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Abstract

We propose optimal (w.r.t. the number of robots) solutions for thedeterministic terminating explo-
ration (explorationfor short) of a grid-shaped network by a team ofk asynchronous oblivious robots in
the asynchronous non-atomic model, so-called CORDA.

In more details, we first consider the ATOM model. We show thatit is impossible to explore a grid
of at least three nodes with less than three robots. Next, we show that it is impossible to explore a(2, 2)-
Grid with less than 4 robots, and a(3, 3)-Grid with less than 5 robots, respectively. The two first results
hold for both deterministic and probabilistic settings, while the latter holds only in the deterministic case.
ATOM being strictly stronger than CORDA, all these impossibility results also hold in CORDA.

Then, we propose deterministic algorithms in CORDA to exhibit the optimal number of robots al-
lowing to explore of a given grid. Our results show that except in two particular cases, 3 robots are
necessary and sufficient to deterministically explore a grid of at least three nodes. The optimal number
of robots for the two remaining cases is: 4 for the(2, 2)-Grid and 5 for the(3, 3)-Grid, respectively.

Keywords: Exploration, Grid, Oblivious Robots, CORDA model.

1 Introduction

We consider autonomous robots [17, 21] that are endowed withmotion actuators and visibility sensors, but
that are otherwise unable to communicate. Those robots mustcollaborate to solve a collective task, here
thedeterministic terminating grid exploration(explorationfor short), despite being limited with respect to
input from the environment, asymmetry, memory, etc.

So far, two universes have been studied: thecontinuous two-dimensional Euclidean spaceand thedis-
crete universe. In the former, robot entities freely move on a plane using visual sensors with perfect accuracy
that permit to locate all other robots with infinite precision (seee.g., [4, 7, 11, 20, 21]). In the latter, the
space is partitioned into a finite number of locations, conventionally represented by a graph, where the nodes
represent the possible locations that a robot can take and the edges the possibility for a robot to move from
one location to another (e.g., [1, 2, 3, 5, 6, 9, 10, 13, 14, 15, 16]).

In this paper, we pursue research in the discrete universe and focus on theexploration problemwhen the
network is an anonymous unoriented grid, using a team of autonomous mobile robots. Exploration requires
that robots explore the grid and stop when the task is complete. In other words, every node of the grid must
be visited by at least one robot and the protocol eventually terminates,i.e., every robot eventually stays idle
forever.

The robots we consider are unable to communicate, however they can sense their environment and take
decisions according to their local view. We assume anonymous and uniform robots (i.e., they execute the
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same protocol and there is no way to distinguish between themusing their appearance). In addition, they
are oblivious,i.e., they do not remember their past actions. In this context, robots asynchronously operate
in cycles of three phases: Look, Compute, and Move. In the first phase, robots observe their environment in
order to get the position of all other robots in the grid. In the second phase, they perform a local computation
using the previously obtained view and decide their target destination to which they move during the last
phase.

The fact that the robots have to stop after the exploration process implies that the robots somehow have
to remember which part of the graph has been explored. Nevertheless, under this weak scenario, robots
have no memory and thus are unable to remember the various steps taken before. In addition, they are
unable to communicate explicitly. Therefore the positionsof the other robots are the only way to distinguish
the different stages of the exploration process. The main complexity measure is then the minimal number
of required robots. Since numerous symmetric configurations induce a large number of required robots,
minimizing the number of robots turns out to be a difficult problem. As a matter of fact, in [10], it is shown
that, in general,Ω(n) robots are necessary to explore a tree network ofn nodes deterministically.

Related Work. In [9], authors proved that no deterministic exploration ispossible on a ring when the
number of robotsk divides the number of nodesn. In the same paper, the authors proposed a deterministic
algorithm that solves the problem using at least17 robots provided thatn andk are co-prime. In [16],
Lamaniet al. proved that there exists no deterministic protocol that canexplore an even sized ring with
k ≤ 4 robots, even in the atomic model, so-called ATOM [21]. In this model, robots execute their Look,
Compute and Move phases in an atomic manner,i.e.,every robot that is activated at instantt instantaneously
executes a full cycle betweent andt+1. Impossibility results in ATOM naturally extend in the asynchronous
non-atomic model, so-called CORDA [18]. Lamaniet al. also provide in [16] a deterministic protocol using
five robots and performing in CORDA, provided that five andn are co-prime. By contrast, four robots are
necessary and sufficient to solve theprobabilisticexploration of any ring of size at least 4 in ATOM [6, 5].

To our knowledge, grid-shaped networks were only considered in the context of anonymous and obliv-
ious robot exploration [1, 3] for a variant of the exploration problem where robots perpetually explore all
nodes in the grid (instead of stopping after exploring the whole network). Also, contrary to this paper, the
protocols presented in [1] make use of a common sense of direction for all robots (common north, south,
east, and west directions) and assume an essentially synchronous scheduling.

Contribution. In this paper, we propose optimal (w.r.t. the number of robots) solutions for the determin-
istic terminating exploration of a grid-shaped network by ateam ofk asynchronous oblivious robots in the
asynchronous and non-atomic CORDA model.

In more details, we first consider the ATOM model, which is a strictly stronger model than CORDA. We
show that it is impossible to explore a grid of at least three nodes with less than three robots. Next, we show
that it is impossible to explore a(2, 2)-Grid with less than 4 robots, and a(3, 3)-Grid with less than 5 robots,
respectively. The two first results hold for both deterministic and probabilistic settings, while the latter holds
only in the deterministic case. Note also that these impossibility results naturally extend to CORDA.

Then, we propose several deterministic algorithms in CORDAto exhibit the optimal number of robots
allowing to explore of a given grid. Our results show that except in two particular cases, 3 robots are
necessary and sufficient to deterministically explore a grid of at least three nodes. The optimal number of
robots for the two remaining cases is: 4 for the(2, 2)-Grid and 5 for the(3, 3)-Grid, respectively.

The above results show that, perhaps surprisingly, exploring a grid is easier than exploring a ring. In
the ring, deterministic solutions essentially require fiverobots [16] while probabilities enable solutions with
only four robots [6, 5]. In the grid, three robots are necessary and sufficient in the general case even for
deterministic protocols, while particular instances of the grid do require four or five robots. Also, determin-
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istically exploring a grid requires no primality conditionwhile deterministically exploring a ring expects the
numberk of robots to be co-prime withn, the number of nodes.

Roadmap. Section 2 presents the system model and the problem to be solved. Lower bounds are shown
in Section 3. The deterministic general solution using three robots is given in Section 4, the special case
with five robots is studied in Section 5. Section 6 gives some concluding remarks.

2 Preliminaries

Distributed Systems. We consider systems of autonomous mobile entities calledagentsor robotsevolving
in a simple unoriented connected graphG = (V,E), whereV is a finite set of nodes andE a finite set of
edges. InG, nodes represent locations that can be sensed by robots and edges represent the possibility for a
robot to move from one location to another. We assume thatG is an(i, j)-Grid (or a Grid, for short) where
i, j are two positive integers,i.e., G satisfies the following two conditions:

1. |V | = i× j, and

2. there exists an order on the nodes ofV , v1, . . . , vi·j, such that:

• ∀x ∈ [1..i × j], (x mod i) 6= 0 ⇒ {vx, vx+1} ∈ E, and

• ∀y ∈ [1..i× (j − 1)], {vy, vy+i} ∈ E.

We denote byn = i × j the number of nodes inG. We denote byδ(v) the degree of nodev in G.
Nodes of the grid are anonymous (we may use indices, but for notation purposes only). Moreover, given
two neighboring nodesu andv, there is no explicit or implicit labeling allowing the robots to determine
whetheru is either on the left, on the right, above, or belowv. Remark that an(i, j)-Grid and a(j, i)-Grid
are isomorphic. Hence, as the nodes are anonymous, we cannotdistinguish an(i, j)-Grid from a(j, i)-Grid.
So, without loss of generality, we always consider(i, j)-Grids, wherei ≤ j. Note also that any(1, j)-Grid
is isomorphic to a chain. In any(i, j)-Grid, if i = 1, then either the grid consists of one single node, or two
nodes are of degree 1 and all other nodes are of degree 2; otherwise, wheni > 1, four nodes are of degree 2
and all other nodes are of degree either 3 or 4. In any grid, thenodes of smallest degree are calledcorners.
In any(1, j)-Grid with j > 1, the unique chain linking the two corners is called theborderline. In any(i, j)-
Grid such thati > 1, there exist four chainsv1, . . . ,vm of length at least 2 such thatδ(v1) = δ(vm) = 2,
and∀x, 1 < x < m, δ(vx) = 3, these chains are also called theborderlines.

