i1, lie in the quadrilaterals Ai1Ai′2

M ′
2M1 and Bi1Bi′′2

M ′′
2M1. We denote the

number of Steiner points in these two quadrilaterals by K ′
2 and K ′′

2 , respectively.
To estimate K ′

2, we show an upper bound on the number of Steiner points on AiBi,
i1 ≤ i < i′2 that lie inside the quadrilateral Ai1Ai′2

M ′
2M1. Namely, if we denote this number

by k′
i and by Mi the intersection point between AiBi and AM1, we have,

k′
i ≤ 2 +

|AiMi|
pi − pi+1

= 2 +
|Ai1M1|pi

pi1(pi − pi+1)
= 2 +

|Ai1M1|
hλi1(1− λ)

.

Thus, the number of Steiner points inside the quadrilateral Ai1Ai′2
M ′

2M1 is bounded by

K ′
2 ≤ (i′2 − i1)(2 +

|Ai1
M1|

hλi1 (1−λ)
). Analogously, for the number of Steiner points inside the

quadrilateral Bi1Bi′′2
M ′′

2M1, we obtain K ′′
2 ≤ (i′′2 − i1)(2 +

|Bi1
M1|

hλi1(1−λ)
). We sum the estimates

on K ′
2 and K ′′

2 , use (11), (13) and obtain

K2 = K ′
2 +K ′′

2 ≤ (i′2 + i′′2 − 2i1)

(

2 +
|Ai1Bi1 |

hλi1(1− λ)

)

≤

(i′2 + i′′2 − 2i1)

(

2 +
|AB|(1− λi1)

hλi1(1− λ)

)

< (i′2 + i′′2 − 2i1)

(

2 +
|AB|

εr(e)λ(1− λ)

)

. (15)
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From the definitions of the indices i′2, i
′′
2, we easily derive that

pi′2−1 >

√
2ε2r(e)r(A)

|AMe|
cos

∠BAP

2
, pi′′2−1 >

√
2ε2r(e)r(B)

|BMe|
cos

∠PBA

2
,

where Me is the point on AB where the radius r(e) is achieved. These inequalities and (11)
imply

i′2 ≤ 1 + logλ−1

h|AMe|√
2ε2r(e)r(A) cos ∠BAP

2

and i′′2 ≤ 1 + logλ−1

h|MeB|√
2ε2r(e)r(B) cos ∠PBA

2

.

Then, we use (13) and obtain

i′2 + i′′2 − 2i1 ≤ 2 + 2 logλ−1

h|AB|
ε2r(e)

√

r(A)r(B)
− 2 logλ−1

h

εr(e)
=

2 + 2 logλ−1

|AB|
ε
√

r(A)r(B)
= 2 logλ−1

|AB|
ελ
√

r(A)r(B)
. (16)

Combining (14), (15) and (16), we obtain

K1 +K2 ≤ 2
|AB|

εr(e)λ(1− λ)
logλ−1

|AB|
ελ
√

r(A)r(B)
+

|AB|
εr(e)(1− λ)2

(17)

+ 2 logλ−1

h

εr(e)
+ 4 logλ−1

|AB|
ελ
√

r(A)r(B)
.

From the last equation, we easily derive that

K1 +K2 = CABP (T )
1

ε2
log

2

ε
,

where the constant CABP (T ) depends on the geometry of the tetrahedron T and is bounded
by (see Appendix A.2 for details)

CABP (T ) ≤ 23
|AB|

r(e) sin2(γ/2)
log

4|AB|2h
r(e)r(A)r(B)

. (18)

Our discussion is summarized in the following lemma.

Lemma 3.1 (a) The number of Steiner points placed on a bisector ABP of a dihe-
dral angle γ in a tetrahedron T , is bounded by CABP (T )

1
ε2
log 2

ε
, where the constant

CABP (T ) depends on the geometric features of D around the edge AB and is bounded by

23 |AB|
r(e) sin2(γ/2)

log 4|AB|2h
r(e)r(A)r(B)

.

(b) The number of segments that are parallel to AB on a bisector ABP , containing

Steiner points, is bounded by C1
ABP (T )

1√
ε
log 2

ε
, where C1

ABP (T ) <
4

sin(γ/2)
log2

4|AB|2h
r(e)r(A)r(B)

.

(c) The total number of Steiner points is bounded by C(D) n
ε2
log 2

ε
, where n is the number

of tetrahedra in D and C(D) is the average of CABP (T ) over all 6n bisectors in D.
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By placing Steiner points in this way, in the next lemma, we show that it is possible to
approximate the cell crossing segments that have their endpoints outside the vertex and the
edge vicinities.

Lemma 3.2 Let ABP be the bisector of a dihedral angle γ formed by the faces ABC and
ABD of a tetrahedron ABCD. Let x1 and x2 be points on the faces ABC and ABD,
respectively, that lie outside of the union Dε(AB) ∪ Dε(A) ∪ Dε(B). Then, there exists
a Steiner point q on ABP , such that max(∠x2x1q,∠x1x2q) ≤

√

ε
2
and |x1q| + |qx2| ≤

(1 + ε/2)|x1x2|.

Proof: Clearly, the segment x1x2 intersects the bisector triangle ABP in a point x0 lying
outside the vertex vicinities Dε(A), Dε(B), and the edge vicinity Dε(AB). Recall that
Steiner points in ABP are placed on a set of lines Li parallel to AB and passing through
the sequence of points Pi on the altitude PH of ABP . Let i0 be the maximum index such
that the line Li0 is farther away from AB than from x0. We define q to be the closest Steiner
point to x0 on the line Li0 .

D

A

P

B

C

x1

x2

q

x0γ

Figure 7: Illustrates Lemma 3.2.

First, we estimate the angles ∠x2x1q = ∠x0x1q and ∠x1x2q = ∠x0x2q. By our definition
of the Steiner points and Pythagorean theorem, it follows that

|x0q| ≤
√
5

4
hλi0

√

ε

2
sin

γ

2
, (19)

where h and λ are as defined above (see (11)). Let ρ be the radius of the smallest sphere
containing x0 and q and touching the face ABC. It is easily observed that

2ρ > (hλi0 − |x0q|
2

) sin
γ

2
>

8
√
2−
√
5

8
√
2

hλi0 sin
γ

2
. (20)
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If we denote the angle ∠x0x1q by θ1, then sin θ1 ≤ |x0q|
2ρ

, and using (19) and (20), we obtain

sin θ1 ≤
|x0q|
2ρ

<

√

ε

2
. (21)

The same estimate applies to angle ∠x0x2q. Hence, the first inequality of the lemma holds.
Next, we prove the second inequality. We denote by θ, θ1, and θ2 the angles of the triangle
qx1x2 at q, x1 and x2, respectively (Figure 7). By a trigonometric equality valid in any
triangle, we have

|x1q|+ |qx2| =
(

1 +
2 sin(θ1/2) sin(θ2/2)

sin(θ/2)

)

|x1x2|.

Thus, it suffices to prove that 2 sin(θ1/2) sin(θ2/2)
sin(θ/2)

≤ ε/2. By (21), it follows that sin θ1 and sin θ2

are smaller than
√

ε/2 and from ε ≤ 1 we have θ ≥ π/2. Therefore, we obtain

2 sin(θ1/2) sin(θ2/2)

sin(θ/2)
=

sin θ1 sin θ2
2 sin(θ/2) cos(θ1/2) cos(θ2/2)

≤ ε

4 sin(θ/2) cos(θ1/2) cos(θ2/2)

=
ε

4 sin(θ/2)(sin(θ/2) + sin(θ1/2) sin(θ2/2))
≤ ε

4 sin2(θ/2)
≤ ε

2
.✷

4 Discrete paths

In this section, we use the Steiner points introduced above for the construction of a weighted
graph Gε = (V (Gε), E(Gε)). We estimate the number of its nodes and edges and then
establish that shortest paths in D can be approximated by paths in Gε. We follow the
approach laid out in [4], but the details are substantially different, as we have to handle
both the vertex and edge vicinities, as well as the bisectors in 3-d space.

The set of nodes V (Gε) consists of the vertices of D, the Steiner points placed on the
edges of D and the Steiner points placed on the bisectors. The edges of the graph Gε join
nodes lying on neighboring bisectors as defined below. A bisector is a neighbor to itself. Two
different bisectors are neighbors if the dihedral angles they split share a common face. We
say that a pair of bisectors sharing a face f are neighbors with respect to f . (So, a single
bisector b is a neighbor to itself with respect to both faces forming the dihedral angle it
splits.)

First, we define edges joining pairs of Steiner points on neighboring bisectors. Let p
and q be nodes corresponding to Steiner points lying on neighboring bisectors b and b1,
respectively, that share a common face f . We consider the shortest weighted path between
p and q of the type {p, x, y, q}, where x and y belong to f (points x and y are not necessarily
different). We refer to this shortest path as a local shortest path between p and q crossing f
and denote it by π̂(p, q; f). Nodes p and q are joined by an edge in Gε if none of the points
x or y are on an edge of f . Such an edge is said to cross the face f . In the case where p and
q lie on the same bisector, say b, splitting an angle between faces f1 and f2, we define two
parallel edges in Gε joining p and q – one crossing f1 and another crossing f2.
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The cost of an edge (p, q) in Gε that crosses a face f is defined as the cost of the local
shortest path π̂(p, q; f) and is denoted by c(p, q; f), or simply by c(p, q) when no ambiguity
arises. Formally, we have

c(p, q) = c(p, q; f) = ‖π̂(p, q; f)‖ = min
x,y∈f

(‖px‖ + ‖xy‖+ ‖yq‖). (22)

Next, we consider a node p of Gε lying on an edge e of D. The node p can be either a
Steiner point on e or a vertex of D incident to e. It is adjacent to nodes lying in tetrahedra
in D(e). The edges of Gε incident to p are associated with pairs of neighboring bisectors as
follows. We consider a tetrahedron t in D(e), and describe edges incident to p in t. Let f1
and f2 be the two faces of t incident to e, and let b be the bisector of the dihedral angle
formed by f1 and f2. We define edges between p and nodes lying on bisectors in t that are
neighbors of b. There are four such bisectors – two with respect to f1 and two with respect
to f2. For a node q on a neighboring bisector b1 sharing, say, the face f1 with b, we consider
the local shortest path π̂(p, q; f1). By definition, π̂(p, q; f1) = {p, x, q}, where x ∈ f1. We
define an edge between p and q if and only if the point x defining the local shortest path is
in the interior of f1. The cost of the edge (p, q) equals the cost of the local shortest path
π̂(p, q; f1), i.e.,

c(p, q) = c(p, q; f1) = ‖π̂(p, q; f1)‖ = min
x∈f1

(‖px‖+ ‖xq‖).

We associate the edge (p, q) to b, b1 and f1 and say that it crosses f1. Furthermore, p is
joined to nodes on b by pair of parallel edges, provided that the corresponding local shortest
paths do not touch the edges of D – one crossing f1 and the other crossing f2.

Lemma 4.1 We have |V (Gε)| = O( n
ε2
log 1

ε
) and |E(Gε)| = O( n

ε4
log2 1

ε
).

Proof: The estimate on the number of nodes follows directly from Lemma 3.1 and the fact
that D has O(n) vertices. The number of edges in Gε can be estimated as follows. There
are O(n) faces in D and at most 21 pairs of neighbor bisectors with respect to a fixed face
in D. By Lemma 3.1(a), there are O( 1

ε4
log2 1

ε
) pairs of nodes lying on two fixed neighboring

bisectors. When combined, these three facts prove the estimate on the number of edges of
Gε. ✷

Paths in Gε are called discrete paths. The cost, c(π), of a discrete path π is the sum of
the costs of its edges. Note that if we replace each of the edges in a discrete path π by the
corresponding (at most three) segments forming the shortest path used to compute its cost
we obtain a path in D with cost c(π). Next, we state the main theorem of this section.

Theorem 4.1 Let π̃(v0, v) be a shortest path between two different vertices v0 and v in D.
There exists a discrete path π(v0, v), such that c(π(v0, v)) ≤ (1 + ε)‖π̃(v0, v)‖.

Proof: We prove the theorem by constructing a discrete path π(v0, v) whose cost is as
required. Recall that the shortest path π̃(v0, v) is a linear path consisting of cell-crossing,
face-using, and edge-using segments that satisfy Snell’s law at each bending point. We
construct the discrete path π by successive modifications of π̃ described below as steps.
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Figure 8: (a) Replacement of a cell-crossing segment s = (x1, x2) by a two-segment path
{x1, p, x2}. (b) Replacement of π̃1 by a path π̃2 joining Steiner points pi. Note that edges
(pipi+1) denote local shortest paths, rather than straight-line segments.

