
Collective Construction of 2D Block Structures
with Holes

Zachary Fitzsimmons1 and Robin Flatland2

1 Siena College, Loudonville, USA zm19fitz@siena.edu
2 Siena College, Loudonville, USA flatland@siena.edu

Abstract. In this paper we present algorithms for collective construc-
tion systems in which a large number of autonomous mobile robots trans-
port modular building elements to construct a desired structure. We fo-
cus on building block structures subject to some physical constraints that
restrict the order in which the blocks may be attached to the structure.
Specifically, we determine a partial ordering on the blocks such that if
they are attached in accordance with this ordering, then (i) the structure
is a single, connected piece at all intermediate stages of construction, and
(ii) no block is attached between two other previously attached blocks,
since such a space is too narrow for a robot to maneuver a block into
it. Previous work has consider this problem for building 2D structures
without holes. Here we extend this work to 2D structures with holes. We
accomplish this by modeling the problem as a graph orientation problem
and describe an O(n2) algorithm for solving it. We also describe how this
partial ordering may be used in a distributed fashion by the robots to
coordinate their actions during the building process.

1 Introduction

In this paper we present algorithms for collective construction systems in
which a large number of autonomous mobile robots transport modular
building blocks to construct a desired structure. Also known as swarm
construction, such systems are inspired by the decentralized construction
methods of ants and bees in which global structure emerges from the
efforts of individual insects following seemingly simple rules and using
only local environmental cues. By using many identical robots execut-
ing a common set of rules, such systems can be robust to failure since
damaged robots are easily replaced. This makes them useful in uncertain
and inhospitable environments such as extraterrestrial and underwater
construction sites. In some variations of collective construction, the mod-
ular building blocks are not completely inert. They may, for example,
have a small readable/writable memory in which the robots can write
information to help guide subsequent construction.

ar
X

iv
:1

10
4.

38
47

v1
 [

cs
.C

G
]

 1
9

A
pr

 2
01

1

Collective construction is related to self-reconfiguring modular robots
and self assembly systems. Self-reconfiguring modular robots are com-
posed of many simple robotic units attached to one another to form a
structure. The robots have some computational power and the capacity
to perform simple motion such as expanding and contracting its sides [8]
or rotating [9], [10], and they can attach/detach to/from adjacent units.
When the units coordinate their actions, they move relative to one another
and the overall structure changes shape to fit the task or environment at
hand. See for example [3] for a survey and [4], [6], [5] for recent algorith-
mic advances. In self-assembly systems, the units are DNA “tiles” and
their operations are determined by the type and order of “glues” located
on their boundaries. When tiles of particular types are mixed together,
they bond according to their glues to form a structure. See for exam-
ple [7]. Unlike self-reconfiguring robots and self-assembly systems, collec-
tive construction separates the passive, structural building elements from
the active, functional units that combine these elements, which seems a
natural separation when building larger scale, static structures.

Here we focus on a collective construction system introduced by Wer-
fel and Nagpal [1]. In their system, the structural elements are unit cubes
(blocks) that attach to each other face-to-face. Each robot is capable of
carrying a block and depositing it in a desired location, at which point
the block attaches to any neighboring blocks. In [1], they consider the
problem of programming the robots to build connected, 2D block struc-
tures without holes. Here 2D means the structure consists of a single
layer of blocks, with no block stacked on top of another. Since the blocks
attach face-to-face with the faces aligned, the structures to be built can
be represented by a set of marked cells on a unit grid, such as shown in
Figure 1a.

A physical constraint that plays into their algorithm design is that
they disallow sliding a block into a space exactly one block wide between
two other blocks, since such a space is too narrow for a robot to maneuver
a block into it. See for example the unoccupied cell A marked in Figure 1a.
A less local embodiment of this requirement is what Werfel and Nagpal
call the separation rule. It states that two blocks can never be attached
in the same row or column if all of the cells between them are ultimately
meant to be occupied. For example, a block cannot be placed in the
cell marked B in Figure 1, since doing so would eventually force a block
to be squeezed between two other adjacent blocks in that column. They
introduce a distributed, perimeter following technique in which the robots
trace counter-clockwise along the perimeter of the partially built structure

A

B

(a) (b)

Fig. 1. Dark and lightly shaded cells represent the structure to be built. Blocks have
already been placed in dark cells. (a) A block cannot be placed in cell A because the
gap is too narrow with the adjacent cells on the left and right both already occupied.
A block cannot be placed in cell B because it violates the separation rule. (b) Building
has reached a dead-end since placing a block on any of the remaining adjacent lightly
shaded sites violates the separation rule.

until they reach the beginning of an incomplete row. They then move to
the last block positioned in the row and place their block just before
it. Their technique ensures that at all intermediate stages the partially
built structure is a single, connected piece. In [2] they generalize this to
building a restricted class of 3D shapes without holes.