Robots. Operating onG arek ≤ n robots. The robots do not communicate in an explicit way; however
they see the position of the other robots and can acquire knowledge based on this information. We assume
that the robots cannot remember any previous observation nor computation performed in any previous step.
Such robots are said to beoblivious(or memoryless).

Each robot operates according to its (local)program. We callprotocola collection ofk programs, each
one operating on one single robot. Here we assume that robotsareuniform andanonymous, i.e., they all
have the same program using no local parameter (such as an identity) that could permit to differentiate them.
The program of a robot consists in executingLook-Compute-Move cyclesinfinitely many times. That is, the
robot first observes its environment (Look phase). Based on its observation, a robot then decides to move or
stay idle (Compute phase). When a robot decides to move, it moves from its current node to a neighboring
node during the Move phase.
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Computational Model. We consider two models: the semi-asynchronous and atomic model, ATOM [8,
21] and the asynchronous non-atomic model, CORDA [9, 18]. Inboth models, time is represented by an
infinite sequence of instants 0, 1, 2, . . . No robot has access to this global time. Moreover, every robot
executes cycles infinitely many times. Each robot performs its own cycles in sequence. However, the time
between two cycles of the same robot and the interleavings between cycles of different robots are decided by
anadversary. As a matter of facts, we are interested in algorithms that correctly operate despite the choices
of the adversary. In particular, our algorithms should alsowork even if the adversary forces the execution to
be fully sequential or fully synchronous.

In ATOM, each Look-Compute-Move cycle execution is assumedto be atomic: every robot that is
activated (by the adversary) at instantt instantaneously executes a full cycle betweent andt+ 1.

In CORDA, Look-Compute-Move cycles are performed asynchronously by each robot: the time be-
tween Look, Compute, and Move operations is finite yet unbounded, and is decided by the adversary. The
only constraint is that both Move and Look are instantaneous.

Remark that in both models, any robot performing a Look operation sees all other robots on nodes and
not on edges. However, in the CORDA, a robotR may perform a Look operation at some timet, perceiving
robots at some nodes, then Compute a target neighbor at some time t′ > t, and Move to this neighbor at
some later timet′′ > t′ in which some robots are at different nodes from those previously perceived byR
because in the meantime they moved. Hence, robots may move based on significantly outdated perceptions.

Of course, ATOM is stronger than CORDA. So, to be as general aspossible, in this paper, our impossi-
bility results are written assuming ATOM, while our algorithms assume CORDA.

Multiplicity. We assume that during the Look phase, every robot can perceive whether several robots are
located on the same node or not. This ability is calledMultiplicity Detection. We shall indicate bydi(t) the
multiplicity of robots present in nodeui at instantt. We consider two kinds of multiplicity detection: the
strongandweakmultiplicity detections.

Under theweakmultiplicity detection, for every nodeui, di is a functionN 7→ {◦,⊥,⊤} defined as
follows: di(t) is equal to either◦, ⊥, or ⊤ according toui contains none, one or several robots at time
instantt. If di(t) = ◦, then we say thatui is freeat instantt, otherwiseui is saidoccupiedat instantt. If
di(t) = ⊤, then we say thatui contains atowerat instantt.

Under thestrongmultiplicity detection, for every nodeui, di is a functionN 7→ N wheredi(t) = j

indicates that there arej robots in nodeui at instantt. If di(t) = 0, then we say thatui is freeat instantt,
otherwiseui is saidoccupiedat instantt. If di(t) > 1, then we say thatui contains atower (ofdi(t) robots)
at instantt.

As previously, to be as general as possible, our impossibility results are written assuming the strong
multiplicity detection, while our algorithms assume the weak multiplicity detection.

Configurations and Views. To define the notion ofconfiguration, we need to use an arbitrary order≺
on nodes. The system being anonymous, robots do not know thisorder. (Actually, this order is used in the
reasoning only.) Letv1, . . . , vn be the list of the nodes inG ordered by≺. The configuration at timet is
d1(t), . . . , dn(t). We denote byinitial configurationsthe configurations from which the system can start at
time 0. Every configuration where all robots stay idle forever is said to beterminal. Two configurations
d1, . . . , dn andd′1, . . . , d

′
n are indistinguishable(distinguishableotherwise) if and only if there exists an

automorphismf onG satisfying the additional condition:∀vi ∈ V , we havedi = d′j wherevj = f(vi).
Theviewof robotR at timet is a labelled graph isomorphic toG, where every nodeui is labelled by

di(t), except the node whereR is currently located, this latter nodeuj is labelled bydj(t), ∗. (Indeed, any
robot knows the multiplicity of the node where it is located.) Hence, from its view, a robot can compute the
view of all other robots, and decide whether some other robots have the same view as its own.
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Every decision to move is based on the view obtained during the last Look action. However, it may
happen that some edges incident to a nodev currently occupied by the deciding robot look identical in its
view, i.e., v lies on a symmetric axis of the configuration. In this case, ifthe robot decides to take one
of these edges, it may take any of them. As in related work (e.g., [9, 10, 16]), we assume the worst-case
decision in such cases,i.e. the actual edge among the identically looking ones is chosenby the adversary.

Execution. We model the executions of our protocol inG by the list of configurations through which the
system goes. So, anexecutionis a maximal list of configurationsγ0, . . . , γi such that∀j > 0, we have:

1. γj−1 6= γj .

2. γj is obtained fromγj−1 after some robots move from their locations inγj−1 to a neighboring node.

3. For every robotR that moves betweenγj−1 andγj , there exists0 ≤ j′ ≤ j, such thatR takes its
decision to move according to its program and its view inγj′ .

An executionγ0, . . . , γi is said to besequentialif and only if ∀j > 0, exactly one robot moves between
γj−1 andγj .

Exploration. We consider theexplorationproblem, wherek robots, initially placed at different nodes,
collectively explore an(i, j)-grid before stopping moving forever. By “collectively” explore we mean that
every node is eventually visited by at least one robot. More formally, a protocolP deterministically(resp.
probabilistically) solves the exploration problem if and only if every executione of P starting from atower-
lessconfiguration satisfies: (1)e terminates infinite time(resp. infinite expected time), and (2) every node
is visited by at least one robot duringe.

Observe that the exploration problem is not defined fork > n and is straightforward fork = n. (In this
latter case the exploration is already accomplished in the initial towerless configuration.)

3 Bounds

In this section, we first show that, except for trivial cases wherek = n, when robots are oblivious, the
model is atomic, and the multiplicity is strong, at least three robots are necessary to solve the (probabilistic
or deterministic) exploration of any grid (Theorem 1). Moreover, in a(2, 2)-Grid, four robots are necessary
(Theorem 2). Finally, at least five robots are necessary to solve the deterministic exploration of a(3, 3)-
Grid (Theorem 4). In the two next sections, we show that all these bounds are also sufficient to solve the
deterministic exploration in the asynchronous and non-atomic CORDA model.

Given that robots are oblivious and there are more nodes thanrobots, any terminal configuration should
be distinguishable from any possible initial (towerless) configuration. So, we have:

Remark 1 Any terminal configuration of any (probabilistic or deterministic) exploration protocol for a grid
of n nodes usingk < n oblivious robots contains at least one tower.

Theorem 1 There exists no (probabilistic or deterministic) exploration protocol in ATOM usingk ≤ 2
oblivious robots for any(i, j)-Grid made of at least3 nodes.