Step 1: In this step, we replace each of the cell-crossing segments of π̃, which satisfy the
conditions of Lemma 3.2, by a two-segment path through a Steiner point. Precisely, let
s = (x1, x2) be a cell-crossing segment in π̃ (Figure 8 (a)). Let f1 and f2 be the faces
containing x1 and x2, respectively. Let e = (A,B) be the common edge between f1 and
f2. Assume that s is outside of the union of the edge and vertex vicinities Dε(e) ∪Dε(A) ∪
Dε(B). We refer to such segment as vicinity-free4. Then, according to Lemma 3.2, there is a
Steiner point p on the bisector b splitting the dihedral angle formed by f1 and f2 such that
|x1p|+ |px2| ≤ (1 + ε/2)|x1x2|. So, in this step, each cell-crossing and vicinity-free segment
s = (x1, x2) is replaced by two-segment path {x1, p, x2}, where p is the approximating Steiner
point as described above. Clearly, after this step, we obtain a path joining v0 and v, whose
cost does not exceed (1 + ε/2)‖π̃‖. We denote this path by π̃1 (see Figure 8 (b)).

Step 2: In this step, we consider the sequence of Steiner points added as new bending points
along π̃1 in Step 1. In the case where two consecutive Steiner points are split by a single
bending point or a face-using segment on π̃1, we replace the sub-path between them by the
corresponding local shortest path. Precisely, assume that p1 and p2 are consecutive Steiner
points along π̃1 and the sub-path between them is either {p1, x̃, p2} or {p1, x̃, ỹ, p2}, x̃ and
ỹ are bending points on the face f , shared by the two neighboring tetrahedra containing p1
and p2, respectively. So, in Step 2, we replace all such sub-paths by the local shortest paths
π̂(p1, p2; f) = {p1, x, y, p2}, using (22). We denote the obtained path by π̃2 (Figure 8 (b)).
Clearly, π̃2 is a path joining v0 and v, whose cost does not exceed that of π̃1. Hence,

‖π̃2‖ ≤ ‖π̃1‖ ≤ (1 + ε/2)‖π̃‖ . (23)

In the following two steps, we identify the portions of π̃2 that lie inside the vertex and
edge vicinities and replace them with discrete paths using the corresponding vertices and
edges.

4Note that such a segment still can have an end-point in a vertex or edge-vicinity related to other vertices
or edges incident to f1 and f2.
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Step 3: Follow π̃2 from v0 to v and let a0 be the last bending point on π̃2 that lies inside the
vertex vicinity Dε(v0). Next, let b1 be the first bending point after a0 that is in the vertex
vicinity, say Dε(v1). Likewise, let a1 be the last bending point in Dε(v1). Continuing in this
way, we define a sequence of, say k+1 for some k ≥ 1, different vertices v0, v1, . . . , vk = v and
a sequence of bending points a0, b1, a1, . . . , ak−1, bk on π̃2, such that for i = 0, . . . , k, points
bi, ai are in Dε(vi) (we assume b0 = v0, ak = v). Furthermore, by our definition, portions of
π̃2 between ai and bi+1 do not intersect any vertex vicinities. We partition π̃2 into portions

π̃2(v0, a0), π̃2(a0, b1), π̃2(b1, a1), . . . , π̃2(bk, v). (24)

The portions π̃2(ai, bi+1), for i = 0, . . . , k−1, are called the between-vertex-vicinities portions,
while the portions π̃2(bi, ai), for i = 0, . . . , k, are called the vertex-vicinity portions.

We define path π̃3 by replacing each of the vertex-vicinities portions by a two segment
path trough the corresponding vertex and show that the cost of π̃3 is bounded by (1 +
ε/6)‖π̃2‖. Consider a between-vertex-vicinities portion π̃2(ai, bi+1) for some 0 ≤ i < k − 1.
If this portion consists of a single segment (ai, bi+1), then the vertices vi and vi+1 must be
adjacent in D and we define π̃3(vi, vi+1) to be the segment (vi, vi+1). The length of (vi, vi+1)
is estimated by using the triangle inequality and the definition of the vertex-vicinities as
follows:

|vivi+1| ≤ |viai|+ |aibi+1|+ |bi+1vi+1| ≤ |aibi+1|+ ε(r(vi) + r(vi+1)) ≤
|aibi+1|+

ε

14
(d(vi) + d(vi+1)) ≤ |aibi+1|+

ε

7
|vivi+1|. (25)

To estimate the cost of the segment (vi, vi+1), we observe that (ai, bi+1) lies inside a tetrahe-
dron incident to (vi, vi+1). Thus, the weight of (vi, vi+1) is at most the weight of (ai, bi+1).
This observation and (25) readily imply

‖π̃3(vi, vi+1)‖ = ‖vivi+1‖ ≤ (1 +
ε

6
)‖aibi+1‖ = (1 +

ε

6
)‖π̃2(ai, bi+1)‖. (26)

In the general case, where π̃2(ai, bi+1) contains at least two segments, we follow the bending
points along π̃2(ai, bi+1) and define X to be the last bending point on the boundary ∂D(vi)
(see Definition 3.1). If the path π̃2(ai, bi+1) lies entirely in D(vi), then we set X = bi+1.
Thus, the bending points on the path π̃2 between ai and X lie in the tetrahedra incident
to vi. Let ẇi be the minimum weight among the segments of the path π̃2(ai, X) and let x
be the first bending point after ai incident to a segment, whose weight is ẇi. Analogously,
define the bending points Y and y, by following the bending points of the backward path
π̃2(bi+1, ai) from bi+1. Note that x precedes y on the path π̃2(ai, bi+1). We define the path
π̃3(vi, vi+1) as the concatenation of the segments (vi, x), (y, vi+1) and the portion π̃2(x, y),
i.e.,

π̃3(vi, vi+1) = {(vi, x), π̃2(x, y), (y, vi+1)}.
Next, we estimate the cost of π̃3(vi, vi+1). First, we observe that the weight of the segment
(vi, x) cannot exceed ẇi. Then, we use the triangle inequality and the fact that ai is inside
the vertex vicinity Dε(vi), obtaining

‖vix‖ ≤ ẇi|viai|+ ẇi|π̃2(ai, x)| ≤ ẇi|viai|+ ‖π̃2(ai, x)‖ ≤
ẇiεr(vi) + ‖π̃2(ai, x)‖ ≤ ẇi

ε

14
d(vi) + ‖π̃2(ai, x)‖.

25



Analogously, for the cost of the segment (y, vi+1), we have

‖yvi+1‖ ≤ ẇi+1
ε

14
d(vi+1) + ‖π̃2(y, bi+1)‖.

Using these estimates, and the way we defined the path π̃3(vi, vi+1), the weights ẇi, ẇi+1,
the distances d(vi), d(vi+1), and the points X , Y , we obtain

‖π̃3(vi, vi+1‖ ≤ ‖π̃2(ai, bi+1)‖+
ε

14
(ẇid(vi) + ẇi+1d(vi+1)) ≤ (27)

‖π̃2(ai, bi+1)‖+
ε

14
(‖π̃3(vi, X)‖+ ‖π̃3(Y, vi+1)‖) ≤ ‖π̃2(ai, bi+1)‖+

ε

7
(‖π̃3(vi, vi+1)‖,

which implies the estimate (26) in the general case. Applying the above construction to each
pair of consecutive vertices in the sequence v0, v1, . . . , vk = v, we obtain a linear path

π̃3(v0, v) = {π̃3(v0, v1), π̃3(v1, v2), . . . , π̃3(vk−1, v)},

that has no bending points inside vertex vicinities except for the vertices v0, v1, . . . , vk = v.
We estimate the cost of this path by summing up (26), for i = 0, . . . , k − 1, and obtain

‖π̃3(v0, v)‖ ≤ (1 +
ε

6
)

k−1
∑

i=0

‖π̃2(ai, bi+1)‖ ≤ (1 +
ε

6
)‖π̃2(v0, v)‖. (28)

Observe that the path π̃3 constructed above may contain self intersections (e.g., if one and
the same vertex vicinity is visited twice by π̃2). It is also possible that π̃3 may contain
consecutive face-using segments. Hence, at the end of Step 3, we traverse the obtained path
and compress it. That is, we remove the loops in case of self intersections. We replace the
consecutive face-using segments (which obviously lie in the same face) by the single face-
using segment joining their free end-points. We denote the compressed path again by π̃3.
Clearly, compressing reduces the cost of the path and hence the estimate (28) remains true
for π̃3.

Next, in Step 4, using a similar approach as above, we further partition each vertex-
vicinity-portion π̃3(vi, vi+1) into between-edge-vicinities portions and edge-vicinity portions.
Then, we replace each edge-vicinity portion by an edge-using segment plus 2 additional
segments and estimate the cost of the resulting path π̃4.

Step 4: First we define analogues of vertex and between-vertex vicinities for edges. Let
(vi, a) be the first segment of the path π̃3(vi, vi+1). If a is not inside an edge-vicinity,
we define ai,0 = vi. Otherwise, if a is inside an edge-vicinity, say Dε(e0), and let a′

be the first bending point on the path π̃3(vi, vi+1) after vi lying on ∂D(e0), then we de-
fine ai,0 to be the last bending point on π̃3(vi, a

′) that is inside Dε(e0). Next, let bi,1
be the first bending point on π̃3(ai,0, vi+1) that is inside an edge-vicinity, say Dε(e1) and
let b′ be the first bending point on π̃3(bi,1, vi+1) that is on ∂D(e1). We define ai,1 as
the last bending point on π̃3(bi,1, b

′) that is in the same edge vicinity as bi,1. Assume
that, following this approach, the sequence of bending points ai,0, bi,1, ai,1, . . . , ai,ki−1, bi,ki
has been defined. They partition the portion π̃3(vi, vi+1) into sub-portions π̃3(vi, vi+1) =
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Figure 9: Replacement of subpath π̃3(bi,j, ai,j) by the edge-using segment (qi,jpi,j).

{π̃3(vi, ai,0), . . . , π̃3(ai,j−1, bi,j), π̃3(bi,j , ai,j), . . . , π̃3(bi,ki, vi+1)}. Portions between ai,j and
bi,j+1, for j = 0, . . . , ki − 1, are called the between-edge-vicinity portions. Portions between
bi,j and ai,j , for j = 0, . . . , ki, are called the edge-vicinity portions (bi,0 = vi and ai,ki = vi+1).

According to our construction, the bending points ai,0, bi,1, ai,1, . . . , ai,ki−1, bi,ki, defining
the above partition lie inside edge vicinities. Moreover, consecutive points bi,j and ai,j, for
j = 0, . . . , ki, are in one and the same edge-vicinity Dε(ej).

For j = 0, . . . , ki, let b′i,j and a′i,j be the orthogonal projections of the points bi,j and
ai,j onto the edge ej , respectively (Figure 9). Let pi,j and qi,j be the Steiner points on ej
defining the largest sub-interval of the interval (a′i,j, b

′
i,j) on ej and assume that pi,j is between

a′i,j and qi,j . (In the case where the interval (a′i,j, b
′
i,j) contains no Steiner points, we define

pi,j = qi,j to be the closest Steiner point to a′i,j on ej .) In π̃4, the edge-using segment (qi,jpi,j)
will replace in π̃3 the subpath π̃3(bi,j , ai,j). Let us estimate the resulting error. From the
definition of the edge vicinity Dε(ej), the Steiner points on ej , and the radii r(pi,j) and r(qi,j),
it is easy to derive that

|pi,jai,j| ≤
3

2
εr(pi,j) and |bi,jqi,j | ≤

3

2
εr(qi,j). (29)

Furthermore, by our construction and the fact that (qi,j, pi,j) is an edge-using segment, it
follows that

‖qi,jpi,j‖ ≤ ‖π̃3(bi,j , ai,j)‖. (30)

Next, we modify between-edge-vicinities portions π̃3(ai,j , bi,j+1), into paths π̃4(pi,j, qi,j+1),
joining Steiner points pi,j and qi,j+1, and not intersecting any vertex or edge vicinities. We
apply a construction analogous to the one used in Step 3 to define the paths π̃3(vi, vi+1).

We fix j and consider the between-edge-vicinities portion π̃3(ai,j , bi,j+1). We first consider
the special case where π̃3(ai,j, bi,j+1) is the segment (ai,j, bi,j+1). In this case, we observe that
ej and ej+1 must be edges of the tetrahedron containing the segment (ai,j, bi,j+1) and define
π̃4(pi,j, qi,j+1) = (pi,j , qi,j+1). We estimate the length of this segment using the triangle
inequality, the estimates (29) and Definition 3.1 as follows

|pi,jqi,j+1| ≤ |pi,jai,j|+ |ai,jbi,j+1|+ |bi,j+1qi,j+1| ≤
3ε

2
(r(pi,j) + r(qi,j+1)) + |ai,jbi,j+1| ≤

ε

16
(d(pi,j) + d(qi,j+1)) + |ai,jbi,j+1| ≤

ε

8
|pi,jqi,j+1|+ |ai,jbi,j+1|.