We consider the problem of building 2D block structures with holes,
subject to the same two physical constraints imposed by Werfel and Nag-
pal’s perimeter following approach: (i) no block can be placed between
two other adjacent blocks on the same row or column (or equivalently,
the separation rule is followed), and (ii) at all intermediate stages of con-
struction the partially built structure is a single, connected piece. Our
focus here is on determining a partial ordering on the blocks such that if
the blocks are placed in accordance with this ordering, then the building
process is able to complete without violating these two constraints. A
partial ordering rather than a strict ordering is desirable since it allows
for the possibility of concurrently attaching blocks during construction.
For structures with holes, an arbitrary placing of the blocks according
to constraints (i) and (ii) can lead to dead-end situations where it is im-
possible to complete the structure. See for example Figure 1b where the
dark and light gray cells together represent the desired structure, with the
dark cells representing the portion of the structure built so far. Observe
that in each step of the construction so far the two constraints have been

satisfied, and yet it is now impossible to complete without violating the
separation rule.

In Section 2 we describe how we model this as a graph orientation
problem. We present an algorithm for finding a partial ordering in Sec-
tion 3, and we describe in Section 4 how to implement it O(n2) time,
where n is the number of blocks in the structure. In Section 5, we present
a distributed algorithm that uses the partial ordering for collective con-
struction.

2 Modeling as a Graph Orientation Problem

We model the problem of finding a partial ordering of the blocks as a graph
orientation problem. Let B be a 2D (face) connected, n block structure to
be built. Consider the dual graph G of B, where each block is a vertex, and
two vertices are connected by an (undirected) edge if their corresponding
blocks in B share a face. G is a connected, orthogonal graph with each
vertex having an (x, y) location in the plane (as determined by the center
of its corresponding block) and each edge having unit length. Our goal
is to assign directions to the edges of G such that the resulting directed
graph D has the following properties:

(P1) Each vertex has indegree of at most two, and the up to two in-
coming edges are orthogonal to each other.

(P2) D is acyclic.

(P3) D contains a root vertex, r, from which all other vertices in D can
be reached by following directed edges.

Each directed edge −→uv in D represents the constraint that block u must be
attached before block v. Since property P2 ensures D is acyclic, its edges
determine a partial ordering on the blocks. If B’s blocks are attached in
an order consistent with this partial ordering, then property P1 ensures
that each block is attached before both its neighbors in the same row or
column are attached (and so the separation rule is enforced). Property
P3 ensures that if construction starts with the root block r, then at all
intermediate stages of construction B is one connected piece.

2.1 Orienting G

Our algorithm for orienting G first decomposes it into what we call an
orientable sequence consisting of n components (g1, g2, . . . , gn) such that
G = g1 ∪ g2 ∪ . . . ∪ gn. Let Sn be an n component orientable sequence.

g
7

g
4

g
8

g
10

g
9

g
2 g

3

g
6

g
5

g
1

g
7

g
4

g
8

g
10

g
9

g
2 g

3

g
6

g
5

g
1

(a) (c)

g
7

g
4

g
8

g
10

g
9

g
2 g

3

g
6

g
5

g
1

(b)

Fig. 2. (a) A graph G decomposed into a ten component orientable sequence
(g1, . . . , g10). (b) G shown blown apart into its individual components and their as-
sociated edges. Observe that g8 is the only corner component. (c) Directed graph D.

We define Sn recursively, since each subsequence Si = (g1, . . . , gi) also
defines an orientable sequence: S1 = (g1) where g1 is a single vertex.
Si = (Si−1, gi) where gi is either a terminal or corner component. If gi is
a terminal component, then it consists of a vertex vi and one adjacent edge
whose other end point is a vertex in Si−1. If gi is a corner component, then
it consists of a vertex vi and two adjacent orthogonal edges whose other
end points are in Si−1. See Figure 2a,b. Observe that for each subsequence
Si, the graph formed by the union of its components, g1 ∪ g2 ∪ . . .∪ gi, is
connected, for all i = 1 . . . n.

We defer for now a discussion of how this decomposition is achieved,
and instead show that given such a decomposition, we can oriented the
edges of G to obtain an oriented graph D satisfying the three properties
P1 - P3.