Proof. By Remark 1, there is no protocol allowing one robot to explore any(i, j)-Grid made of at least
2 nodes. Indeed, any configuration is towerless in this case.Assume by contradiction, that there exists a
protocolP in ATOM to explore with 2 oblivious robots an(i, j)-Grid made of at least 3 nodes. Consider a
sequential executione of P that terminates. (By definition, ifP is deterministic, all its executions terminates;
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Figure 1: Three possible configurations in a(3, 3)-Grid with a tower ofk robots.

while if P is probabilistic, at least one of its sequential execution must terminate.) Then,e starts from a
towerless configuration (by definition) and eventually reaches a terminal configuration containing a tower
(by Remark 1). Ase is sequential, the two last configurations ofe consist of a towerless configuration
followed by a configuration containing one tower. These two configurations form a possible sequential
execution that terminates while only two nodes are visited,thus a contradiction. ✷

Any (2, 2)-Grid is isomorphic to a 4-size ring. It is shown in [6] that no(probabilistic or deterministic)
exploration using less than four oblivious robots is possible for any ring of size at least four in ATOM. So:

Theorem 2 ([6]) There exists no (probabilistic or deterministic) exploration protocol usingk ≤ 3 oblivious
robots in ATOM for a(2, 2)-Grid.

Lemma 1 Considering any deterministic exploration protocolP in ATOM usingk oblivious robots for a
(3, 3)-Grid, there exist sequential executions ofP, e = γ0, . . . , γw, in which:

• For everyx, y with 0 ≤ x < y, γx andγy are distinguishable.

• Only the first configurationγ0 is towerless.

Proof. Consider any exploration protocolP in ATOM usingk oblivious robots for a(3, 3)-Grid. Consider
any sequential executione of P. By definition of the exploration,e is finite and starts from a towerless
configuration. Moreover, the terminal configuration ofe contains a tower, by Remark 1.

Take the last towerless configuration ofe and all remaining configurations that follow ine (all of them
contain a tower) and forme′. e′ is a possible sequential execution ofP where only the first configuration is
towerless.

Let e′ = α0, . . . , αm. Let two configurationsαx = dx1 , . . . , d
x
n andαy = d

y
1, . . . , d

y
n of e′, that are

indistinguishable with0 ≤ x < y. Then, by definition, there exists an automorphismf on G satisfying
the additional condition: Letv0, . . . , vr be the nodes ofV , for all s ∈ [0..r], we havedxs = d

y
ℓ where

vℓ = f(vs). Then,α0, . . . , αx, βy+1, βm is a possible sequential execution ofP such that∀z ≥ y + 1, we
haveβz = dz

g(1), . . . , d
z
g(n) whereg is a bijection such that∀s ∈ [1..n], f(vs) = vg(s) andαz = dz1, . . . , d

z
n.

Moreover, inα0, . . . , αx, βy+1, βm, the number of configurations indistinguishable fromαx decreases by
one. Repeating the same construction, we eventually obtaina possible sequential executione′′ = ρ0, . . . , ρw
of P starting from a towerless configuration only followed by configurations containing at least one tower
such that for everyx, y with 0 ≤ x < y, ρx andρy are distinguishable. ✷

Lemma 2 Considering any deterministic exploration protocolP in ATOM model usingk oblivious robots
for a (3, 3)-Grid, if there exists an execution ofP e = γ0 . . . γx . . . whereγx contains a tower ofk robots,
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then there exists an executione′ starting with the prefixe = γ0 . . . γx such that at most one new node can be
visited afterγx.

Proof. Assume the existence of an execution ofP e = γ0 . . . γx . . . whereγx contains a tower ofk
robots. Then,γx is notγ0 and is indistinguishable from configuration(a), (b), or (c) of Figure 1. In Figure
1, symbols inside the circles represent the multiplicity ofthe node and numbers next the circle are node’s
labels to help explanations only. Without loss of generality, assume thatγx is either configuration(a), (b),
or (c).

To visit a new node, one of the robots should eventually decide to move. Moreover, inγx, all robots
have the same view. So, the adversary can choose any of them tomove.

(1) Consider configuration(a). Then, all possible destinations for the robots are symmetric. So, the
adversary can activate the robots in a way we retrieve configurationγx−1. Then, it can activate robots
in a way that the system return toγx, and so on. Hence, in this case, there exists a possible execution
of P that is infinite, a contradiction. So, from(a), P cannot try to visit a new node.

(2) Consider configuration(b).

If robots synchronously move to node 5, node 5 may be unvisited. So, it is possible to visit a new
node, but then we retrieve Case(1). So, we can conclude that in this case from(b) only one new node
can be visited.

If robots synchronously move to node 1 (resp. 7), then this node may be unvisited. So, it is possible
to visit a new node. But, in node 1, all possible destinationsfor the robots are symmetric. So, the
adversary can activate the robots in a way that we retrieve the previous configuration, if we want to
visit another node. So, as for Case(1), we can conclude that no new node can be visited, that is from
(b) only one new node can be visited.

(3) Using a reasoning similar to case(1), we can conclude that from(c), P cannot try to visit a new node.

✷

Lemma 3 Assume that there exists a deterministic exploration protocolP in ATOM model using3 oblivious
robots for a(3, 3)-Grid. Consider any suffixγw, . . . , γz of any sequential execution ofP where:

• For everyx, y with 0 ≤ x < y, γx andγy are distinguishable.

• γw contains a tower of2 robots.

Then, at most 4 new nodes can be visited fromγw before a robot of the tower moves.

Proof. Proving this lemma is particularly tedious and error-pronebecause many cases must be taken into
account (positions of robots, symmetry classes, etc.). Theproof was thus completed as automatically as
possible, by using model-checking techniques. The method is briefly sketched here, a detailed presentation,
together with the source code and the necessary tools can be found on the web1. First, an operational model
of the problem is built: this model is a reactive program thatmanages an abstract view of the grid and robots,
according to a flow of (random) move commands. This model is restricted to the configurations relevant for
the property: an immobile two-robots tower and a mobile single robot. The reactive program (i.e., the
model) computes the consequences of the moves induced by theinput commands; in particular, it takes
trace of thevisitednodes, and the encountered indistinguishable configuration classes. As soon as such a

1
http://www-verimag.imag.fr/˜raymond/misc/robots/.

7



class has been reached twice, a flagstuckis raised. And, all along the execution, avalidity flag is computed
that way: stuck⇒ number of newvisitednodes is≤ 4. A model-checker tool is then used to check the
following invariant: whatever be a sequence of input move commands,valid remains true. In other terms,
the invariance ofvalid is sufficient to establish that, starting from any configuration with a tower and a single
moving robot, at most 4 new nodes can be visited before the configuration becomes indistinguishable from
some already encountered configuration. Concretely, the model is written in the Lustre language [12, 19],
and is itself partially generated by a ”meta” program written in oCaml (which computes, in particular, the
classes). The source is made of approximately 150 lines of oCaml, and 100 lines of Lustre. The invariance
checking is performed by the model-checker from the lustre distribution. ✷

Theorem 3 There exists no deterministic exploration protocol in ATOMusingk ≤ 3 oblivious robots for a
(3, 3)-Grid.

Proof. According to Theorem 1, we only need to consider the case of3 robots.
Assume that there exists an exploration protocolP in ATOM for a (3, 3)-Grid using 3 robots. By

Lemma 1, there exists a sequential executione = γ0, . . . , γw that starts from a towerless configuration, only
followed by configurations containing at least one towers, and such that for everyx, y with 0 ≤ x < y, γx
andγy are distinguishable.

In γ0, 3 nodes are visited. The execution being sequential, no newnode is visited in the first step where
a tower of two robots is created. So, inγ1, 3 nodes are visited and there exists a tower of two robotsR1 and
R2.

• Assume thatR1 andR2 never moved afterγ1. Then, by Lemma 3, at most 4 new nodes are visited
until the termination ofe. So, at the termination ofe, at most 7 distinct nodes have been visited, a
contradiction.

• Assume thatR1 orR2 eventually moved. Letγℓ the first configuration from whichR1 or R2 moves.
From the previous case, at most 7 distinct nodes have been visited beforeγℓ. The execution being
sequential, only one robot of the tower moves during the stepfrom γℓ to γi+1 and as ine only the first
configuration is towerless, that robot moves to an occupied node. Now, the view ofR1 andR2 are
identical inγℓ. So, there exists an executione′ starting from the prefixγ0, . . . , γℓ where bothR1 and
R2 move fromγℓ to the same occupied node. As no new node is visited during thestep, still at most
7 nodes are visited once the system is in the new configurationand this configuration contains a tower
of 3 robots. By Lemma 2, at most one new node is visited from this latter configuration. So, at the
termination ofe′, at most 8 distinct nodes have been visited, a contradiction.