Using this estimate and the observation that the weight of the segment (pi,j, qi,j+1) cannot
exceed the weight of (ai,j, bi,j+1), we obtain

‖π̃4(pi,j, qi,j+1)‖ = ‖pi,jqi,j+1‖ ≤ (1 +
ε

7
)‖ai,jbi,j+1‖ = (1 +

ε

7
)‖π̃3(ai,j, bi,j+1)‖. (31)
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Next, we consider the general case, where ‖π̃3(ai,j, bi,j+1)‖ consists of at least two seg-
ments. Let X be the first bending point after ai,j that is on the boundary ∂D(ej). If the
path π̃3(ai,j, bi,j+1) is entirely inside D(ej), then we set X = bi,j+1. Furthermore, let ẇ′

j be
the minimum weight among the segments in π̃3(ai,j, X), and let x be the first bending point
after ai,j that is an end-point of a segment whose weight is ẇ′

j. We define the weight ẇ′
j+1,

and the bending points Y , and y, analogously with respect to bi,j+1 and the edge vicinity
Dε(ej+1). It follows that the point x precedes y along π̃3(ai,j , bi,j+1). We define the portion
of the path π̃4 joining pi,j and qi,j+1 by π̃4(pi,j, qi,j+1) = {(pi,j, x), π̃3(x, y), (y, qi,j+1)} and
estimate its cost. Let us first estimate the cost of the segment (pi,j, x). We observe that
‖pi,jx‖ ≤ ẇ′

j |pi,jx|, that |pi,j, x| ≤ |pi,jai,j | + |π̃3(ai,j , x)| (by triangle inequality), and that
the segments on the path π̃3(ai,j, x) have weight greater than or equal to ẇ′

j . Using these
observations, (29), and Definition 3.1, we obtain

‖pi,jx‖ ≤ ẇ′
j|pi,jai,j|+ ẇ′

j |π̃3(ai,j, x)| ≤ ẇ′
j|pi,jai,j|+ ‖π̃3(ai,j, x)‖ ≤

3ε

2
ẇ′

jr(pi,j) + ‖π̃3(ai,j, x)‖ =
ε

16
ẇ′

jd(pi,j) + ‖π̃3(ai,j, x)‖. (32)

Analogously, we have

‖yqi,j+1‖ ≤
ε

16
ẇ′

j+1d(qi,j+1) + ‖π̃3(y, bi,j+1)‖. (33)

Using the definition of the path π̃4(pi,j, qi,j+1), the estimates (32) and (33), and the definition
of the distances d(pi,j) and d(qi,j+1), the weights ẇ′

j and ẇ′
j+1, and the points X and Y , we

obtain

‖π̃4(pi,j, qi,j+1)‖ = ‖π̃3(ai,j, bi,j+1)‖+
ε

16
(ẇ′

jd(pi,j) + ẇ′
j+1d(qi,j+1)) (34)

≤ ‖π̃3(ai,j , bi,j+1)‖+
ε

16
(‖π̃3(pi,j, X)‖+ ‖π̃3(Y, qi,j+1)‖)

≤ ‖π̃3(ai,j , bi,j+1)‖+
ε

8
‖π̃3(pi,j, qi,j+1)‖,

which implies estimate (31), in the general case. Finally, combining segments (qi,j, pi,j) and
paths π̃4(pi,j, qi,j+1), for j = 0, . . . , ki, we construct a path

π̃4(vi, vi+1) = {(vi, pi,0), π̃4(pi,0, qi,1), (qi,1, pi,1), π̃4(pi,1, qi,2), . . . , π̃4(pi,ki−1, qi,ki), (qi,ki, vi+1)}.

This path has no bending points in any of the edge or vertex vicinities. Its cost can be
bounded using (30) and (31) as follows

‖π̃4(vi, vi+1)‖ =

ki
∑

j=0

‖qi,j, pi,j‖+
ki−1
∑

j=0

‖π̃4(pi,j, qi,j+1)‖ ≤ (35)

ki
∑

j=0

‖π̃3(bi,j, ai,j)‖+
ki−1
∑

j=0

(1 +
ε

7
)‖π̃3(ai,j , bi,j+1)‖ ≤ (1 +

ε

7
)‖π̃3(vi, vi+1)‖,

where we assume vi = bi,0 = qi,0 and vi+1 = ai,ki = pi,ki.
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The paths π̃4(vi, vi+1), for i = 0, . . . k − 1, form a linear path π̃4(v0, v), whose cost is
estimated using (35), (26), and (23) by

π̃4(v0, v) ≤
k−1
∑

i=0

(1+
ε

7
)‖π̃3(vi, vi+1)‖ = (1+

ε

7
)‖π̃3(v0, v)‖ ≤ (1+

ε

3
)‖π̃2(v0, v)‖ ≤ (1+ε)‖π̃(v0, v)‖.

(36)
As in Step 3, it is possible for π̃4 to contain self-intersections and consecutive face-using
segments. Hence, we traverse π̃4 and compress it by removing loops and by replacing con-
secutive face-using segments. The obtained path is denoted again by π̃4, and estimate (36)
is valid.

The bending points defining π̃4 can be partitioned into two groups. The first group
consists of bending points corresponding to nodes of the graph Gε, i.e., Steiner points on
bisectors, Steiner points on edges, and vertices of D. The second group consists of the
remaining bending points of π̃4, which are bending points inside the faces of D. We complete
the proof of the theorem by showing that the sequence of the nodes in the first group defines
a discrete path π(v0, v) whose cost c(π(v0, v)) ≤ ‖π̃4(v0, v)‖. It suffices to show that any two
consecutive nodes (bending points in the first group) along the path π̃4 are adjacent in the
approximation graph Gε.

To show this, we review closely the structure of the path π̃4. In Step 3, portions of π̃2

related to vertex vicinities have been replaced by two segment portions through-vertices of
D. Furthermore, we observe that the segments (vi, x) created in Step 3 are either a face-
using segments or join vi to a Steiner point on a bisector. The same applies to segments
(y, vi+1). Similarly, in Step 4, portions related to edge-vicinities have been replaced by three
segment portions visiting corresponding edges. Again segments (pi,j, x) are either face-using
segments or join pi,j to a node on a bisector, that is a neighbor of the bisector incident to the
edge containing pi,j. The same applies to the segments (y, qi,j+1). In summary, the segments
created in Steps 3 and 4 are of one of the following two types:

1. A face-using segment with one of its endpoint being a (node) vertex of D or a Steiner
point on an edge of D.

2. A segment joining two nodes, at least one of them being a Steiner point on an edge of
D or a vertex of D.

The remaining segments in π̃4 are cell-crossing and face-using segments, whose endpoints are
outside any vertex or edge vicinity. All the cell-crossing segments in π̃4 were created during
Steps 1 and 2. Hence, one of their endpoints is a (node) Steiner point on a bisector of a
tetrahedron. Finally, due to the compressing, there are no consecutive face-using segments
in π̃4.

Now, let p and q be two consecutive nodes along the path π̃4. We show that p and q
are adjacent in Gε. We consider, first, the case where at least one of the nodes, say p, is a
vertex of D. Let x be the bending point following p along the path π̃4. By the definition
of bending points adjacent to the vertices (in Step 3), we know that (p, x) is a face-using
segment followed by a cell-crossing segment (x, x1), joining x to a (node) Steiner point on a
bisector lying in one of the tetrahedra incident to the face that contains (p, x). So, q = x1
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and q is inside a tetrahedron incident to p. Thus, p and q are adjacent in Gε. The case where
at least one of the nodes p or q is a Steiner point on an edge of D can be treated analogously.

Assume now that both p and q are Steiner points on bisectors. Let x and x1 be the
bending points following p along π̃4. The point x has to be a bending point on a face of
the tetrahedron containing p. The segment (x, x1) is either a cell-crossing or a face-using
segment. In the first case, q must coincide with x1 and is adjacent to p in Gε, since it lies in
a tetrahedron that is a neighbor to the one containing p. In the second case, where (x, x1)
is a face-using segment, we consider the bending point x2 that follows x1 along the path π̃4.
The segment (x1, x2) must be a cell-crossing segment. Thus, in this case, q = x2 is adjacent
to p, because the tetrahedra containing p and q are neighbors.

We have shown that any pair p and q of consecutive nodes on the path π̃4 are adjacent in
Gε. Hence, we define a discrete path π(v0, v) to be the path in Gε following the sequence of
nodes along π̃4. Finally, we observe that the sub-paths of π̃4(p, q) joining pairs of consecutive
nodes stay in the union of the tetrahedra containing these nodes and cross faces shared by
the bisectors containing them. Hence, by the definition of the cost of the edges in Gε, we
have c(p, q) ≤ ‖π̃4(p, q)‖. Summing these estimates, for all edges of π(v0, v), and using (36),
we obtain, c(π(v0, v)) ≤ ‖π̃4(v0, v)‖ ≤ (1 + ε)‖π̃(v0, v)‖. ✷

5 An algorithm for computing SSSP in Gε

In this section we present our algorithm for solving the Single Source Shortest Paths (SSSP)
problem in the approximation graph Gε = (V (Gε), E(Gε)). Straightforwardly, one can apply
Dijkstra’s algorithm, which runs in O(|E(Gε)| + |V (Gε)| log |V (Gε)|) time. By Lemma 4.1
we have |V (Gε)| = O( n

ε2
log 1

ε
) and |E(Gε)| = O( n

ε4
log2 1

ε
). Thus, the SSSP problem in Gε

can be solved in O( n
ε4
log n

ε
log 1

ε
) time.

In the remainder of this section, we demonstrate how geometric properties of our model
can be used to obtain a more efficient algorithm for solving the SSSP problem. More precisely,
we present an algorithm that runs in O(|Vε|(log |Vε|+ 1√

ε
log3 1

ε
)) = O( n

ε2.5
log n

ε
log3 1

ε
) time.

Informally, the idea is to avoid consideration of large portions of the edges of the graph Gε

when searching for shortest paths. We achieve that by applying the strategy proposed first
in [25, 26] and developed further in [4] and by using the properties of the weighted distance
function and additive Voronoi diagrams studied in Section 2.2. We maintain a priority queue
containing candidate shortest paths. At each iteration of the algorithm, a shortest path from
the source s to some node u of Gε is found. Then, the algorithm constructs edges adjacent to
u that can be continuations of the shortest path from s to u and inserts them in the priority
queue as new candidate shortest paths. In general, one needs to consider all edges adjacent
to u as possible continuations. In our case, we divide the edges adjacent to u into O( 1√

ε
log 1

ε
)

groups related to the segments containing Steiner points in the neighboring bisectors and
demonstrate that we can consider just a constant number of edges in each group. The latter
is possible due to the structure of the Voronoi cell V(u) of the node u in the additive Voronoi
diagram related to a fixed group (see Theorem 2.1).

This section is organized as follows: In the next subsection, we describe the general
structure of the algorithm. In Subsection 5.2, we show how this strategy can be applied in
our case and present an outline of the algorithm. We provide details of the implementation
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Figure 10: The sets S, Sa, and an optimal edge e(S) = (u, v) in E(S) are illustrated. A shortest
path from s to u is illustrated by a dashed curve.

of the algorithm and analyze its complexity. Finally, at the end we establish the main result
of the paper.

5.1 General structure of the algorithm

Let G(V,E) be a directed graph with positive costs (lengths) assigned to its edges and s
be a fixed node of G, called the source. A standard greedy approach for solving the SSSP
problem works as follows: a subset, S, of nodes to which the shortest path has already been
found and a set, E(S), of edges connecting S with Sa ⊂ V \ S are maintained. The set Sa

consists of nodes not in S but adjacent to S. In each iteration, an optimal edge e(S) = (u, v)
in E(S) is selected, with source u in S and target v in Sa (see Figure 10). The target vertex
v is added to S and E(S) is updated correspondingly. An edge e = e(S) is optimal if it
minimizes the value δ(u) + c(e), where δ(u) is the distance from s to u and c(e) is the cost
of e.

Different strategies for maintaining information about E(S) and finding an optimal edge
e(S) during each iteration result in different algorithms for computing SSSP. For example,
Dijkstra’s algorithm maintains only a subset Q(S) of E(S), which, however, always contains
an optimal edge. Alternatively, as in [4], one may maintain a subset of E(S) containing
one edge per node u in S. The target node of this edge is called the representative of u
and is denoted by ρ(u). The node u itself is called predecessor of its representative. The
representative ρ(u) is defined to be the target of the minimum cost edge in the propagation
set I(u) of u, where I(u) ⊂ E(S) consists of all edges (u, v) such that δ(u) + c(u, v) <
δ(u′) + c(u′, v) for all nodes u′ ∈ S that have entered S before u. The union of propagation
sets forms a subset Q(S) of E(S) that always contains an optimal edge. Propagation sets
I(u), for u ∈ S, form a partition of Q(S). The propagation sets of the vertices in S form a
partition of E(S), which is called propagation diagram, and is denoted by I(S).