Theorem 1. Let G be a 2D orthogonal graph with n vertices and unit
length edges. If there exists an orientable sequence (g1, . . . , gn) such that
G = g1 ∪ g2 ∪ . . . ∪ gn, then it is possible to assign directions to the edges
of G such that the resulting directed graph D has properties P1, P2, and
P3 listed in Section 2.

Proof. For each corner or terminal component gi, let di = gi but with
the edge(s) directed towards the component’s vertex vi. Let D = {d1 ∪
d2 ∪ . . . ∪ dn}. See Figure 2c. D clearly satisfies property (P1) since d1
has indegree zero, terminal vertices have indegree one, and corner vertices
have indegree two and the two incoming edges are orthogonal.

We show now by induction on i that Di is connected with root r = v1
(P3), and acyclic (P2). The base case is satisfied since D1 = {d1} is

the single vertex, v1. Consider now Di, for i > 1. Di is formed by adding
component di to Di−1. By the inductive hypothesis, v1 is the root of Di−1,
and so there exists a path from v1 to every vertex in Di−1, including the
vertex (or the two vertices) to which di’s vertex, vi, attaches. By following
a directed edge to vi, we get a path from v1 to vi in Di, thus establishing
property P3. For property P2, it is easy to see that adding di cannot
create a cycle, since vi has no outgoing edges. ut

3 Decomposing G into an Orientable Sequence

Here we describe an algorithm for decomposing G into an orientable se-
quence Sn = (g1, . . . , gn), as outlined in the pseudocode shown in Algo-
rithms 1 and 2. Algorithm 1 forms the sequence in reverse order through
n − 1 calls to the routine NextComponent, which is detailed in Al-
gorithm 2. In Algorithm 1, observe that Gn = G, and in each subse-
quent iteration Gi = G \ {gi+1, gi+2, . . . , gn}, or in other words Gi is
the original graph minus the terminal and corner vertices of components
{gi+1, gi+2, . . . , gn} that have so far been identified.

The invocation NextComponent(G) identifies a terminal or corner
component, g, such that G\g is connected. Connectivity of G\g is neces-
sary since we will use g as the last component in an orientable sequence of
G, and make additional calls to NextComponent to find an orientable
sequence of G \ g. But if G \ g is disconnected, then it has no orientable
sequence. Therefore, in lines 3-6 of Algorithm 2, NextComponent finds
a vertex c that is either a degree one vertex or a degree two vertex with
edges perpendicular, and then it checks if it is a non-cut vertex (line 7).
If it is not a cut vertex, then c and its one or two adjacent edges are
returned as the component. If, however, c is a cut vertex, then the search
continues in the next iteration in one of the two parts of G determined
by removing c. Lines 10-20 set the appropriate variables in preparation
for the next iteration.

For the purpose of explaining lines 10-20 of NextComponent, con-
sider the graph G illustrated in Figure 3. Observe that in the first iteration
of the while loop, c (selected in line 3) is the vertex labeled c1 in Figure 3.
We call such a vertex with maximal x coordinate among all vertices with
maximal y coordinate the northeast vertex of the graph. Since this is the
first iteration, p = null and therefore the if statement in line 4 is not
triggered. Observe that c = c1 is a cut vertex, and therefore execution
enters lines 10-20, which has the task of preparing for the next iteration
in which searching for a component continues in one of the two subgraphs

cp
11

c p2 2

c3

Fig. 3. Three iterations of NextComponent determine the next component of this
graph to be the corner component with vertex labeled c3. Candidates for a corner
component found in iterations one and two involve vertices c1 and c2, but they are
discarded because they are cut vertices. The dotted boundaries show the smaller graphs
searched in iterations 2 and 3.

determined by c’s removal. Again because this is the first iteration and
p = null, G′ is selected arbitrarily in line 12 to be one of the two sub-
graphs. Assume for this example that G′ is the subgraph containing the
vertex labeled p1. Observe that p is set to p1 in line 19, and in line 20 G
is set to be the smaller subgraph G′.