✷

Theorem 4 There exists no deterministic exploration protocol in ATOMusingk ≤ 4 oblivious robots for a
(3, 3)-Grid.

Proof. According to Theorem 3, we only need to consider the case of4 robots.
Assume, by the way of contradiction, that there exists an exploration protocolP for a (3, 3)-Grid with 4

robots in ATOM.
Figure 2 depicts three possible configurations for a(3, 3)-Grid with 4 robots. In Figure 2, symbols

inside the circles represent the multiplicity of the node and numbers next the circle are node’s labels to help
explanations only. Note that both Configuration(a) and(b) can be initial configuration.

From now on, consider any synchronous execution ofP (synchronous executions are possible in the
asynchronous model) starting from configuration(a). By “synchronous” we mean that robots execute each
operation of each cycle at the same time.
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Figure 2: Three possible configurations in a(3, 3)-Grid with 4 robots. Numbers inside the circles represent
the multiplicity of the node. Numbers near the circles are node’s labels that are used to ease the explanations
only.

Configuration(a) is not a terminal configuration by Remark 1. So at least one robot move in the next
Move operation. Moreover, the views of all robots are identical in (a). So, every robot moves in the next
Move operation. Two cases are possible:

• Every robot moves to Node 5 and the system reaches Configuration (c). In this case, none of the
corners has been visited, so Configuration(c) is not terminal and at least one robot moves in during
the next Move operation. Moreover, the views of all robots are identical, so every robot moves in the
next Move operation. Each robot cannot differentiate its four possible possible destinations. So, the
adversary can choose destinations so that the system reaches configuration(a) again.

• Every robot moves to a corner node and as its view is symmetric, the destination corner is chosen be
the adversary. In this case, the adversary can choose destinations so that the system reaches config-
uration(b). Configuration(b) being not terminal, at least one robot moves in during the next Move
operation. Moreover, the views of all robots are identical,so every robot moves in the next Move
operation. Each robot cannot differentiate its two possible possible destinations. So, the adversary
can choose to destinations so that the system reaches configuration(a) again.

From the two previous case, we can deduce that there exist executions ofP that never terminates, soP is
not an exploration protocol, a contradiction. ✷

4 Deterministic solution using three robots

In this section, we focus on solutions for the exploration problem that use three robots only, in CORDA, and
assuming weak multiplicity detection. Recall that there exists no deterministic solution for the exploration
using three robots in a(2, 2)- or (3, 3)-grid assuming that model (Section 3). Moreover, exploringa (3, 1)-
grid using three robots is straightforward. So, we considerall remaining cases. We split our study in two
cases. A general deterministic solution for any(i, j)-grid such thatj > 3 is given in Subsection 4.1. The
particular case of the(2, 3)-grid is solved in Subsection 4.2.

4.1 General Solution

Overview. Our deterministic algorithm works according to the following three main phases:

Set-Up phase: The aim of this phase is to create a single line of robots starting at a corner and along one
of the longest borderlines of the grid — refer to Figure 3. Letus refer to this configuration as the
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Figure 3:Set-Up Configuration

(0,3) (0,4) (0,5) (0,6)

(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)(1,0)

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,2)

(3,6)(3,5)(3,4)(3,3)(3,2)(3,1)(3,0)

(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(4,0)

(0,0) (0,1) (0,2)

Figure 4: Coordinate system built by the
Orientation phase

Set-Up configuration. The phase can be initiated from any arbitrarytowerless configuration that is
not aSet-Up configuration. Note that no tower is created during this phase.

Orientation phase: This phase follows theSet-Up phase. Starting from aSet-Up configuration,
this phase aims at giving an orientation to the grid. To achieve that, one tower is created allowing the
robots to establish a common coordinate system — refer to Figure 4. The resulting configuration is
called anOriented configuration.

Exploration phase: This phase starts from anOriented configuration in which exactly one node is
occupied by one single robot, calledExplorer. Based on the coordinate system defined during the
Orientation phase, the explorer visits all the nodes, except three already visited ones — refer to
Figure 6, page 17.

We now describe the three above phases in more details.

Set-Up Phase. Starting from any towerless configuration, theSet-Up phase ends in aSet-Up config-
uration, where there is a single line of robots starting at a corner and along a longest borderline of the grid.
In this phase, we distinguish three main configurations:

Leader: In such a configuration, there is exactly one robot located ata corner of the grid.

Choice: In such a configuration, at least two robots are located at a corner of the grid. We choose one of
them to remain at a corner. The other ones have to leave their corner.

Undefined: In such a configuration, there is no robot at any corner of the grid. The idea is then to elect
one robot that will move to join a corner of the grid.

In the following, we present the behavior of the three robots, respectively referred to asR1,R2, and
R3,2 in each of the main configurations. These configurations are declined into several subconfigurations.

1. The configuration is of typeLeader: In such a configuration, there is exactly one robot that is ata
corner of the grid. LetR1 be this robot. We consider the following subcases:

A) The configuration is of typeStrict-Leader: In such a configuration, there is no other robot
on any borderline having the corner whereR1 is located as extremity. In this case, the robots that
are the closest toR1 are the ones allowed to move. Their destination is their adjacent free node on a
shortest path towards the closest free node that is on a longest borderline having the corner whereR1
is located as extremity. (If there is several shortest paths, the adversary makes the choice.)

B) The configuration is of typeHalf-Leader: In such a configuration, amongR2 andR3, only one
robot, sayR2, is on a borderline having the corner whereR1 is located as extremity. Two subcases
are possible:

2Recall that robots are anonymous, so these notations are used to ease the explanations only.
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• The configuration is of typeHalf-Leader1: R2 is on a longest borderline. In this case, the
third robotR3 is the one allowed to move. Its destination is an adjacent free node towards a
closest free node on the borderline that contains bothR1 andR2. (If there is several shortest
paths, the adversary makes the choice.)

• The configuration is of typeHalf-Leader2: R2 is not on the longest borderline. In this case,
R2 is the one allowed to move, its destination is the adjacent free node outside the borderline,
if any. In the case where there is no such a free node,R2 moves to a free node on its own
borderline (In case of symmetry, the adversary makes the choice.)

C) The configuration is of typeAll-Leader: All the robots are on a borderline having the corner
whereR1 is located as extremity. In this case,R2 andR3 are not necessary on the same borderline.
Thus, we have two subcases:

• The configuration is of typeFully-Leader: In such a configuration, all the robots are on the
same borderline,D1. The two following subcases are then possible:

(i) The configuration is of typeFully-Leader1: In this case,D1 is a longest borderline.
If the robots form a line, then theSet-Up configuration is reached and the phase is done.
Otherwise, letR2 be the closest robot fromR1. If R1 andR2 are not neighbors, thenR2 is the
only allowed to move and its destination is the adjacent freenode towardsR1. In the other case,
R3 is the only robot allowed to move and its destination is the adjacent free node towardsR2.

(ii) The configuration is of typeFully-Leader2: In this case,D1 is not the longest bor-
derline. Then, the robot amongR2 andR3 that is the closest toR1 leaves the borderline by
moving to its neighboring free node outside the borderline.

• The configuration is of typeSemi-Leader: R2 andR3 are not on the same borderline. Two
subcases are possible:

(i) The configuration is of typeSemi-Leader1: In this case,i 6= j. The unique robot among
R2 andR3 which is located on the smallest borderline moves to the adjacent free node outside
its borderline.

(ii) The configuration is of typeSemi-Leader2: In this case,i = j. Let denote byDist(R,R′)
the distance(that is, the length of a shortest path) in the grid between the two nodes whereR
andR′ are respectively located. IfDist(R1,R2) 6= Dist(R1,R3) then the robot amongR2
andR3 that is the closest toR1 is the only one allowed to move, its destination is the adjacent
free node outside the borderline. Otherwise (Dist(R1,R2) = Dist(R1,R3)), either (a) there
is a free node betweenR1 andR2, or (b)R1 is both neighbor ofR2 andR3. In case (a),R1
is the only robot allowed to move and its destination is the adjacent free node towards one of
its two borderlines (the adversary makes the choice). In case (b),R2 andR3 move and their
destination is their adjacent free node on their borderline.