The set of representatives R ⊂ Sa can be organized in a priority queue, where the key of
the node ρ(u) in R is defined to be δ(u) + c(u, ρ(u)). Observe that the edge corresponding
to the minimum in R is an optimal edge for S. In each iteration, the minimum key node v
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in R is selected and the following three steps are carried:

Step 1. The node v is moved from R into S. Then, the propagation set I(v) is computed
and the propagation diagram I(S) is updated accordingly.

Step 2. Representative ρ(v) of v and a new representative, ρ(u), for the predecessor u of v
are computed.

Step 3. The new representatives, ρ(u) and ρ(v), are either inserted into R together with
their corresponding keys, or (if they are already in R) their keys are updated.

Clearly, this leads to a correct algorithm for solving the SSSP problem in G. The total
time for the priority queue operations 5 is O(|V | log |V |). Therefore, the efficiency of this
strategy depends on the maintenance of the propagation diagram, the complexity of the
propagation sets, and the efficient updates of the new representatives. In the next subsection,
we address these issues and provide necessary details.

5.2 Implementation details and analysis

5.2.1 Notation and algorithm outline

Our algorithm follows the general strategy as described in the previous subsection. First,
we convert Gε into a directed graph by replacing each of its edges by a pair of oppositely
oriented edges with cost equal to the cost of the original edge.

Let, as above, S be the set of the nodes to which the shortest path has already been
found and E(S) be the set of the edges joining S with Sa ⊂ V \S. We partition the edges of
Gε (and respectively E(S)) into groups so that the propagation sets and the corresponding
propagation diagrams, when restricted to a fixed group, have a simple structure and can be
updated efficiently. Then, for each node u in S, we will keep multiple representatives in R –
a constant number on the average, for each group where edges incident to u participate and
where its propagation set is non-empty. A node in Sa will have multiple predecessors – at
most as many as the number of the groups where edges incident to it participate. We will
show that the number of the groups, where edges incident to u can participate, is bounded
by O( 1√

ε
log 1

ε
) times the number of bisectors incident to u. In a fixed group, we will be

able to compute new representatives in O(log 1
ε
) time and update propagation diagrams in

O(log2 1
ε
) time.

Edges of Gε joining pairs of Steiner points on bisectors are naturally partitioned into
groups corresponding to ordered triples (b,b1, f), where b and b1 are neighboring bisectors
with respect to the face f (see Section 4 for the definitions). The edges of the initial tetra-
hedralization D are assumed to belong to the bisectors incident to them. So, the group of
edges corresponding to an ordered triple (b,b1, f) consists of all edges from a node on b to a
node on b1 that cross f . Recall that the nodes (Steiner points) on any bisector b were placed
on a set of segments parallel to the edge of D incident to b. In our discussion below, we
refer to these segments, including the edge of D, as Steiner segments. We further partition

5Note that we do not need a priority queue based on elaborated data structures such as Fibonacci heaps.
Any priority queue with logarithmic time per operation suffices.
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Figure 11: Two Steiner segments ℓ and ℓ1 lying on neighboring bisectors b = △ABP and
b1 = △ACP1 respectively, that share a face f = △ABC are illustrated. Steiner segments
on b and b1 are parallel to the shared face f . The edges joining nodes on ℓ and ℓ1 form the
group of edges corresponding to the triple (ℓ, ℓ1, f).

the group of edges associated with the triple (b,b1, f) into subgroups corresponding to pairs
of Steiner segments (ℓ, ℓ1) on b and b1, respectively, see Figure 11 (a). In this way, the
edges of Gε are partitioned into groups corresponding to ordered triples (ℓ, ℓ1, f), where ℓ
and ℓ1 are Steiner segments parallel to f on two neighboring bisectors sharing f . The group
corresponding to (ℓ, ℓ1, f) is denoted by E(ℓ, ℓ1, f) and consists of all oriented edges from a
node on ℓ to a node on ℓ1 that cross f .

A fixed bisector b has either three or six neighboring bisectors (b itself and two or five
others, respectively) with respect to each of the two faces forming the dihedral angle bisected
by b. Hence, the total number of ordered triples (b,b1, f) does not exceed 36n. By Lemma
3.1, the number of Steiner segments on any bisector is O( 1√

ε
log 1

ε
) and thus the number of

subgroups of a group corresponding to a triple (b,b1, f) is O(1
ε
log2 1

ε
). In total, the number

of groups E(ℓ, ℓ1, f) is O(n
ε
log2 1

ε
).

A node u lying on a Steiner segment ℓ will have a set of representatives for each group
E(ℓ, ℓ1, f) corresponding to a triple, where ℓ is the first element and where its propagation
set is non-empty. We denote this set by ρ(u, ℓ1, f). The set of representatives ρ(u, ℓ1, f) will
correspond to the structure of the propagation set I(u; ℓ, ℓ1, f), as we will detail in the next
subsection.

Consider an iteration of our algorithm. Let v be the node extracted from priority queue
R, containing all representatives. Let T (v) be the set of triples (ℓ, ℓ1, f) such that v lies on
ℓ. First, we need to move v from Sa to S, since the distance from v to the source s has been
found. Nodes that are targets of the edges originating from v need to be added to Sa. Then,
we need to compute representatives of v for each group of edges, where edges originating at
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v participate and where its propagation set is non-empty. Finally, we need to compute new
representatives for all nodes in the set of predecessors of v, which we denote by R−1(v). The
outline of our algorithm is as follows.

ALGORITHM: SSSP(Gε, s)
While S 6= Vε do
1. v ←− Extract min(R);
2. Insert v in S and update Sa;
3. For each triple (ℓ, ℓ1, f) ∈ T (v) do
3.1 Update the data structures related to the Propagation Diagram I(ℓ, ℓ1, f);
3.2 Find new representatives for nodes whose propagation set has changed in 3.1;
3.3 Update sets of representatives ρ(u; ℓ′, ℓ, f ′), for all u ∈ R−1(v);
3.4 Update R with respect to 3.2 and 3.3.

In the remainder of this section, we address the implementation of this algorithm and analyze
its complexity. First, we observe that the number of iterations is |Vε|. The total number of
representatives cannot exceed the number of oriented edges in Gε, which is less than |Vε|2
and so, the size of the priority queue R is bounded by |Vε|2 (later we show that it is actually

O( |Vε|√
ε
log2 1

ε
)). Therefore, a single priority queue operation takes O(log |Vε|) time and the

total time for Step 1 is O(|Vε| log |Vε|). The total time for Step 2 is O(|Vε| log 1
ε
).

In Section 5.2.2, we describe the structure and maintenance of the data structures re-
lated to the propagation diagrams I(ℓ, ℓ1, f). Computation and updates of the sets of rep-
resentatives are described in Section 5.2.3. We conclude our discussion in Section 5.2.4 by
summarizing the time complexity of the algorithm and by establishing our main result.

5.2.2 Implementation of Step 3.1

We consider a fixed triple (ℓ, ℓ1, f), where ℓ and ℓ1 are Steiner segments on neighboring
bisectors b and b1 sharing f . The propagation diagram I(ℓ, ℓ1, f), was defined as the set
consisting of the propagation sets of the active nodes on ℓ. Instead of explicitly computing
the propagation diagram, we construct and maintain a number of data structures that allow
efficient computation and updates of representatives.

Consider an iteration of our algorithm. Denote the currently active nodes on ℓ by
u1, . . . , uk, and assume that they are listed by their order of entering S. We denote this
set by S(ℓ) and assume that it is stored and maintained as a doubly linked list ordered
according to the position of the nodes on ℓ. In Step 3.1, we update the data structures
related to the propagation diagram I(ℓ, ℓ1, f). According to our definition, the propagation
set I(u) = I(u; ℓ, ℓ1, f) of a node u ∈ ℓ consists of all edges (u, v1) in E(ℓ, ℓ1, f) such that
δ(u) + c(u, v1) < δ(ui) + c(ui, v1), for i = 1, . . . , k. Clearly, the set I(u) can be viewed and
described as a subset of the set of nodes v1 on ℓ1 that satisfy the following three conditions:

C1. The nodes u and v1 are adjacent in Gε by an edge that crosses f ;

C2. δ(u) + c(u, v1) < δ(ui) + c(ui, v1), for i = 1, . . . , k;

C3. The node v1 is in Sa.

We construct and maintain separate data structures for the nodes on ℓ1 satisfying each of
these three conditions: The data structure related to C1 is called Adjacency Diagram and is
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denoted by A(ℓ, ℓ1, f). It consists of sets A(u, ℓ1), for all nodes u on ℓ, where the set A(u, ℓ1)
consists of the nodes on ℓ1 that satisfy C1. This data structure is static. The data structure
related to C2 is, in fact, a dynamic additive Voronoi diagram on ℓ1 for the active nodes on
ℓ with respect to the weighted distance function c(u, x) defined and studied in Section 2,
see (1). Finally, the nodes on ℓ1 that are in Sa are stored in a dynamic doubly-linked list
and organized in a binary search tree with respect to their position on ℓ1. We denote this
data structure by Sa(ℓ1). The lists S(ℓ) and Sa(ℓ1) are readily maintained throughout the
algorithm in logarithmic time per operation. Next, we describe in detail the construction
and maintenance of these data structures.
Adjacency Diagram: The Adjacency Diagram A(ℓ, ℓ1, f) consists of sets A(u, ℓ1), for all
nodes u on ℓ. We assume that the nodes on ℓ1 are stored in an ordered list V (ℓ1) according
to their position on that segment. For any fixed node u ∈ ℓ, the adjacency set A(u, ℓ1) will
be computed and stored as a sublist of the list V (ℓ1). We denote this sublist by Ā(u, ℓ1).

We reduce the size of Ā(u, ℓ1) by replacing each portion of consecutive nodes in them
by a pair of pointers to the first and to the last node in that portion. (Isolated nodes are
treated as portions of length one.) Hence, each sublist Ā(u, ℓ1) is an ordered list of pairs
of pointers identifying portions of consecutive nodes in the underlying list V (ℓ1). The size
of the sublists implemented in this way is proportional to the number of the consecutive
portions they contain. Next, we discuss the structure of the lists Ā(u, ℓ1) and show that
their size is bounded by a small constant.

According to our definitions (Section 4), an edge (u, u1) is present in A(u, ℓ1) if the local
shortest path π̂(u, u1; f) does not touch the boundary of f , where the path π̂(u, u1; f) was
defined in (22). We refer to intervals on ℓ1 with both of their end-points being Steiner points
as Steiner intervals. Furthermore, we say that a Steiner interval is covered by the set A(u, ℓ1)
if all Steiner points, including its end-points, are in A(u, ℓ1). Clearly, each maximal interval
covered by A(u, ℓ1) corresponds to and defines a portion of consecutive nodes on ℓ1 that are
adjacent to u. Moreover, by our definition, the list Ā(u, ℓ1) consists of the pairs of pointers
to the end-points of the maximal intervals covered by A(u, ℓ1). In the next lemma, we show
that there are at most seven maximal Steiner intervals covered by A(u, ℓ1).

Lemma 5.1 The number of the maximal intervals covered by A(u, ℓ1) is at most seven.
The corresponding ordered list Ā(u, ℓ1) can be computed in O(logK(ℓ1)) time, where K(ℓ1)
denotes the number of Steiner points on ℓ1.

Proof: Presented in Appendix 3. ✷

We assume that the nodes that are end-points of the maximal Steiner intervals covered
by the sets A(u, ℓ1), for all nodes u ∈ ℓ1, are pre-computed in a preprocessing step and stored
in the lists Ā(u, ℓ1) as discussed above. Lemma 5.1 implies that this preprocessing related to
the group (ℓ, ℓ1, f) takes O(K(ℓ) logK(ℓ1)) time, where K(ℓ) and K(ℓ1) denote the number
of the nodes on ℓ and ℓ1, respectively. Next, we discuss the Voronoi diagram data structure
related to condition C2.
Dynamic Additive Voronoi Diagram: We assumed that the currently active nodes,
u1, . . . , uk on ℓ, are listed by order of their insertion into S. So, for the distances of these
nodes to the source, we have δ(u1) ≤ · · · ≤ δ(uk). We view the distance δ(ui) as an additive
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weight assigned to the node ui, and consider the additive Voronoi diagram of u1, . . . , uk on
ℓ1 with respect to the weighted distance function, introduced and studied in Section 2 and
defined by (1). From the definition (see (1)), the weighted distance c(u, x) for a node u on
ℓ and a point x ∈ ℓ1 is given by

c(u, x) = c(u, x; f) = min
a,a1∈F

{w|ua|+ wf |aa1|+ w1|a1x|},

where F is the plane containing the face f ; w, w1 are the weights of the cells containing ℓ
and ℓ1, respectively, and wf is the weight associated to the face f . An important observation
for our discussion here is that if x is a node on ℓ1 adjacent to u, then the cost of the edge
(u, x) is c(u, x).