In the second iteration, the northeast vertex of the new (smaller) G
is p1, but it is not a valid candidate for the next component because,
although it appears to be a terminal vertex in G, it is not a terminal in
the original graph since c1 is also adjacent to it. This is detected in line
4, and so it then switches and takes the southwest vertex instead, which
is the vertex marked c2 in Figure 3. c2 is a cut vertex, and therefore
the search needs to continue in one of the two subgraphs determined by
its removal. It is, however, important in this and subsequent iterations
that the search continue in the subgraph G′ of G not containing p (line
14), since we don’t want to contend with having multiple vertices in G′

having edges to vertices not in G′. Therefore, in the example, G′ is set to
the subgraph not containing p = p1, which is shown dotted in Figure 3.
The point in G′ adjacent to c2 is labeled p2. In line 19, p is set to p2,
in preparation for the next iteration. This continues in this manner until
a non-cut vertex c is found, which in the example occurs in the third
iteration with the vertex c3. At that point, c3 and its two adjacent edges
are returned as the next component.

Algorithm 1 OrientableSequence(Graph G) : {g1, g2, . . . , gn}
Gn ← G
for i = n down to 2 do

gi = NextComponent(Gi)
Gi−1 ← Gi \ gi

5: end for
{G1 consists of a single vertex} g1 ← G1

Algorithm 2 NextComponent(Graph G):Component
Ensure: G has at least 2 vertices

Vertex p← null
while true do

Vertex c← the northeast vertex of G (i.e., the vertex with maximum x coordi-
nate among those with maximum y coordinate)
if c = p then

5: c ← the southwest vertex of G (i.e., the vertex with minimum x coordinate
among those with minimum y coordinate)

end if
if c is not a cut vertex of G then

return the component consisting of c and its (at most two) adjacent edge(s)
else

10: {c has degree two and removing it splits G into two disjoint subgraphs}
if p = null then

G′ ← either of the two disjoint subgraphs created by removing c
else

G′ ← the subgraph created by the removal of c that does not contain p
15: end if

if G′ consists of a single vertex v then
return the component consisting of v and the edge connecting it to c

end if
p← the vertex in G′ adjacent to c

20: G← G′

end if
end while

To assist in the running time analysis of NextComponent in the
next section, we prove the following invariant is true in each iteration of
the loop of Algorithm 2. With this lemma, we will not need to recompute
the cut vertices of each smaller graph G′.

Lemma 1. After execution of line 19 but before the execution of line 20,
for any vertex v ∈ G′ such that v 6= p, v is a cut vertex in G′ if and only
if it is a cut vertex in G.

Proof. Each vertex in G′ has the same set of adjacent edges and vertices
that it has in G, with the exception of p which is missing the edge (p, c).
To see this, suppose for the sake of contradiction that it was false, and
there there existed an edge other than (p, c) connecting a vertex of G′ to
a vertex of G \G′. Such an edge cannot connect to c since then c would
have degree larger than two in G, which is impossible since we selected
c as the northeast or southwest vertex and so it has degree at most two.
Such an edge also cannot connect to any vertex in G \ {G′, c}, since then
c is not a cut vertex of G. ut

4 Running Time Analysis

In the proof of Lemma 2 below, we describe how to implement NextCom-
ponent in O(n) time with presorting of the vertices.

Lemma 2. NextComponent(G) can be implemented in O(n) time if
the vertices are presorted, where n is the number of vertices in G.

Proof. We begin by noting that since G has maximum degree of four, the
total size of G (vertices and edges) is O(n). We assume each vertex has
associated fields called CutVertex, Underconsideration, PreNum,
and Descendants. Before entering the loop of NextComponent, we
identify the cut vertices of G using a standard linear time, depth-first
search algorithm such as described in [11] (pages 296-298), and we set
their CutVertex fields to true. Determining if c is a non-cut vertex in
line 7 is then just a matter of examining this field, since by Lemma 1 a
vertex c 6= p is a cut vertex in the current graph G iff it is a cut vertex
in the original G. The only exception is vertex p, which by the design of
lines 4-6 is guaranteed not to be selected as c. Since there are fewer than
n loop iterations, the overall time spent checking if c is a non-cut vertex
in line 7 is O(n).

The depth-first search used to identify the cut vertices also defines
a preorder visit number for each vertex (i.e., each vertex is assigned a

number according to the order in which it is first visited during the search)
which we store in the PreNum field. The depth-first search also defines
a depth-first search spanning tree with each edge of G classified as a tree
edge or a back edge. We set the Descendants field of each vertex to
be the consecutive range of preorder numbers of its descendants in the
spanning tree. It is commonly known that the leaves of the depth-first
search spanning tree are non-cut vertices. Thus any cut vertex of degree
two (and in particular, vertex c in line 10 of NextComponent) is an
internal tree node of the spanning tree with one tree edge connecting it
to its parent and one tree edge connecting it to its only child. Thus its
descendant range includes exactly the preorder numbers of the vertices
in one of the two components created by its removal. The one exception
is when the root of the spanning tree is a degree two cut vertex, since in
that case it has no parent. The two components created on its removal
are the subtrees rooted at its two children. So for the root, we store only
the range of preorder numbers of the first child’s subtree. In line 14 of
NextComponent, the Descendants field of c is used to determine in
O(1) time which of the two subgraphs created on c’s removal contains
vertex p (by comparing p’s preorder number to c’s descendants range).
Initializing the fields PreNum and Descendants can be done during
the depth-first search used to determine cut vertices with no asymptotic
increase in its running time.