2. The configuration is of typeChoice: At least two robots are located at a corner. We consider two
cases:

A) The configuration is of typeChoice1: In this configuration, there are exactly two robots that are
located at a corner of the grid. LetR1 andR2 be these robots.

• In the case whereR3 is on the same borderline as eitherR1 or R2 but not both — suppose
R1 — thenR2 is the one allowed to move, its destination is the adjacent free node towards the
closest free node of the borderline that contains bothR1 andR3.

• In the case where the three robots are on the same borderline.Then:
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(i) If Dist(R1,R3) 6= Dist(R2,R3), then the robot amongR1 andR2 that is farthest toR3
moves to the adjacent free node on the borderline towardsR3.
(ii) Otherwise (Dist(R1,R3) = Dist(R2,R3)), andR3 has either or not an adjacent free
node on the borderline. In the former case,R3 moves to an adjacent free node on the borderline
towards eitherR1 or R2 (the adversary makes the choice). In the latter case,R3 moves to its
adjacent free node outside the borderline.

• If R3 is not on any borderline, it moves to an adjacent free node on ashortest path towards
the closest free node that is on a longest borderline that contains eitherR1 or R2. (In case of
symmetry, the adversary makes the choice.)

B) The configuration is of typeChoice2: In this configuration, all the robots are located at a corner.
The robot allowed to move is the one that is located at a node that is common to the two borderlines
of the other robots. LetR1 be this robot. The destination ofR1 is the adjacent free node on a longest
borderline. (In case of symmetry, the adversary makes the choice.)

3. The configuration is of typeUndefined: In this configuration, there is no robot that is located at
any corner. The cases below are then possible:

A) The configuration is of typeUndefined1: In this case,i = j and there is one borderline that
contains two robotsR1 andR2 such thatR1 is closer from a corner thanR2 andR3. Let D1 be
this borderline.R3 is the only one allowed to move and its destination is an adjacent free node on
a shortest path towards a closest free node ofD1. (If there are several shortest paths, the adversary
makes the choice.)

B) The configuration is of typeUndefined2: It is any configuration different fromUndefined1,
where there is exactly one robot that is the closest to a corner. In this case, this robot is the only one
allowed to move, its destination is an adjacent free node on ashortest path to a closest corner. (If there
are several possibilities, the adversary makes the choice.)

C) The configuration is of typeUndefined3: There are exactly two robots that are closest to a
corner. LetR1 andR2 be these two robots.

• If Dist(R1,R3) = Dist(R2,R3) thenR3 is the only one allowed to move, and eitherDist(R1,
R3) = 1 or Dist(R1,R3) > 1. In the former case,R3 moves to an adjacent free node. (If
there are two possibilities, the adversary make the choice.) In the latter case,R3 moves to an
adjacent free node that is on a shortest path towards eitherR1 orR2 but not both.

• If Dist(R1,R3) 6= Dist(R2,R3) then the robot amongR1 andR2 that is closest toR3 is the
only one allowed to move. Its destination is the adjacent free node that is on a shortest path to a
closest corner. (If there are several possibilities, the adversary makes the choice.)

D) The configuration is of typeUndefined4: There are three robots that are closest to a corner.
Again, four cases are possible:

• The configuration is of typeUndefined4-1: There is exactly one robot that is on a borderline.
In this case, this robot is the only one allowed to move. Its destination is an adjacent free node
that is on a shortest path to a closest corner. (In case of two shortest paths, the adversary breaks
the symmetry in the first step.)

• The configuration is of typeUndefined4-2: In such a configuration, there are exactly two
robots on a borderline. LetR1 andR2 be these two robots. The robot allowed to move isR3.
Its destination is the adjacent free node towards a closest corner. (The adversary may have to
break the symmetry.)
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C1 C2

R1 R2

R3

Figure 5: Sample of a configuration of typeUndefined4-4

• The configuration is of typeUndefined4-3: The three robots are on borderlines of the grid.

(i) If there are more than one robot on the same borderline. In this case, there are exactly two
robots on the same borderline, and letR1 andR2 be these robots. ThenR3 is the only one
allowed to move and its destination is an adjacent free node towards a closest corner. (The
adversary may have to break the symmetry.)

(ii) If there is at most one robot on each borderline: Exactly one borderline is perpendicular to
the two others. The robot on that borderline is the only one allowed to move and its destination
is the adjacent node towards a closest corner. (The adversary may have to break the symmetry.)

• The configuration is of typeUndefined4-4: In this case, there is no robot on any borderline.

(i) In the case where there are two robots,R1 andR2, that are closest to the same corner, and
this corner is not a closest corner toR3, thenR3 is the only robot allowed to move and its
destination is an adjacent free node on a shortest path towards a closest corner. (If there are
several possibilities, the adversary makes the choice.)

(ii) In the case where there are two robots,R1 andR2, that are closest to cornersC1 andC2,
respectively, whereC1 6= C2, andR3 is closest to bothC1 andC2, thenR3 is the only one
allowed to move (refer to Figure 5), and it moves towardC1 or C2 according to a choice of the
adversary.

(iii) In the case where all the robots are closest to different corners, there is one robotR1 whom
corner is between the two other targeted corners ofR2 andR3. The robot allowed to move is
R1, its destination is an adjacent free node on a shortest path towards its closest corner. (If there
are several shortest paths, the adversary makes the choice.)

The correctness of theSet-Up phase is established by Lemmas 4 and 8.

Lemma 4 Starting from any arbitrary towerless configuration,Set-Up phase does not create any tower.

Proof. It is clear that in the case where one robot is allowed to move,no tower is created because the robot
always moves to an free adjacent node. Thus lets consider thecases in which there are at least two robots
that are allowed to move:

• The configuration is of typeStrict-Leader: Suppose that the robot that is at the corner isR1,
and the two other ones (that are neither at a corner nor at the same borderline asR1) areR2 andR3,
respectively.R2 andR3 are allowed to move at the same time only in the case they are atthe same
distance fromR1. Since their destination is their adjacent free node on the shortest path towards the
longest borderline that containsR1, we are sure that the both will move to different free nodes. Thus
no tower is created in this case.

• The configuration is of typeSemi-Leader2: we consider the case in whichDist(R1,R2) =
Dist(R1,R3) such as there is no free node betweenR1 and bothR2 andR3 respectively. It is
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clear that if the adversary activates them at the same time notower is created since they move to
their adjacent free node on the borderline they belong to, inthe opposite direction ofR1 (recall that
they are in two different borderlines). In the case the adversary activates only one robot (R2), no
tower is created as well since it moves to its adjacent free node on the borderline it belongs to (note
that is this casei = j). Note that the configuration reached remains of type Semi-leader2, however,
Dist(R1,R2) 6= Dist(R1,R3). Thus the robot that is allowed to move now isR3, which is the one
that was supposed to move at the first place. Thus either we retrieve the configuration in which both
robots moved (this will happen in the caseR3 has an outdated view). Or the configuration reached is
of type Half leader1 and all the robots have a correct view.

From the cases above we can deduce that starting from any configuration that is towerless,Set-Up
phase does not create any tower and the lemma holds. ✷

Lemma 8 is established using the following three technical lemmas.

Lemma 5 Starting from a configuration of typeLeader, a configuration of typeSet-Up is reached in a
finite time.

Proof. In a configuration of typeLeader, there is only one robot that is at the corner (suppose that
this robot isR1). It is easy to see that in the casei 6= j all the robots will be on the longest borderline
that containsR1 (refer to Strict Leader, HalfLeader1 configurations). Oncethe robots on the same longest
borderline, it is also easy to create a line of robots keepingone robot at the corner. (The robot (R2) that is
the closest toR1 moves first until it becomes neighbor ofR1. Once it is done, the remaining robot (R3)
moves to become neighbor ofR2.) Hence we are sure that a configuration of typeSet-Up is reached in a
finite time. In the casei = j when the robots move to the closest borderline that containsR1 either we have
the same result as wheni 6= j (all the robots will be on the same borderline) and hence we are sure to reach
a configuration of typeSet-Up. Or, each robotR2 andR3 is on the same borderline asR1, however both
of them are on different borderlines. The sub-cases are thenpossible as follow:

1. Dist(R1,R2) 6= Dist(R1,R3). In this case, the robot that is the closest toR1 moves to its adjacent
node outside its own borderline (Let this robot beR2). Note that when it moves, its new destination is
the closest free node on the same borderline as bothR1 andR3 (seeSemi-Leader2configuration).
Thus we are sure thatR2 will be on the same borderline ofR1 andR3 in a finite time, thus we are
sure that theSet-Up configuration is reached in a finite time.