We denote the end-points of the segment ℓ1 by A1 and B1 and assume that it is oriented
so that A1 < B1. For i = 1, . . . , k, the Voronoi cell V(ui) is defined as the set of points on ℓ1

V(ui) = {x ∈ (A1, B1) : δ(ui) + c(ui, x) ≤ δ(uj) + c(uj, x) for j 6= i},

where ties are resolved in favor of the node that has entered S earlier. Clearly, the Voronoi
diagram V(u1, . . . , uk) is a partitioning of (A1, B1) into a set of intervals, where each interval
belongs to exactly one of the Voronoi cells. Hence, V(u1, . . . , uk) is completely described by
a set of points A1 = x0 < x1 < · · · < xm < xm+1 = B1 and an assignment between the
intervals (xj , xj+1), for j = 0, . . . , m, and the cells of the diagram.

We assume that V(u1, . . . , uk) is known and stored. We further assume that a node v on
ℓ has been extracted by the extract-min operation in Step 1 of our algorithm. In Step 3.1,
we need to add the new site v and to compute the Voronoi diagram V(u1, . . . , uk, v). Next
we show how this can be achieved in O(log2 1

ε
) time. First, the following lemma shows that

the Voronoi cell of v has a simple structure.

Lemma 5.2 Let u1, . . . , uk be the active nodes on ℓ and let v be the last node inserted in
S. Then the Voronoi cell V(v), in the Voronoi diagram V(u1, . . . , uk, v), is either empty or
consists of a single interval on ℓ1.

Proof: By our assumptions δ(ui) ≤ δ(v), for i = 1, . . . , k. The Voronoi cell V(v) can
be represented as an intersection V(v) = ∩ki=1Vi(v), where the sets Vi(v) are defined by
Vi(v) = {x ∈ ℓ1 : δ(v)− δ(ui) + c(v, x) < c(ui, x)}. By Theorem 2.1, each of Vi(v) is either
empty or is an interval on ℓ1, and thus the same is true for their intersection. ✷

Using the above lemma, we easily obtain a bound on the size of the Voronoi diagrams.

Corollary 5.1 The number of the intervals comprising the diagram V(u1, . . . , uk) does not
exceed 2k − 1.

Next, we present and analyze an efficient procedure which, given the Voronoi dia-
gram V(u1, . . . , uk) and a new node v inserted in S, determines the Voronoi diagram
V(u1, . . . , uk, v). This includes computation of the Voronoi cell V(v), update of the set
of points x1, . . . , xm describing V(u1, . . . , uk) to another set describing V(u1, . . . , uk, v) and
update of the assignment information between intervals and Voronoi cells.
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ℓ

ℓ1 = A1B1

x4 = B1A1 = x0 x1 x− x2 x+ x3

u2vu1 u3

Figure 12: The figure illustrates updates of the diagram V. The Voronoi diagram V(u1, u2, u3)
for the nodes u1, u2, and u3 is characterized by the sequence {x0 < x1 < x2 < x3 < x4}
and the assignment V(u1) = (x0, x1) ∪ (x3, x4), V(u2) = (x2, x3), V(u3) = (x1, x2). After
computation of the Voronoi cell V(v) = (x−, x+) the Voronoi diagram V(u1, u2, u3, v) is
characterized by the sequence {x0 < x1 < x− < x+ < x3 < x4} and the assignment
V(u1) = (x0, x1) ∪ (x3, x4), V(u2) = (x+, x3), V(u3) = (x1, x

−), V(v) = (x−, x+).

According to Lemma 5.2, the Voronoi cell V(v) is an interval, which we denote by (x−, x+).
Let M be any of the points x1, . . . , xm characterizing the diagram V(u1, . . . , uk). The fol-
lowing claim shows that the relative position of M with respect to the interval (x−, x+) can
be determined in constant time.

Claim 5.1 The relative position of M with respect to the interval (x−, x+) can be determined
in O(1) time.

Proof: By the definition of point M , it follows that there are two nodes ui1 and ui2 such
that δ(ui1) + c(ui1,M) = δ(ui2) + c(ui2,M). We denote the latter value by d(M) and note
that d(M) ≤ δ(ui) + c(ui,M), for i = 1, . . . , k. Then, we compute the value d(v,M) =
δ(v) + c(v,M) and compare it with d(M).

If d(v,M) < d(M), then we have M ∈ (x−, x+) and thus x− < M < x+. In the case
where d(v,M) ≥ d(M), we compute the Voronoi cell △(v) of v in the three cites diagram
V(ui1, ui2, v). By Lemma 5.2, the cell △(v) is an interval on ℓ1. Since M must be outside
△(v) and (x−, x+) ⊂ △(v), it follows that the relative position between M and (x−, x+) is
the same as the relative position between M and △(v).

The claimed time bound follows from the described procedure, which besides the constant
number of simple computations, involves a constant number of evaluations of the function
c(·, ·) and eventually solving of the equations c(ui, x)− c(v, x) = δ(v)− δ(ui), for i = i1, i2.✷

We derive the following binary search procedure, which computes the Voronoi cell V(v).
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ALGORITHM: Voronoi cell V(v)
Input: The sequence X = {A1 = x0 < x1 < · · · < xm < xm+1 = B1}.
Output: Points x− and x+ such that V(v) = (x−, x+).
A. Compute the point x− first by the following:
1. While |X| > 2 do Steps 1.1 – 1.3 below
1.1. Find the median M of the sequence X .
1.2. Determine the relative position between M and x−.
1.3 If x− < M then set X = {x0 < · · · < M} else set X = {M < · · · < xm+1}.

2. If |X| = 2 compute x− directly.
B. Compute the point x+ in the same way.

Once the cell V(v) = (x−, x+) has been computed, the update of diagram V(u1, . . . , uk)
to diagram V(u1, . . . , uk, v) can be done in a natural way. The sorted sequence of points
X(u1, . . . , uk, v) characterizing the diagram V(u1, . . . , uk, v) is obtained from the sequence
X(u1, . . . , uk) = {x0 < · · · < xm+1} by inserting the points x− and x+ at their positions
and by deleting points (if any) x− < xj−+1 < · · · < xj+−1 < x+ lying inside the interval
(x−, x+), where xj− and xj+ are the left and the right neighbors of the points x− and x+,
respectively. We need to delete each of the intervals (xj , xj+1), for j = j−, . . . , j+ − 1, from
the cell that contains it and to add intervals (xj−, x

−) and (x+, xj+) to the cells that have
contained intervals (xj− , xj−+1) and (xj+−1, xj+), respectively. Indeed, if the cell of some of
the nodes u1, . . . , uk becomes empty then this node is removed from the set of active nodes
in the group E(ℓ, ℓ1, f).

To implement all of these updates efficiently, we maintain the sequence X of points
characterizing the Voronoi diagram of the currently active nodes on ℓ in an order-statistics
tree, allowing us to report order statistics as well as insertions and deletions in O(log |X|)
time. Based on this data structure, computation of the interval (x−, x+) takes O(log2 |X|)
time, since it takes O(log |X|) iterations, and each iteration takes O(log |X|) time. The
update of the Voronoi diagram requires two insertions and j+− j−+1 deletions in X , where
insertions take O(log |X|) time and deletions are done in amortized O(1) time.

Let us estimate the time for the maintenance of the Voronoi diagram of the active nodes
in the group E(ℓ, ℓ1, f). We denoted the total number of the nodes on ℓ by K(ℓ). Each of
the nodes on ℓ becomes active once during the execution. Thus, each node on ℓ becomes
subject of the procedure Voronoi cell exactly once. According to Corollary 5.1, the sizes
of the sequences X characterizing Voronoi diagrams in the group E(ℓ, ℓ1, f) are bounded
by 2K(ℓ) + 1. Therefore, the total time spent by the procedure Voronoi cell in the group
E(ℓ, ℓ1, f) is O(K(ℓ) log2K(ℓ)). In total, there are O(K(ℓ)) insertions in the sequence X ,
and the total number of deletions, clearly, is at most the number of insertions. Hence, the
total time spent for insertions and deletions is O(K(ℓ) logK(ℓ)). Thus, the time spent for
the maintenance of the Voronoi diagram in a fixed group E(ℓ, ℓ1, f) is O(K(ℓ) log2K(ℓ)).
Next, we discuss the computation and maintenance of a data structure that combines the
adjacency diagram and the Voronoi diagram.
Propagation Diagram: As discussed above, the propagation set I(u) of an active node u
on ℓ is described completely by the set of nodes on ℓ1 satisfying conditions C1, C2, and C3.
We denote the set of nodes on ℓ1 satisfying C1 and C2 with respect to u by I ′(u). Slightly
abusing our terminology, we refer to this set again as propagation set of u. Similarly, we refer
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to the set consisting of the sets I ′(u) for all currently active nodes as propagation diagram
and denote it by I ′(u1, . . . , uk), where, as above, u1, . . . , uk are the currently active nodes on
ℓ1.

The difference between the originally defined propagation set I(u) and the set I ′(u) is
that the elements of I(u) are the edges joining u to the nodes on ℓ1 satisfying C1, C2, and
C3, whereas the elements of I ′(u) are the nodes on ℓ1 that satisfy C1 and C2, but not
necessarily C3. Indeed, the set I ′(u) is closely related to I(u) and when combined with the
list Sa(ℓ1) describes it completely. Based on this observation, we compute and maintain the
propagation diagram I ′(u1, . . . , uk) instead of the originally defined diagram.

We describe the sets I ′(ui) by specifying the maximal Steiner intervals they cover. We
implement these sets as ordered lists of pairs of pointers to the end-points of these intervals
in the underlying list V (ℓ1). The propagation sets of different active nodes do not inter-
sect, and hence, the end-points of the maximal Steiner intervals of the propagation sets
I ′(u1), . . . , I

′(uk) form a sequence, I ′ = {A1 ≤ y1 ≤ z1 ≤ · · · ≤ ym1 ≤ zm1 ≤ B1}, where
ℓ1 = (A1, B1). The points yj and zj, for j = 1, . . . , m1, are Steiner points (nodes) on ℓ1.
Any of the Steiner intervals (yj, zj) is a maximal Steiner interval covered by one of the sets
I ′(u1), . . . , I

′(uk), whereas the Steiner points inside the intervals (zj , yj+1) do not belong to
any of the sets I ′(ui). Clearly, the sequence I ′ plus the assignment of the intervals (yj, zj) to
the sets I ′(ui) covering them determine the diagram I ′(u1, . . . , uk). We implement sequence
I ′ as an ordered list of pointers to the underlying list V (ℓ1). In addition, we associate with
it a binary search tree based on the position of the Steiner points on the segment ℓ1. The
diagram I ′(u1, . . . , uk) is maintained in Step 3.1 and details are as follows.

Let, as above, v be the node extracted by the extract-min operation in Step 1 in the
current iteration of the algorithm. We assume that the diagram I ′(u1, . . . , uk) is known
– i.e., we know the sequence I ′ as well as the assignment of the intervals (yj, zj) to the
propagation sets I ′(ui). Next, we describe the update of I ′ and the assignment information
specifying I ′(u1, . . . , uk, v). By definition, I ′(v) consists of the nodes on ℓ1 that lie in the
Voronoi cell V(v) and belong to the adjacency set A(v, ℓ1). By Lemma 5.2, V(v) is either
empty or a single interval, which we have denoted by (x−, x+). We denote by (v−, v+), the
largest Steiner interval inside the interval (x−, x+). The interval (v−, v+) is easily found
using binary search in O(logK(ℓ1)) time, where as above K(ℓ1) denotes the number of
Steiner points on ℓ1. On the other hand (see Lemma 5.1), the adjacency set A(v, ℓ1) consists
of the nodes lying inside constant number (at most seven) of Steiner intervals, which were
computed and stored as the list Ā(v, ℓ1). Hence, the maximal Steiner intervals specifying
the propagation set I ′(v) can be obtained as the intersection of intervals in Ā(v, ℓ1) with
(v−, v+). This is done in constant time by identifying the position of the points v− and v+

with respect to the elements of the list Ā(v, ℓ1). Clearly, the so-computed maximal Steiner
intervals covered by I ′(v) are at most seven. We update the sequence I ′ by inserting each of
the maximal Steiner intervals covered by I ′(v) in the same way as we inserted the interval
(x−, x+) into the sequence X describing the Voronoi diagram. More precisely, let (y, z) be
any of the maximal Steiner intervals covered by I ′(v). We insert the points y and z at their
positions in the ordered sequence I ′, and then we delete the points of I ′ between y and z.
If the interval containing y is (yj, zj), we set new zj to be the Steiner point preceding y on
ℓ1. Similarly, if the interval containing z is (yj, zj), then we set yj to be the Steiner point
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following z on ℓ1.
At each iteration of the algorithm, the endpoints of at most seven intervals are inserted

into the sequence I ′. Hence, the size of the sequence I ′ is bounded by 14K(ℓ) and insertions
in I ′ are implemented in O(logK(ℓ)) time. Deletions are implemented in O(1) time. The
total number of insertions is O(K(ℓ)) and the total number of deletions is at most the number
of insertions. Therefore, the total time spent for the maintenance of I ′ and the propagation
diagram is O(K(ℓ)(logK(ℓ) +K(ℓ1))).