The Underconsideration field of each vertex is initially set to true
outside of the loop. This field indicates if a vertex is still part of the graph
G in which the search for a terminal or corner vertex continues, since in
each iteration G is smaller. When c is determined to be a cut vertex and
G′ is selected in lines 11-15, we traverse the subgraph G \ G′ and mark
each vertex’s Underconsideration field as false. The marked vertices
represent the part of the graph that is discarded, and thus will be ignored
in future iterations of the loop. Over all iterations this takes a total of
O(n) time since each vertex is marked false at most once.

The Underconsideration field is important when finding the north-
east and southwest vertices. We assume the vertices are presorted (in
OrientableSequence) by decreasing y coordinate, using decreasing x
coordinate as the secondary key. To find, for example, the northeast ver-
tex of G in lines 3-6, we scan the sorted list in the direction of decreasing
y, starting where the scan left off in the previous iteration of the loop,
since the next northeast vertex cannot be higher than the ones found in
previous iterations. During the scan, vertices with false Underconsid-
eration fields are ignored since they are a part of the graph that was

discarded in an earlier iteration. Thus, at most one pass is made through
the sorted list and the total time spent identifying northeast (and simi-
larly southwest) vertices in NextComponent is O(n) time.

The following theorem follows immediately, since OrientableSequence(G)
makes n calls to NextComponent(G).

Theorem 2. OrientableSequence(G) can be implemented in O(n2)
time, where n is the number of vertices in G.

5 Collective Construction Using the Partial Ordering

We describe a decentralized construction algorithm that uses the partial
ordering to build a desired structure. Our method of finding components
gives us a total ordering on the vertices (and thus the blocks) such that
component gi is on the perimeter of the partially built structure Gi =
g1∪g2∪. . . gi−1, So a perimeter following approach similar to that of Werfel
et al. is possible, if one is satisfied with only being able to place one block
at a time. More parallelism can be achieved using the partial ordering
determined by the directed graph D rather than the total ordering, but
then the perimeter following technique no longer works since the structure
surrounding a hole may be put in place before the structure inside the
hole is completed, and thus the surrounding structure blocks (perimeter)
access to the interior of the hole.

Taking a different approach, we assume the robots can move or hover
just above the blocks in the partially built structure, such as would be
possible in a zero or low gravity environment or underwater. Each robot
stores a copy of the directed graph D which encodes both the structure
to be built and the partial ordering on the blocks. In addition, each robot
stores a copy of an undirected spanning tree S of D which will guide the
robot to an empty cell in need of a block. We assume the root block is
put into place first, and (as suggested by Werfel and Nagpal in [1]) that
it emits a beacon that the robots can use to find it.

The operation of each robot begins by fetching a block from the block
cache, which is located far enough away from the building site so as not
to interfere with construction. The robot then locates the root block and
begins moving (or hovering) over the tops of the blocks of the partially
built structure, visiting the blocks in a depth-first search traversal order
of S. If the next position c that the robot needs to move to has no block
and if the up to two adjacent blocks that must be in place before c’s block
can be placed (as determined by the incoming edges in D) are already

in place, then the robot attaches the block it carries at position c. Once
its block is attached, it immediately leaves the structure to fetch a new
block from the cache and then repeat the depth first search traversal
starting from the root block. Otherwise, if the blocks corresponding to c’s
incoming edges are not yet in place, then the robot skips the portion of
the depth first search that explores the subtree rooted at c and continues
with the rest of the traversal.

To speed the construction process and avoid having robots traverse
completely built subtrees, we assume each block has a bit of read/write
memory that is set to 1 if the subtree of S rooted at the block is completely
built and it is set to 0 otherwise. The robots can read and write this bit
of memory when they are hovering over the block. When a robot attaches
a non-leaf block in S, it sets the bit to 0. If the block is a leaf block, then
the robot sets the bit to 1 instead, to indicate that its subtree (consisting
of just the leaf block itself) is completely built. When a robot determines
that all children of a block b have their bits set to 1, then the robot sets
b’s bit to one also.