2. Dist(R1,R2) = Dist(R1,R3). The two sub-case below are possible:

(a) There is an free node betweenR1 and the other robots.R1 is the one that will move, its
destination is its adjacent free node on one of its two adjacent borderlines (Suppose that it moves
towardsR2). Note that once it has moved, all the robots are in a borderline such as there is one
borderline that contains two robots (R1 andR2), let D1 be this borderline (the configuration
is of type Undefined1). The robot allowed to move isR3 (Note thatR3 is not part of
D1), its destination is its adjacent free node on a shortest path towards the closest free node of
D1. Once it moves, it becomes at the same distance asR1 from a corner. The configuration
becomes of typeUndefined3 such thatDist(R1,R2) 6= Dist(R1,R3). R1 is the only one
allowed to move, its destination is its adjacent empty node towards the corner. Once it moves,
it joins one corner of the grid. The configuration becomes of typeSemi-Leader2 such that
Dist(R1,R2) 6= Dist(R1,R3). R3 is the only robot allowed to move, its destination is its
adjacent free node outside the borderline it belongs to. Once it moves, its new destination will
be the borderline that contains two robots. Thus, we are surethat all the robots will be part of
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the same borderline in a finite time. It is clear that from thisconfiguration is easy to build a
configuration of typeSet-Up. (Note that it is easy to break the symmetry,if any, since we have
three robots.)

(b) There is no free node betweenR1 and the other robotsR2 andR3. In this case,R2 andR3 will
be the ones allowed to move. Their destination is their adjacent free node on their borderline.
In the case the adversary activates them at the same time, we retrieve case 2a. If the adversary
activates only one of the two robots, the configuration reached will be of typeSemi-Leader2
such asDist(R1,R2) 6= Dist(R1,R3), thus, The robot that is the closest toR1 is the one that
is allowed to move. (Note that this robot is the one that was supposed to move at the first place.)
If it has an outdated view it will move to its adjacent free node and we retrieve case 2a. If not,
it will move to its adjacent free node outside its borderline. When it does, its new destination
is the closest free node on the same borderline of the two other robots. Note that when such a
robot joins the new borderline, the configuration is of typeSet-Up.

From the cases above, we can deduce that starting from a configuration of typeLeader, a configuration of
typeSet-Up is reached in a finite time and the lemma holds.

✷

Lemma 6 Starting from a configuration of typeChoice, a configuration of typeLeader in reached in a
finite time.

Proof. It is clear that in the case where all the robots are on one corner of the grid, the next configuration
reached is of typeChoice1 since there will be a single robot that will move (refer to Configuration of type
Choice2). Note that when the configuration is of typeChoice1 the cases below are possible (Let the
robots that are at the corner beR1 andR2 respectively and the third robot beR3):

1. R3 is on the same borderlineD1 asR1 (Note that in this caseR2 is not onD1). In this case,R2 is
the one allowed to move. Note that once it moves, it leaves thecorner and the configuration will be of
typeLeader (refer toChoice1, case (i)).

2. All the robots are on the same borderlineD1. In this case, the robotsR3 will be used to elect
one of the two robots at the corner (refer toChoice1 configuration case (ii)). IfDist(R1,R3) 6=
Dist(R2,R3) then the robot that is the farthest fromR3 leaves the corner, thus, the configuration will
contain a single robot that is at one corner. Hence the configuration will be of typeLeader in a finite
time. In the caseDist(R1,R3) = Dist(R2,R3), (a) if there is at least one empty node between
R1 andR3 thenR3 will be the one allowed to move on the borderline towards either R1 or R2
breaking the symmetry. Thus, we retrieve the case in whichDist(R1,R3) 6= Dist(R2,R3). (b) In
the case where there is no empty nodes betweenR1 andR3, thenR3 is the one allowed to move. Its
destination is its adjacent node outside the borderline. Once it moves, it remains the only one allowed
to move in the configuration reached. Its destination is its adjacent node on a shortest path towards the
closest free node that is on a longest borderline that contains eitherR1 or R2 (the adversary makes
the choice). Once it moves we retrieve the case in whichDist(R1,R3) 6= Dist(R2,R3). Thus we
are sure that a configuration of typeLeader is reached in a finite time.

3. R3 is not on a borderline. In this case,R3 is the one allowed to move. Its destination is its adjacent
free node on a shortest path towards the closest longest borderline that contains eitherR1 or R2.
Thus we are sure that one of the two cases described above willbe reached (refer toChoice1
configuration, case (iii)).
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From the cases above we can deduce that a configuration of typeLeader is reached in a finite time and
the lemma holds. ✷

Lemma 7 Starting from a configuration of typeUndefined, a configuration of typeLeader is reached
in a finite time.

Proof. It is clear that in the case where the configuration is of typeUndefined2, we are sure to reach
a configuration of typeLeader in a finite time, since there is only one robot that is the closest to one
corner (this robot will move until it reaches the closest corner). It is also clear that in the case where the
configuration is of typeUndefined1, either a configuration of typeUndefined2 is reached and hence
a configuration of typeLeader is eventually reached or a configuration where there are two robots that are
both the closest to a corner is reached, this case is part of the cases below:

1. There are exactly two robots that are the closest to one corner (let these two robots beR1 andR2
respectively). In this case,R3 will be used to break the symmetry: In the caseDist(R1,R3) =
Dist(R2,R3), R3 will be the one allowed to move, it destination is its adjacent node towards either
(a) R1 or R2 if Dist(R1,R3) > 1. Or (b) its adjacent free node from which its distance toR1
will be different from its distance toR2. In both cases (a andb), we reach a configuration where
Dist(R1,R3) 6= Dist(R2,R3). In the caseDist(R1,R3) 6= Dist(R2,R3), the robot that is the
closest toR3 will be the one allowed to move, its destination is its adjacent free node on a shortest
path towards the corner. Note that once it has moved, either it reaches the corner or it becomes the
closest one. Thus we are sure that a configuration of typeLeader is reached in a finite time.

2. All the robots are the closest to a corner. If the configuration is of typeUndefined4-1, then there
will be one robot that will be allowed to move (the one that is on a borderline), once it has moved,
it becomes the closest to one corner of the grid, thus we are sure to reach a configuration of type
Leader in a finite time. In the case there are two robots at a borderline, The third robot (which is
not on a borderline) is the one that will move becoming the closest robot to one corner of the grid.
Thus in this case too, we are sure to reach a configuration of typeLeader. In the case all the robots
are on a borderline then, i) if there is more than one robot on the same borderline (note that in this
case the borderline contains two robots), the robot that is not part of the borderline moves towards
the closest corner becoming the closest one, thus we are surethat a configuration of typeLeader
is reached in a finite time. In the case there is one robot at each borderline, then one robot is easily
elected to move becoming the closest to one corner of the grid. Thus, in this case too we are sure to
reach a configuration of typeLeader in a finite time. In the case there is no robot on the borderline.
If there are two robots that are the closest to the same cornersuch as the third robot is the only closest
robot to another corner then this robot is the one allowed to move, when it does it becomes the only
one that is the closest to one corner of the grid. Thus we are sure to reach a configuration of type
Leader. In the case there is one robot (R3) that is the closest to both cornersC1 andC2 such as
R1 andR2 are also the closest toC1 C2 respectively, thenR3 is the one allowed to move towards
one of the closest corner. Note that once it has moved, it becomes the closest one and hence we are
sure that a configuration of typeLeader is reached in a finite time. In the case all the robots are the
closest to different corner, we are sure that one of them is the closest one to one corner that is between
the two other target corners (the closest to the other robots). This robot is the one allowed to move,
its destination is its adjacent free node towards the closest corner. Note that one it moves it becomes
either even closer (and hence it will be the only one that can move) or it will reach the corner. In both
cases we are sure that a configuration of typeLeader is reached.

From the cases above we can deduce that starting from a configuration of typeUndefined, a configu-
ration of typeLeader is reached in a finite time and the lemma holds.
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✷

Lemma 8 Starting from any towerless configuration, a configuration of typeSet-Up is reached in a finite
time.