Finally, we summarize our discussion on the implementation of Step 3.1. The compu-
tations and times related to a fixed triple (ℓ, ℓ1, f) are as follows. First, in a preprocessing
step the lists Ā(u, ℓ1), for all nodes u on ℓ, are computed in O(K(ℓ) logK(ℓ1)) time (Lemma
5.1). Times spent for the maintenance of the lists S(ℓ) and Sa(ℓ1) are O(K(ℓ) logK(ℓ) and
O(K(ℓ1) logK(ℓ1), respectively. The time spent for maintenance of the Voronoi diagram for
the active nodes on ℓ requires O(K(ℓ) log2K(ℓ)) time. The time for the maintenance of the
Propagation Diagram is O(K(ℓ)(logK(ℓ) + logK(ℓ1))). Therefore, the total time for the
implementation of Step 3.1 is

∑

(ℓ,ℓ1,f)

(

O(K(ℓ)(log2K(ℓ) + logK(ℓ1)) +O(K(ℓ1) logK(ℓ1))
)

≤ O(
1√
ε
log

1

ε
)

(

∑

ℓ

K(ℓ)(log2K(ℓ) + logK(ℓ1)) +
∑

ℓ1

K(ℓ1) logK(ℓ1)

)

≤ O(
1√
ε
log3

1

ε
)

(

∑

ℓ

K(ℓ) +
∑

ℓ1

K(ℓ1)

)

= O(
|Vε|√
ε
log3

1

ε
),

where we have used Lemma 3.1 to estimate that the number of triples (ℓ, ℓ1, f) with a fixed
first or second element is O( 1√

ε
log 1

ε
), and that logK(ℓ) and logK(ℓ1) are O(log 1

ε
).

Lemma 5.3 The total time spent by the algorithm implementing Step 3.1 is O( |Vε|√
ε
log3 1

ε
).

5.2.3 Computation and updates of set of representatives

Next, we concentrate on the computation of representatives in Steps 3.2, 3.3 and 3.4. The
set of representatives ρ(v; ℓ, ℓ1, e) of an active node v on ℓ in a group E(ℓ, ℓ1, f) contains
one representative for each interval (yj, zj) in the propagation set I(v). Recall that I(v)
consists of a set of intervals (yj, zj) stored in the sequence I ′, characterizing the propagation
diagram of the currently active nodes on ℓ. The representative in ρ(v; ℓ, ℓ1, e), corresponding
to (yj, zj) ∈ I(v), is the target of the minimum cost edge from v to a node in Sa∩(yj, zj). By
Lemma 2.1, the function c(v, x) is convex and thus in any interval it has a single minimum.
Let x∗(v) be the point on ℓ1, where c(v, x) achieves its minimum. To efficiently compute
the representatives, we compute in a preprocessing step the points x∗(v), for all nodes on ℓ.
From the definition of the function c(v, x) and Snell’s law, it follows that x∗(v) is the point
on ℓ1 that is closest to v. So, each of x∗(v) can be computed in constant time, which leads
to O(K(ℓ)) preprocessing time for the group E(ℓ, ℓ1, f), where K(ℓ) is the number of nodes

on ℓ. Thus, the total time for preprocessing in all groups is O( |Vε|√
ε
log 1

ε
).
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We have associated two data structures to the set of nodes in Sa that lie on a fixed
Steiner segment ℓ1. First, we maintain them in a doubly-linked list and second, we maintain
them in a binary-search tree, with respect to their position on ℓ1. We show that finding a
representative ρ(v) ∈ ρ(v; ℓ, ℓ1, e) takes O(log 1

ε
) time. There are three situations, where we

need to compute or update ρ(v):

1. New representatives ρ(v) are computed when v becomes active and its propagation set
is non-empty. We need to compute one new representative for each maximal Steiner
interval (y, z) in the propagation set I(v). Recall that there are at most seven such
intervals and they were computed and stored in the sequence I ′.
To compute ρ(v) in the interval (y, z), we determine the leftmost and rightmost nodes
from Sa inside the interval (y, z). This is done by finding the position of the points
y and z in the sequence of nodes currently in Sa. Let the leftmost and the rightmost
nodes from Sa in (y, z) be ya and za, respectively. Then, we determine the position of
the point x∗(v) with respect to ya and za.

If it is to the left of ya, then ρ(v) = ya. If it is to the right of za, then ρ(v) = za. If
x∗(v) is inside (ya, za), we determine the two nodes in Sa immediately to the left and
to the right of x∗(v), and ρ(v) is one of these two nodes. Using the binary-search tree
on Sa, the nodes ya and za and eventually the nodes neighboring x∗(v) are determined
in O(log 1

ε
) time.

2. When some representative ρ(v) is removed from Sa, a new representative for v is one
of the neighbors of ρ(v) in the doubly-linked list Sa that lie in the same interval (y, z)
as ρ(v). This is done in O(1) time.

3. When some interval of the propagation set I(v) shrinks and the current representative
ρ(v) is no longer inside this interval, then ρ(v) is updated as follows. Let, as above, ya

and za be the leftmost and the rightmost nodes from Sa, respectively, in the updated
interval. Then, if ρ(v) lies to the left of ya, we set ρ(v) = ya. If ρ(v) is to the right
of za, we set ρ(v) = za. As above, determination of the nodes ya and za is done in
O(log 1

ε
) time.

To complete our analysis, we need to estimate the total number of representatives which
are computed by our algorithm. Each pair (representative, predecessor) relates to the edge
joining them. Since such a pair can be computed at most once by the algorithm, the total
number of representatives related to nodes that are vertices of D is bounded by the total
number of edges incident to these nodes, which is O(|Vε|). It remains to estimate the number
of representatives which are related to nodes that are Steiner points. Consider an iteration
for a node v that is a Steiner point. There are O( 1√

ε
log 1

ε
) triples in T (v), and at most

nine new representatives are computed in Step 3.2. For each predecessor in R−1(v) that is
a Steiner point, a single representative is computed. The number of predecessors |R−1(v)|
is O( 1√

ε
log 1

ε
). Hence, in a single iteration, O( 1√

ε
log 1

ε
) representatives related to Steiner

points are computed. Since the number of iterations is O(|Vε|) and the computation of a
single representatives takes O(log 1

ε
) time, we obtain that the total time for the execution of

Steps 3.2 and 3.3 is O( |Vε|√
ε
log2 1

ε
).
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Finally, the number of priority queue operations executed in Step 3.4 is bounded by the
number of computed representatives. Thus, the total time for Step 3.4 is O( |Vε|√

ε
log n

ε
log 1

ε
).

5.2.4 Complexity of the algorithm and the main result

Here, we summarize our discussion from the previous three subsections and state our main
result. Step 1 of our algorithm takes O(|Vε| log n

ε
) time. Step 2 requires O(|Vε|) time. By

Lemma 5.3, Step 3.1 takes in total O( |Vε|√
ε
log3 1

ε
) time. The total time for implementation

of Steps 3.2 and 3.3 is O( |Vε|√
ε
log2 1

ε
) and the total time for Step 3.4 is O( |Vε|√

ε
log n

ε
log 1

ε
). By

Lemma 3.1, we have that |Vε| = O( n
ε2
log 1

ε
). We have thus established the following:

Theorem 5.1 The SSSP problem in the approximation graph Gε can be solved in
O( n

ε2.5
log n

ε
log3 1

ε
) time.

Consider the polyhedral domain D. Starting from a vertex v0 of D, our algorithm solves
the SSSP problem in the corresponding graph Gε and constructs a shortest paths tree rooted
at v0. According to Theorem 4.1, the computed distances from v0 to all other vertices of
D (and to all Steiner points) are within a factor of 1 + ε of the cost of the corresponding
shortest paths. Using the definition of the edges of Gε, an approximate shortest path can
be output by simply replacing the edges in the discrete path with the corresponding local
shortest paths used to define their costs. This can be done in time proportional to the
number of segments in this path, because computation of the local shortest paths takes O(1)
time. The approximate shortest paths tree rooted at v0 and containing all Steiner points
and vertices of D can be output in O(|Vε|) time. Thus, the algorithm we described solves
the WSP3D problem and the following theorem states the result.

Theorem 5.2 Let D be a weighted polyhedral domain consisting of n tetrahedra and ε ∈
(0, 1). The weighted shortest path problem in three dimensions (WSP3D), requiring the
computation of approximate shortest paths from a source vertex to all other vertices of D,
can be solved in O( n

ε2.5
log n

ε
log3 1

ε
) time.

6 Conclusions

This paper generalizes the weighted region problem, originally studied in 1991 by Mitchell
and Papadimitriou [21] for the planar setting, to 3-d weighted domains. We present the
first polynomial time approximation scheme for the WSP3D problem. The complexity of
our algorithm is independent of the weights, but depends upon the geometric features of the
given tetrahedra as stated in Lemma 3.1.

There are some fairly standard techniques which can be employed here to remove the
dependence on geometry (cf., [1]), provided that there is an estimate known on the maximum
number of segments (i.e., the combinatorial complexity) in weighted shortest paths in three
dimensions. It can be shown that the combinatorial complexity of weighted shortest paths
in planar case is Θ(n2) [21]. We conjecture that the same bound holds in three dimensions,
but the proof techniques in [21] do not seem to apply here, since they use planarity. If the
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combinatorial complexity of these paths in three dimensions is a polynomial in n, then we
can remove the dependence on the geometry by increasing the run time by a polynomial
factor in n. We do not recommend this approach, since the increase in the running time will
be significant. Already, in the planar case (and in terrains), in an experimental study [18],
it was shown that a constant number of Steiner points suffice to produce high-quality paths.
We believe that the same holds here and this merits further investigation.

This paper also investigated additive Voronoi diagrams in heterogeneous media. We
studied a fairly simple scenario and already the analysis of that was very technical and
cumbersome. It is desirable to find simpler and more elegant ways to understand the combi-
natorics of these diagrams. Nevertheless, we believe that the discretization scheme and the
algorithms presented here can be used successfully for efficient computation of approximate
Voronoi diagrams in heterogeneous media.

Our algorithm does not require any complex data structures or primitives and as such
should be implementable and even practical. Its structure allows Steiner points to be gen-
erated “on the fly” as the shortest path wavefront propagates though the weighted domain.
This feature allows the design of more compact and adaptive implementation schemes that
can be of high practical value.

One of the classical problems that motivated this study is the unweighted version of this
problem, namely the ESP3D problem. There, we need to find a shortest path between a
source and a target point, lying completely in the free space, avoiding three-dimensional
polyhedral obstacles. We can use our techniques to solve this problem, though this will
require triangulating (i.e., tetrahedralization) the free space. As outlined above, the com-
plexity of our algorithm depends upon the geometry of these tetrahedra; so it is natural to
ask whether the free space can be partitioned into nice tetrahedra? Unfortunately, there is
no simple answer to this question which has been an important topic of study in computa-
tional and combinatorial geometry for several decades. Nevertheless, our algorithm provides
a much simpler and so far the fastest method for solving the ESP3D problem, provided the
free space is already partitioned into non-degenerate tetrahedra.

Combining the techniques of answering weighted shortest path queries on polyhedral
surfaces [2] and the existence of nice separators for well-shaped meshes [20], we believe that
our construction presented in this paper can be used for answering (approximate) weighted
shortest path queries in 3-d.

References

[1] Pankaj K. Agarwal, R. Sharathkumar, and Hai Yu. Approximate Euclidean shortest
paths amid convex obstacles. In Claire Mathieu, editor, SODA, pages 283–292. SIAM,
2009.

[2] Lyudmil Aleksandrov, Hristo Djidjev, Hua Guo, Anil Maheshwari, Doron Nussbaum,
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A Appendix

A.1 Proof of Proposition 2.2

Proposition 2.2: The second mixed derivative of the function x = x(y, α) is negative, i.e.
xyα < 0.

Proof: First, we consider the case where w− = w+. In this case, the function x(y, α) can
be represented and differentiated explicitly. Recall, that the path π̄(v,x) in this case either
consists of a single segment or is a three segment path as shown in Figure 3 (b). So, in
the case where the path consists of a single segment, we have x(y, α) = y cotα. In the case
where the path consists of three segments, x(y, α) = y cosα/

√
κ2 − cos2 α, where κ = w/w−.