With multiple robots performing a depth-first search traversal over the
partially built structure, some coordination is necessary to prevent “traffic
jams.” Suppose, for example, two robots are hovering over adjacent blocks
and they each want to move over the other’s block. In this case, one robot
can pass the other by moving vertically above it and going over while
the other moves underneath. This coordinated move requires some local
communication between the two robots. Also, before moving over a block,
a robot must lock the block it wishes to move over to avoid two robots
attempting to move over the same block at the same time and colliding.
This can be handled through a test and set bit of memory on the block.

6 Conclusions

For any (face) connected 2D block structure, we showed there exists a
partial ordering on the blocks such that if the blocks are attached in ac-
cordance with this ordering, at all intermediate phases of construction
the partially built structure is connected and no block is ever squeezed
in-between two other previously attached blocks. We provided an O(n2)
algorithm for finding such an ordering, and described a distributed algo-
rithm that uses the partial ordering for collective construction. This work
leaves many open problems, in particular those related to building three
dimensional structures. We believe the partial ordering algorithm can be
adapted to find partial orderings for three dimensional (multi-layered)

block structures with holes, but two difficult issues remain. First, it is
not clear how to ensure that structure inside a hole is built before the
structure surrounding the hole is put in place, thus preventing access to
the hole’s interior. Second, the robots need a way of searching out a posi-
tion where they can attach their block, since 3D analogies for perimeter
following or traversing over the top of the structure are not obvious. In
2D, it is an open question if finding the partial ordering can be done in
less than O(n2) time.

References

1. Werfel, J., Nagpal, R.: Extended Stigmergy in Collective Construction, IEEE
Intelligent Systems, 21: 2, pp. 20–28, 2006.

2. Werfel, J., Nagpal, R.: Three-Dimensional Construction with Mobile Robots and
Modular Blocks, The International Journal of Robotics Research, 27: 3-4, pp 463—
479, 2008.

3. Mark Yim, M., Shen, W., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E.,
Chirikjian, G. S.: Modular Self-Reconfigurable Robots Systems: Challenges and
Opportunities for the Future, IEEE Robotics & Automation Magazine 14:1, pp
43-52, 2007.

4. Aloupis, G., Collette, S., Damian, M., and Demaine, E. D., Flatland, R., Langer-
man, S., O’Rourke, J., Ramaswami, S., Sacristán V., Wuhrer, S.: Linear Recon-
figuration of Cube-Style Modular Robots, Computational Geometry: Theory and
Applications, 42:6-7, pp 652-663, 2009.

5. Aloupis, G., Collette, S., Demaine, E. D., Langerman, S., Sacristán, V., Wuhrer,
S.: Reconfiguration of Cube-Style Modular Robots Using O(logn) Parallel Moves,
Proc. 19th Intl. Symp. on Algorithms and Computation (ISAAC), LNCS vol. 5369,
pp 342-353, 2008.

6. Aloupis, G., Collette, S., Damian, M., Demaine, E. D., El-Khechen, D., Flatland, R.,
Langerman, S., O’Rourke, J., Pinciu, V., Ramaswami, S., Sacristán, V., Wuhrer, S.:
Efficient Constant-Velocity Reconfiguration of Crystalline Robots, Robotica, 29:1,
pp 59-71, 2011.

7. Abel, Z., Benbernou, N., Damian, M., Demaine, E. D., Demaine, M., Flatland,
R., Kominers, S. D., Schweller, R.: Shape Replication through Self-Assembly and
RNase Enzymes, ACM-SIAM Symposium on Discrete Algorithms, pp 1045-1064,
2010.

8. Rus, D., Vona, M.: A Physical Implementation of the Self-reconfiguring Cyristalline
Robot, Proceedings of the IEEE Intl. Conference on Robotics and Automation
(ICRA), pp 1726-1733, 2000.

9. Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., Murata, S.: Self-
reconfigurable modular robot M-TRAN: Distributed Control and Communication,
Proc. 1st Intl. Conf. on Robot Communication and Coordination, pp 1-7, 2007.

10. Zykov, V., Williams, P., Lassabe, N., Lipson, H.: Molecubes Extended: Diversify-
ing Capabilities of Open-Source Modular Robotics, IROS-2008 Self-Reconfigurable
Robotics Workshop, 2008

11. Brassard, G., Bratley, P.: Fundamentals of Algorithms, Prentice-Hall, Inc., ISBN
0-13-335068-1, 1996