Proof. From Lemma 5, 6 and 7 we can deduce that starting from any arbitrary towerless configuration that
does not contain a line of robots on the longest line of the grid, a configuration of typeSet-Up is reached
in a finite time and the lemma holds. ✷

Orientation Phase. In this phase, an orientation of the grid is determined in thefollowing manner: The
starting configuration contains a line of robots on one of thelongest borderline (of length greater than 3)
starting at one of its corner. The robot which is at the corneris the one allowed to move, its destination is
its adjacent occupied node. Once it has moved, a tower is created. Then, we can determine a coordination
system where each node has unique coordinates, see Figure 4,page 10. The node with coordinates(0, 0)
is the unique corner that is the closest to the tower. The X-axis is given by the vector linking the node
(0, 0) to the node where the tower is located. The Y-axis is given by the vector linking the node(0, 0) to its
neighboring node that does not contain the tower.

The following lemma is straightforward:

Lemma 9 Starting from a configuration of typeSet-Up, a configuration of typeOriented is reached in
one step.

Figure 6: Exploration phase

Exploration Phase. This phase starts from anOriented configura-
tion. Note that, once this configuration is reached, nodes ofcoordinates
(0, 0), (0, 1), and(0, 2) have been necessarily visited. Then, the goal is
to visit all other nodes. To ensure that the exploration phase remains dis-
tinct from the previous phases and keep the coordinate system, we only
authorize the robot that is single on a node to move. This robot is called
theexplorer.

To explore all remaining nodes, the explorer should order all coor-
dinates in such a way that (a)(0, 0) and (0, 1) are before its initial position (that is(0, 2)) and all other
coordinates are after; and (b) for all non-maximum coordinates (x, y), if (x′, y′) is successor of(x, y) in
the order, then the nodes of coordinates(x, y) and(x′, y′) are neighbors. Such an order can be defined as
follows:

(a, b) � (c, d) ≡ b < d ∨ [b = d ∧ ((a = c) ∨ (b mod 2 = 0 ∧ a < c) ∨ (b mod 2 = 1 ∧ a > c)]

Using the order�, the explorer moves as follows: While the explorer is not located at the node having the
maximum coordinates according to�, the explorer moves to the neighbor whose coordinates are successors
of the coordinates of its current position, as described in Figure 6.

The following lemma is straightforward:

Lemma 10 TheExploration phase terminates in finite time and once terminated all nodeshave been
visited.

By Lemmas 4-10, follows:

Theorem 5 The deterministic exploration of any(i, j)-Grid with j > 3 can be solved in CORDA using 3
oblivious robots and the three phasesSet-Up, Orientation, andExploration.
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4.2 Exploring a (2,3)-Grid

The idea of the solution for the(2, 3)-Grid is rather simple. Consider the two longest borderlines of the grid.
Since there are initially three isolated robots on the grid,there exists one of the two longest borderlines, say
D, that contains either all the robots or exactly two robots. In the second case, the robot that is not part of
D moves to the adjacent free node on the shortest path towards the free node ofD. Thus, the three robots
are eventually located onD. Next, the robot not located on any corner moves to one of its two neighboring
occupied nodes (the destination is chosen by the adversary). Thus, a tower is created. Once the tower is
created, the grid is oriented. Then, the single robot moves to the adjacent free node in the longest borderline
that does not contain any tower. Next, it explores the nodes of this line by moving in towards the tower.
When it becomes neighbor of the tower, all the nodes of the(2, 3)-Grid have been explored.

The following theorem is straightforward.

Theorem 6 The deterministic exploration of a(2, 3)-Grid can be solved in CORDA using 3 oblivious
robots.

5 Deterministic solution for a (3,3)-grid using five robots

1 2 3

5 6 7

4

Figure 7: Exploration task on grids(3, 3)

In this section, we propose an algorithm that explores usingfive robots the(3, 3)-Grid, in CORDA and
assuming weak multiplicity detection. The algorithm worksin two phases, theExploration phase and
thePreparation phase. Figures 7 and 8 depict theExploration phase.

The Exploration phase starts from any of the three special configurations shown in Figure 7-
Case(1), Figure 8-Case(1a), and Figure 8-Case(1b), respectively. In the former case, the unique robot
that is (1) on a borderline, (2) not at a corner, and (3) not on the borderline linking the two occupied corners,
moves toward the center. In Case(1a) of Figure 8, the unique robot located at a corner moves towardone of
its neighbors (chosen by the adversary). Similarly, in Case(1b) in Figure 8, the robot located at the center
moves toward one of its neighbors. In the three cases, one tower is created and the system reaches Case2 of
either Figure 7 or Figure 8, depending on the initial configuration. Next, the exploration is made following
the moves depicted in either Figure 7 or Figure 8, respectively.
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Figure 8: Special Exploration of grids(3, 3)

ThePreparation phase starts from any towerless configuration that is not oneof the three initial
configurations of the exploration phase. ThePreparation phase aims at reaching one of these three
configurations. The detailed algorithm of this phase is leftas an exercise for the reader — a solution is given
in the appendix.

Theorem 7 The deterministic exploration of a(3, 3)-Grid can be solved in CORDA using 5 oblivious
robots.

6 Conclusion

We presented necessary and sufficient conditions to explorea grid-shaped network with a team ofk asyn-
chronous oblivious robots. Our results show that, perhaps surprisingly, exploring a grid is easier than ex-
ploring a ring. In the ring, deterministic (respectively, probabilistic) solutions essentially require five (resp.,
four) robots. In the grid, three robots are necessary (even in the probabilistic case) and sufficient (even in the
deterministic case) in the general case, while particular instances of the grid do require four or five robots.
Note that the general algorithm given in that paper requiresexactly three robots. It is worth investigating
whether exploration of a grid ofn nodes can be achieved using any numberk (3 > k ≥ n− 1) of robots, in
particular whenk is even.
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A Preparation phase of the algorithm working with 5 robots in the (3, 3)-
Grid

The aim of thePreparationphase is to reach one of the special configurations, where theExploration

phase can start. It starts from an arbitrary towerless configuration that is not one of the three initial configu-
rations shown in either Figure 7 or Figure 8.

Figure 9: Configuration(3, 1, 1) Figure 10: Instance of a configuration(2, 1, 2)

Figure 11: Instance of a configuration(2, 1, 2) Figure 12: Instance of a configuration(2, 1, 2)

Let us define some terms that will be used later: let the interdistanced be the minimal distance among
distances between each pair of robots. We call a d.block a sequence of consecutive robots that are at distance
d. The size of an 1.block is the number of robots it contains. Werefer to a configuration by a set of three
values(X1,X2,X3) such asXi represents the number of robots on the linei. Note that X1 and X3 are
borderlines. Since the grid is of size(3, 3), we do not know which borderlines correspond toX1 andX3.
Some ambiguities can appear and thus for the same configuration there will be many possible sequences
(X1,X2,X3). The robots could be confused not knowing which action to take. To avoid this situation, we
will use the following method: First we will choose one or twoguide lines in the following manner: the
line that contains the d.biggest d.block of robots is elected as a guide line. Note that the guide line can only
contain two or three robots. In the case there are two possible guide lines that are perpendicular to each
other, then i) in the case only one of this two guide lines is atthe borderline of the grid, then this line is the
guide line. ii) In the other case, the guide line is elected asfollow: Let D1 be one possible guide line and
D2, D3 be the lines that are horizontal toD1. In the same manner letD′1 be the other possible guide line
andD′2, D′3 be the lines that are horizontal toD′1. LetB be the number of the biggest d.blocks on the lines
Di andB′ be the number of the biggest d.blocks on the linesD′i. The guide line is the one corresponding to
the biggest value amongB andB′. For Instance in Figure 13, the configuration can be(2, 1, 2) or (2, 2, 1).
We can see thatd = 1, and the size of the biggest 1.block is equal to2. Note that there is an 1.block of size
2 on two borderlines that are perpendicular to each other (onD3 andD′1 —refer to Figure 13). LetB be
the number of 1.blocks on the lines that are horizontal toD3, clearlyB = 2. In the same manner, letB′

be the number of 1.blocks of size2 on the lines that are horizontal toD′1 (clearlyB′ = 1). We can see
thatB > B′, thus the guide lines are bothD3 andD1 (The lines that are considered are the ones that are
horizontal toD3 andD1). Thus the configuration is of type(2, 1, 2).