The mixed derivatives xyα of these two functions are −1/ sin2 α and −κ2 sinα/(κ2−cos2 α) 3
2 ,

respectively, and both are readily negative.
Next, we consider the case where w− 6= w+. We introduce some additional notation as

necessary for our presentation below (Figure 2). We denote the coordinates of the bending
point a of the path π̄(v,x) by a = (x−, y+). Furthermore, we set x+ = x−x− and y− = y−y+.
Clearly, x−, x+, y−, and y+ can be viewed as functions of the independent variables y and
α. We have x = x−(y−(y, α), α) + x+(y+(y, α), α) and thereby

xy = x−
y−y

−
y + x+

y+y
+
y . (37)

We differentiate(37) with respect to α and obtain xyα = A + A1 + A2, where

A = x−
y−y

−
yα + x+

y+y
+
yα, A1 = x−

y−y−y
−
α y

−
y + x+

y+y+y
+
α y

+
y , and A2 = x−

y−αy
−
y + x+

y+αy
+
y .

We complete the proof by showing that the terms A, A1, and A2, are negative.
We begin with the term A = x−

y−y
−
yα + x+

y+y
+
yα. From the identity y = y− + y+, it follows

that y−yα + y+yα = 0 and hence, A = (x−
y− − x+

y+)y
−
yα. From our notation, Snell’s law, and the

relation cosα = cos θ sinϕ, we derive the following:

x+ =
z+ cosα

√

κ2 − sin2 ϕ
, y+ =

z+
√

sin2 ϕ− cos2 α
√

κ2 − sin2 ϕ
,

and (38)

x− =
z− cosα

√

1− sin2 ϕ
, y− =

z−
√

sin2 ϕ− cos2 α
√

1− sin2 ϕ
.

First, we compute x−
y− and x+

y+ . We denote sin2 ϕ by σ, differentiate x+ and y+ with respect

to σ and obtain x+
y+ as the ratio x+

σ /y
+
σ . We differentiate expressions (38) with respect to σ

and obtain

{x ∈ H : c(v, x) + C < c(v′, x)}x+
σ =

z+ cosα

2(κ2 − σ)
3
2

, y+σ =
z+(κ2 − cos2 α)

2
√
σ − cos2 α(κ2 − σ)

3
2

(39)

and hence

x+
y+ = x+

σ /y
+
σ =

cosα
√

sin2 ϕ− cos2 α

κ2 − cos2 α
. (40)
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Similarly,

x−
σ =

z− cosα

2(1− σ)
3
2

, y−σ =
z−(1− cos2 α)

2
√
σ − cos2 α(1− σ)

3
2

, and

x−
y− = x−

σ /y
−
σ =

cosα
√

sin2 ϕ− cos2 α

1− cos2 α
. (41)

So, for the difference x−
y− − x+

y+ we have

x−
y− − x+

y+ = cosα

√

sin2 ϕ− cos2 α(
1

1− cos2 α
− 1

κ2 − cos2 α
)

= (κ2 − 1)
cosα

√

sin2 ϕ− cos2 α

(1− cos2 α)(κ2 − cos2 α)
. (42)

The latter shows that
sign(x−

y− − x+
y+) = sign(κ2 − 1). (43)

To prove the negativity of A = (x−
y− − x+

y+)y
−
yα, we show that sign(y−yα) = sign(1 − κ2). We

have

y−y = y−σ /yσ = y−σ /(y
−
σ + y+σ ) =

1

1 + y+σ /y
−
σ

and thus y−yα = − (y+σ /y
−
σ )α

(1 + y+σ /y
−
σ )

2
.

Hence, it is sufficient to show that

sign((y+σ /y
−
σ )α) = sign(κ2 − 1). (44)

So, we continue by establishing the sign of the derivative (y+σ /y
−
σ )α. We use (39) and (41)

and compute the ratio y+σ /y
−
σ as follows

y+σ /y
−
σ =

z+(κ2 − cos2 α)(1− σ)3/2

z−(1− cos2 α)(κ2 − σ)3/2
= (z+/z−)BC, where

B =
κ2 − cos2 α

1− cos2 α
and C =

(

1− σ

κ2 − σ

)3/2

=

(

1− sin2 ϕ

κ2 − sin2 ϕ

)3/2

. (45)

Then, we compute the derivatives Bα and Cα using the expressions (45)

Bα =
sin 2α(1− cos2 α)− sin 2α(κ2 − cos2 α)

(1− cos2 α)2
=

(1− κ2) sin 2α

(1− cos2 α)2
and

Cα =
3

2

(

1− sin2 ϕ

κ2 − sin2 ϕ

)1/2
(− sin 2ϕ)(κ2 − sin2 ϕ)− (− sin 2ϕ)(1− sin2 ϕ)

(κ2 − sin2 ϕ)2
ϕα =

3

2

(

1− sin2 ϕ

κ2 − sin2 ϕ

)1/2
sin 2ϕ(1− κ2)

(κ2 − cos2 α)2
ϕα
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and obtain

(z−/z+)(y+σ /y
−
σ )α = BαC +BCα (46)

=

(

1− sin2 ϕ

κ2 − sin2 ϕ

)

3
2 (1− κ2) sin 2α

(1− cos2 α)2
+

3

2

(

1− sin2 ϕ

κ2 − sin2 ϕ

)

1
2 (κ2 − cos2 α) sin 2ϕ(1− κ2)ϕα

(1− cos2 α)(κ2 − sin2 ϕ)2

= (1− κ2)

√

1− sin2 ϕ

(κ2 − sin2 ϕ)3/2(1− cos2 α)
D,

where D =
sin 2α(1− sin2 ϕ)

1− cos2 α
+

3 sin 2ϕ(κ2 − cos2 α)

2(κ2 − sin2 ϕ)
ϕα.

Omitting the positive multiplicative terms in (46), we derive that sign(y+σ /y
−
σ )α = sign((1−

κ2)D) and continue with the evaluation of sign(D). We compute the derivative ϕα using the
identity y = y− + y+, which implies 0 = y−α + y+α . We differentiate expressions from (38)
with respect to α and obtain

y−α = (z−/2)
(1− sin2 ϕ) sin 2α + sin 2ϕ(1− cos2 α)ϕα

(sin2 ϕ− cos2 α)1/2(1− sin2 ϕ)3/2
,

(47)

y+α = (z+/2)
(κ2 − sin2 ϕ) sin 2α+ sin 2ϕ(κ2 − cos2 α)ϕα

(sin2 ϕ− cos2 α)1/2(κ2 − sin2 ϕ)3/2
,

From these two, we obtain

ϕα = −I sin 2α(1− sin2 ϕ)(κ2 − sin2 ϕ)

J sin 2ϕ
, where (48)

I = z−(κ2 − sin2 ϕ)1/2 + z+(1− sin2 ϕ)1/2 and (49)

J = z−(1− cos2 α)(κ2 − sin2 ϕ)3/2 + z+(κ2 − cos2 α)(1− sin2 ϕ)3/2.

Next, we substitute ϕα from (48) in the expression D given in (46) and obtain

D = sinα cosα(1− sin2 ϕ)
2J − 3I(κ2 − cos2 α)(1− cos2 α)

J(1− cos2 α)
.

The term sinα cosα(1− sin2 ϕ) and the denominator in this expression are positive and by
expanding the numerator we have

sign(D) = sign[2J − 3I(κ2 − cos2 α)(1− cos2 α)]

= sign
[

2z−(1− cos2 α)(κ2 − sin2 ϕ)3/2 + 2z+(κ2 − cos2 α)(1− sin2 ϕ)3/2

−3z−(1− cos2 α)(κ2 − cos2 α)(κ2 − sin2 ϕ)1/2 − 3z+(1− cos2 α)(κ2 − cos2 α)(1− sin2 ϕ)1/2
]

= sign
[

z−(1− cos2 α)(κ2 − sin2 ϕ)1/2D− + z+(κ2 − cos2 α)(1− sin2 ϕ)1/2D+
]

,

where D− = 3 cos2 α− 2 sin2 ϕ− κ2 and D+ = 3 cos2 α− 2 sin2 ϕ− 1. (50)
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Now, we observe that the terms multiplied by D+ and by D− are positive and show that
D− and D+ are negative. We use cosα = cos θ sinϕ and cosακ = cos θ sinϕκ, where sinϕ =
κ sinϕκ and obtain

D+ = 3 cos2 α− 2 sin2 ϕ− 1 = 2 cos2 α− 2 sin2 ϕ− sin2 α

= 2 cos2 θ sin2 ϕ− 2 sin2 ϕ− sin2 α = −2 sin2 ϕ sin2 θ − sin2 α < 0

and D− = 3 cos2 α− 2 sin2 ϕ− κ2 = κ2(3 cos2 ακ − 2 sin2 ϕκ − 1) =

κ2(−2 sin2 ϕκ sin
2 θ − sin2 ακ) < 0.

From (50) and D+, D− < O, we get sign(D) = −1. From (46) it follows that sign(y+u /y
−
u )α =

−sign(1− κ2) and thus sign(y−yα) = sign(1− κ2). The latter implies that A < 0.

Next, we consider the term A1. From the identity y−α + y+α = yα = 0, we get A1 =
y−α (x

−
y−y−y

−
y − x+

y+y+y
+
y ). To evaluate the sign of y−α , we substitute ϕα from (48) in the

expression (47) and by omitting positive multiplicative term, we obtain

sign(y−α ) = sign[(J − (1− cos2 α)(κ2 − sin2 ϕ)I) cosα] (51)

= sign{z+(1− sin2 ϕ)1/2[(κ2 − cos2 α)(1− sin2 ϕ)− (1− cos2 α)(κ2 − sin2 ϕ)] cosα}
= sign[(1− κ2) cosα].

Next, we evaluate the sign of the difference x−
y−y−y

−
y −x+

y+y+y
+
y . We compute x+

y+y+ as follows

x+
y+y+ = (x+

y+)σ/y
+
σ =

cosα

2(κ2 − cos2 α)
√
σ − cos2 α

/
z+(κ2 − cos2 α)

2
√
σ − cos2 α(κ2 − σ)

3
2

,

where we have differentiated (40) with respect to σ = sin2 ϕ and used (39). We compute
x−
y−y− in the same way and obtain

x+
y+y+ =

cosα(κ2 − sin2 ϕ)
3
2

z+(κ2 − cos2 α)2
and x−

y−y− =
cosα(1− sin2 ϕ)

3
2

z−(1− cos2 α)2
. (52)

Furthermore, we have y+y = y+σ /yσ = y+σ /(y
+
σ + y−σ ) and y−σ = y+σ /(y

+
σ + y−σ ). So, we compute

y+y and y−y using (39) as follows

y+y =
z+(κ2 − cos2 α)(1− sin2 ϕ)

3
2

J
and y−y =

z−(1− cos2 α)(κ2 − sin2 ϕ)
3
2

J
, (53)

where J was defined in (49). Using (52) and (53), we determine

sign(x−
y−y−y

−
y −x+

y+y+y
+
y ) = sign[(1/(1−cos2 α)−1/(κ2−cos2 α)) cosα] = sign[(κ2−1) cosα].

The latter and (51) imply A1 < 0.

Finally, we show that A2 = x−
y−αy

−
y + x+

y+αy
+
y is negative too. We first compute the

derivative x+
y+α by differentiating the expression (40) with respect to α. We have

x+
y+α =

Pκ sinα + cosα sinϕ cosϕ(κ2 − cos2 α)ϕα

(sin2 ϕ− cos2 α)
1
2 (κ2 − cos2 α)2

, (54)
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where Pκ = 2 cos2 α(κ2− sin2 ϕ)− sin2 ϕ(κ2− cos2 α). We substitute ϕα using the expression
(48) and multiply by y+y using the expression (53). After simplification, we obtain

x+
y+αy

+
y = z+ sinα(1− sin2 ϕ)3/2

JPκ − cos2 α(κ2 − cos2 α)(1− sin2 ϕ)(κ2 − sin2 ϕ)I

J2(sin2 ϕ− cos2 α)
1
2 (κ2 − cos2 α)

. (55)

Analogously, we obtain the following

x−
y−αy

−
y = z− sinα(κ2 − sin2 ϕ)3/2

JP1 − cos2 α(1− cos2 α)(1− sin2 ϕ)(κ2 − sin2 ϕ)I

J2(sin2 ϕ− cos2 α)
1
2 (1− cos2 α)

, (56)

where P1 = 2 cos2 α(1 − sin2 ϕ) − sin2 ϕ(1 − cos2 α). We sum (55) and (56), simplify and
omit the positive multiplicative terms obtaining

sign(x−
y−αy

−
y + x+

y+αy
+
y ) = (57)

sign[z−(κ2 − sin2 ϕ)3/2(κ2 − cos2 α)Q1 + z+(1− sin2 ϕ)3/2(1− cos2 α)Qκ],

where

Q1 = JP1 − cos2 α(1− cos2 α)(1− sin2 ϕ)(κ2 − sin2 ϕ)I and

Qκ = JPκ − cos2 α(κ2 − cos2 α)(1− sin2 ϕ)(κ2 − sin2 ϕ)I .

We denote the expression in the square brackets by R. Finally, evaluate R and show that
it is negative. First, we evaluate and simplify Qκ and Q1 . We substitute the expressions I
and J from (49) in Qκ and group the terms containing z− and z+. Then, we substitute the
expression for Pκ from (54) and by simplification we get

Qκ = z−(κ2 − sin2 ϕ)3/2[(1− cos2 α)Pk − cos2 α(κ2 − cos2 α)(1− sin2 ϕ)] +

z+(1− sin2 ϕ)3/2[(κ2 − cos2 α)Pk − cos2 α(κ2 − cos2 α)(κ2 − sin2 ϕ)]

= z−(κ2 − sin2 ϕ)3/2(cos2 α− sin2 ϕ)(κ2 + cos2 α− 2κ2 cos2 α) +

z+(1− sin2 ϕ)3/2(cos2 α− sin2 ϕ)κ2(κ2 − cos2 α).

In the same way, we obtain the following representation for Q1

Q1 = z−(κ2 − sin2 ϕ)3/2(cos2 α− sin2 ϕ)(1− cos2 α) +

z+(1− sin2 ϕ)3/2(cos2 α− sin2 ϕ)(κ2 + κ2 cos2 α− 2 cos2 α).

Substitution of Qκ and Q1 in (57) produces an expression for R of the form

R = (z−)2R1 + (z+)2R2 + z−z+R3, where

R1 = (κ2 − sin2 ϕ)3(κ2 − cos2 α)(1− cos2 α)(cos2 α− sin2 ϕ)

R2 = (1− sin2 ϕ)3(1− cos2 α)κ2(κ2 − cos2 α)(cos2 α− sin2 ϕ)

R3 = (1− sin2 ϕ)3/2(κ2 − sin2 ϕ)3/2(cos2 α− sin2 ϕ) ×
[(κ2 − cos2 α)(κ2 + κ2 cos2 α− 2 cos2 α) + (1− cos2 α)(κ2 + cos2 α− 2κ2 cos2 α)]

= (1− sin2 ϕ)3/2(κ2 − sin2 ϕ)3/2(cos2 α− sin2 ϕ) ×
[(κ2 − cos2 α)2 + κ2(1− cos2 α)2 + (1− κ2)2 cos2 α]

From these expressions, it is clear that terms R1, R2, and R3 are negative, since cos2 α −
sin2 ϕ < 0 and all other terms are positive. Thus, R and consequently A2 are negative. The
proposition is proved. ✷
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A.2 Upper bound on the constant CABP (t)

Next, we show that

CABP (t) ≤
11|AB|

r(e) sin2(γ/2)
log2

4|AB|2h
r(e)r(A)r(B)

.

Recall that λ = (1+
√

ε/8 sin(γ/2))−1 and 0 < ε ≤ 1. We use the following two inequalities,
which are easily derived from the properties of logarithms:
For any X ≥ 1

logλ−1 X <
3.44 lnX√
ε sin(γ/2)

, ln
X

ε
≤ ln

2

ε
log2X (58)

By our definition of the constant CABP (t) and (17) it follows that

CABP (t) ≤
2ε|AB|

r(e)λ(1− λ) log 2
ε

logλ−1

|AB|
ελ
√

r(A)r(B)
+

ε|AB|
r(e)(1− λ)2 log 2

ε

(59)

+
2ε2

log 2
ε

logλ−1

h

εr(e)
+

4ε2

log 2
ε

logλ−1

|AB|
ελ
√

r(A)r(B)
.

We estimate the terms on the right-hand side of this inequality using inequalities (58) above.
For the first one, we have

2ε|AB|
r(e)λ(1− λ) log 2

ε

logλ−1

|AB|
ελ
√

r(A)r(B)
≤ (2

√
2 + 1)2

√
ε|AB|√

2r(e) sin(γ/2) log 2
ε

logλ−1

2|AB|
ε
√

r(A)r(B)

≤ 3.44(2
√
2 + 1)2|AB|√

2r(e) sin2(γ/2) log 2
ε

ln
2|AB|

ε
√

r(A)r(B)
< 25

|AB|
r(e) sin2(γ/2)

log2
2|AB|

√

r(A)r(B)
. (60)

For the second one, we have

ε|AB|
r(e)(1− λ)2 log 2

ε

≤ (2
√
2 + 1)2|AB|

r(e) sin2(γ/2) log 2
ε

< 15
|AB|

r(e) sin2(γ/2) log 2
ε

. (61)

The sum of the third and fourth terms is estimated by

2ε2

log 2
ε

(

logλ−1

h

εr(e)
+ 2 logλ−1

|AB|
ελ
√

r(A)r(B)

)

≤ 14ε1.5

sin(γ/2) log 2
ε

(

ln

√

h

εr(e)
+ ln

2|AB|
ε
√

r(A)r(B)

)

≤ 14ε1.5 ln 2

sin(γ/2)
log2

2|AB|
√
h

√

r(e)r(A)r(B)
< 5

ε1.5

sin(γ/2)
log2

4|AB|2h
r(e)r(A)r(B)

. (62)

We substitute (60), (61), and (62) in (59), use 2r(e) ≤ |AB|, r(e) ≤ h and obtain

CABP (t) < 23
|AB|

r(e) sin2(γ/2)
log

4|AB|2h
r(e)r(A)r(B)

.
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A.3 Proof of Lemma 5.1

Lemma 5.1 The number of the maximal intervals covered by A(u, ℓ1) is at most seven. The
corresponding list Ā(u, ℓ1) is computed in O(logK(ℓ1)), where K(ℓ1) denotes the number of
Steiner points on ℓ1.

Proof: First consider the case when the segments ℓ and ℓ1 lie in different tetrahedra. We
denote the weights of the tetrahedra containing ℓ and ℓ1 by w− and w+, respectively. Let F
be the plane defined by the face f and let F− and F+ be the two half-spaces defined by F ,
where we assume that ℓ is in F− and ℓ1 is in F+. Furthermore, we assign weights w− and
w+ to F− and F+, respectively, and we consider shortest weighted path π̄(u, y) between u,
that is on ℓ, and an arbitrary point y on ℓ1.

As discussed in Section 2, in this case, the path π̄(u, y) has the form π̄(u, y) = {u, a(y), y},
where the point a(y) lies in F and is uniquely defined by Snell’s law (Figure 3 (a)). By our
definition, there is an edge joining u to a Steiner point u1 ∈ ℓ1 if and only if the point a(u1)
lies in the interior of the triangle f . The interior can be represented as intersection of three
half-planes defined by the lines containing the sides of f . So, we first obtain an upper bound
on the number of maximal intervals covered by A(u, ℓ1) in the case where f is a half-plane
defined by an arbitrary line L in F .

There is one-to-one correspondence between end-points of the maximal intervals and the
points y on ℓ1 for which a(y) lies on L. Hence, the number of maximal intervals covered
by A(u, ℓ1) can be estimated by counting the number of points y for which a(y) lies on L.
When the point y traverses the segment ℓ1, the bending point a(y) defines a curve in the
plane F , which we denote by a(y). We consider Cartesian coordinate system Oµ,ν in F , such
that segment ℓ1 projects onto the segment (µ1, µ2) of the µ-axis, and u projects onto ν-axis,
say, at the point u′ = (0, ν0). We denote the µ-coordinate of the projection of y by µ(y)
or simply by µ when no ambiguity arises. Then, as we discussed in Section 2, the curve
a(y) has a representation a(µ(y)) = (τµ(y), (1− τ)ν0), where τ is the unique solution of the
equation (2).

Let L(µ, ν) be the linear function, such that L(µ, ν) = 0 represents the line L in Oµ,ν .
Then, a point a(y) belongs to L if L(τµ(y), (1 − τ)ν0) = 0. Thus, we obtain the following
system of algebraic equations for τ and µ(y)

{

w−τ√
τ2(µ2(y)+ν20 )+(z−)2

= w+(1−τ)√
(1−τ)2(µ2(y)+ν20 )+(z+)2

L(τµ(y), (1− τ)ν0) = 0,
(63)

where z+ is the Euclidean distance from ℓ1 to F and z− is the Euclidean distance from
u to F . Excluding τ from this system leads to a degree four algebraic equation for µ(y).
Therefore, there may be no more than four intersections between a(y) and L and, hence, the
number of the maximal intervals covered by A(u, ℓ1) in the case where f is a half-plane is at
most three.

In the case where f is a triangle, we denote by f1, f2, and f3 the three half-planes defining
f and by I1, I2, and I3 the corresponding sets of maximal intervals. Then, any maximal
interval△ defined by f is obtained as an intersection △1∩△2∩△3, where△i ∈ Ii, i = 1, 2, 3.
Each of the sets Ii contains at most three intervals and it is easily seen that the number of
intervals that are intersections of the type △1 ∩△2 ∩△3 does not exceed seven.
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Figure 13: The figure illustrates the curves a(y) and a1(y) in the case (a) when ν−+ν+ > ν0
and in the case (b) when ν− + ν+ ≤ ν0. A line L and its intersections with the curves a(y)
and a1(y) are shown. The number of maximal intervals covered by E(v, ℓ1) in the case when
f is the lower half-plane defined by L, is 2 for both instances (a) and (b).

The list Ā(u, ℓ1) is computed by finding the position of the solutions of the systems (63)
with respect to the elements of V (ℓ1). This can be done by performing binary search and
hence the computation of the list Ā(u, ℓ1) in this case takes O(logK(ℓ1)) time.

Next, we consider the case where u and ℓ1 lie in the same tetrahedron, say the one that is
in F−. If the weight w− is smaller than w+, then the path π̄(u, y) has the form {u, a(y), y}.
The point a(y) is the point in F that lies on the segment (u, y′), where y′ is the point
symmetric to y with respect to F . So, the curve a(y), in this case, is a segment. Hence,
each of the sets Ii, for i = 1, 2, 3, in this case, is either empty or consists of a single interval.
Consequently, there can be at most one interval obtained as intersection of intervals in these
sets. Thus, in this case, there can be no more than one maximal interval covered by A(u, ℓ1).

Finally, we consider the case where w− is greater than w+. In this case, the shortest
path π̄(u, y) has the form {u, a(y), a1(y), y}, where the segment (a(y), a1(y)) lies in F . We
discussed the structure of this path in Section 2 and illustrated it in (Figure 3 (b)). The
curves a(y) and a1(y) have explicit representations as we detail below. We set ν− = z− tanϕ∗

and ν+ = z+ tanϕ∗, where the critical angle ϕ∗ is defined by sinϕ∗ = w+/w− and z−, z+

are the distances from v and ℓ1 to F , respectively.
In this notation the curves a(y) and a1(y) have the following representations in Oµ,ν

a(y) =

{

ν = z+ν0
z−+z+

for |µ| < µ0

ν = ν0 −
√

(ν−)2 − µ2 for µ0 ≥ |µ| ≤ ν−,
(64)

a1(y) =

{

ν = z+ν0
z−+z+

for |µ| < µ0

(ν0 − ν)
√

(ν+)2 − ν2 = µν for |µ| ≥ µ0,
, (65)

where µ0 =
z−

z−+z+

√

(ν− + ν+)2 − ν2
0 if ν− + ν− > ν0 and µ0 = 0 if ν− + ν− ≤ ν0.

In the case where ν− + ν− > ν0 (Figure 13 (b)), the curve a(y) is a half-circle centered
at the point (0, ν0) with radius ν−. The curve a1(y) is symmetric with respect to the ν-axis.
The part of a1(y) to the right of Oν is monotonically decreasing. It is convex and approaches
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the µ-axis at infinity. In the case where ν− + ν− ≤ ν0 (Figure 13 (a)), the curves a(y) and
a1(y) have a common part – a horizontal segment that projects at (−µ0, µ0) on the µ-axis.
For |µ| > µ0, the curves are the same as in the case ν− + ν− > ν0.

Again, we consider, first, the case when f is a half-plane defined by a line L in F . There
is an edge between u and a point y on ℓ1 if and only if the segment (a(y), a1(y)) lies entirely
inside f , i.e. in one of the half-planes defined by L. By a simple case analysis, we determine
that in the case where f is a half-plane, the number of maximal intervals covered by A(u, ℓ1)
is at most 2.

Hence, in the general case when f is a triangle, each of the sets I1, I2, and I3, as defined
above, contains at most 2 intervals. The number of intervals that can be intersections of
the type ∩3i=1△i with △i ∈ Ii is at most 4. The latter proves that the number of maximal
intervals covered by A(u, ℓ1) in the case where ℓ and ℓ1 are in the same tetrahedron, whose
weight w− is bigger than the weight w+ of the neighboring tetrahedron, is at most 4.

Computation of the list Ā(u, ℓ1) in this case is done again by binary search and takes
O(K(ℓ1)) time. The lemma is proved. ✷
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