The triple set(X1,X2,X3) refer then to the number of robots that are horizontal to the guide lines.
The following cases are then possible:

• The configuration is of type(1, 1, 3). Two sub-cases are possible: i) The configuration is similarto the
one shown in Figure 9. It is clear that in this case no guide line can be determined. The robots allowed
to move are the ones that are at the corner having one free nodeas a neighbor, their destination is
their adjacent free node on the borderline they belong to. ii) The remaining cases: One line can be
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elected as the guide line, this line is the one that contains an 1.block of size3 (X3). The robot that is
alone on the borderline (X1) is the one allowed to move, its destination is its adjacent free node on
the shortest path towards the middle line (the one that containsX2). Note that in a case of symmetry,
the adversary will break the symmetry by choosing one of the two possible neighboring nodes.

• The configuration is of type(1, 2, 2). The robot that is alone on the borderline (X1) is the one allowed
to move, its destination is its adjacent free node on the shortest path towards the free node on the line
that containsX2.

• The configuration is of type(1, 3, 1). Two sub-cases are possible: i) The configuration is similarto
the one shown in Figure 8, Step 1. Note that for this configuration, there is a dedicated algorithm that
solves the exploration problem. The algorithm is detailed in Figure 8. Note that since the system is
asynchronous, the adversary in some steps of the algorithm can activates one of the two robots that
are allowed to move. In this case, the robot that was supposedto move in the first place is the only one
that can move, thus by moving the configuration reached when both robots were activated is reached
again ii) The remaining cases: we are sure that there is one robot that is part of an 1.block of size
3 (in the middle line) that has two neighboring free nodes (Note that there is only five robots and a
single 1.block of size3), let this robot beR1. R1 is the only one allowed to move, its destination is
its adjacent free node towards the closest robot that is in one of the two borderlines that are horizontal
to the 1.block of size3.

• The configuration is of type (2, 1, 2). Note that the configuration does not contain an 1.block of size3.
Let D1 andD3 be the two borderlines corresponding toX1, X2 respectively. The sub-cases below
are possible:

– Both D1 andD2 contains robots at distance2 (d = 2). In this case, we are sure that there is
one robot on the center of the grid (on the middle of the middleline, otherwise the configuration
will contains an 1.block of size3). This robot is the one allowed to move, its destination is one
of adjacent free node towards the borderline (refer to Figure 10).

– The robots onD1 are at distance1 and the robots onD2 are at distance2. If the robot that is in
the middle line (according to the guide line) is also on a borderline (see Figure 11), we are sure
that there is one robot at the corner of the grid not having anyneighboring robot. This robot is
the one allowed to move, its destination is one of its adjacent free node. If the robot is in the
center of the grid (see Figure 12), then this robot is the one allowed to move its destination is its
adjacent free node towardsD2.

– BothD1 andD2 contains robots at distance1 (d = 1). LetD3 be the middle line that is horizon-
tal to bothD1 andD2. The robot allowed to move is the one that is onD3, its destination is its
adjacent node towardsD1 orD2 (The scheduler will make the choice in the case of symmetry).

Guide line

Guide line

D2

D3

D'1D'2D'3

D1

Figure 13: Guide-lines, configuration of type(2, 1, 2)
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• The configuration is of type(2, 3, 0). In this case the robot that in the middle line that contains three
robots having an free node as a neighbor on the line that contains two robots is the one allowed to
move, its destination is this adjacent free node.

• The configuration is of type(3, 0, 2). In this case the robots that are inX3 (the line that contains two
robots) are the one allowed to move, their destination is their adjacent free node on the shortest path
towardsX2.

• The configuration is of type(3, 2, 0) but is different from the special configuration (refer to Figure
14). The robots allowed to move are the two robots that are on the line corresponding toX2. Their
destination is their adjacent free node on the line that containsX2. Its is clear that in the case the
adversary activates only one of these two robots the configuration reached will be the Special configu-
ration (see Figure 7, step 1), Thus the exploration task can be performed as shown in 7. In the case the
adversary activates both robots at the same time, then a tower is created and the configuration reached
is like the one shown in Figure 7, step 2. In this case too the exploration can be performed.

Note that once one of the two special configurations is built,one tower is created and the exploration
task can be performed. refer to Figures 7 and 8.

Correctness Proof.

Lemma I Starting from a configuration of type(1, 2, 2), a configuration of type(2, 3, 0) is reached in a
finite time.

Proof. In a configuration of type(1, 2, 2) the robot that is allowed to move is the one that is alone
on the borderline containingX1, let R1 be this robot, its destination is its adjacent free node towardsX2,
Since lineX2 contains two robots, whenR1 joins X2, X2 will contain an 1.block of size3 andX1 will
contain no robot. Thus the configuration reached is of type(2, 3, 0) and the lemma holds. ✷

Lemma II Starting from a configuration of type(1, 3, 1), either a configuration of type(2, 2, 1) or of type
(2, 1, 2) is reached in a finite time.

Proof. When the configuration is of type(1, 3, 1), we are sure that there is one robot that is part of
the 1.block of size3 on X2 that has two neighboring free nodes. This robot is the one allowed to move
its destination is its adjacent free node towards the closest robot on eitherX1 or X2. Suppose that such a
robot is the one that is in the middle of the 1.block of size3. Once the robot has moved, the configuration
becomes of type(2, 1, 2) and the lemma holds. If such a robot is at the extremity of the 1.block of size3,
then by moving, the configuration reached is of type(2, 2, 1) and the lemma holds. ✷

Figure 14: Instance of a configuration(3, 2, 0)
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Lemma III Starting from a configuration of type(2, 1, 2), a configuration of type(3, 0, 2) is reached in a
finite time.

Proof. The cases below are possible:

1. BothD1 andD2 contains robots at distance2 (d = 2). It is clear that in this case there is one robot
that is in the center of the grid. This robot is the one allowedto move, its destination is one of its
adjacent free node. By moving, the robot join a borderline. Note that this borderline contains an
1.block of size3. Thus the configuration reached will be(3, 0, 2).

2. The robots onD1 are at distance1 and the robots onD2 are at distance2. In this case the robot that
is on the borderline onD2, being at the corner of the grid and not having any neighboring robot is
the one that moves towards one of its adjacent free node. Notethat once the robot has moved, the
configuration reached remains of type(2, 1, 2), however, bothD1 andD2 contains robots at distance
1.

3. BothD1 andD2 contains robots at distance1 (d = 1). Let D3 be the middle line that is horizontal
to bothD1 andD2. In this case the robot that is onD3 is the one allowed to move, its destination
is its adjacent free node towards one of the two neighboring borderlines that contain an 1.block of
size2. Note that we are sure that this robot has at least one free node as a neighbor otherwise the
configuration contains a single 1.block of size3 and the configuration will not be of type(2, 1, 2).
Once the robot has moved, a new 1.block of size3 is created at one borderline and the configuration
will be of type(3, 0, 2).

From the cases above, we can deduce that starting from a configuration of type(2, 1, 2), a configuration
of type(3, 0, 2) is reached in a finite time and the lemma holds. ✷

Lemma IV Starting from a configuration of type(2, 3, 0), a configuration of type(3, 2, 0) is reached in a
finite time.

Proof. When the configuration is of type(2, 3, 0), the robot allowed to move is the one that is on the
line that containsX2 having an free node as a neighbor on the line that contains tworobots. Note that once
the robot has moved, a new 1.block of size3 is created one borderline of the grid. Thus the configuration
reached will be of type(3, 2, 0) and the lemma holds. ✷

Lemma V Starting from a configuration of type(3, 0, 2), either a configuration of type(3, 2, 0) or of type
(3, 1, 1) is reached in a finite time.

Proof. When the configuration is of type(3, 0, 2), the robots that are on the line thatX3 are the one
allowed to move. When they do, they move to their adjacent free node towards the line that is horizontal to
the the one containing an 1.block of size3. Note that in the case the adversary activates both robots allowed
to move at the same time, then the configuration reached is of type(3, 2, 0) and the lemma holds. If it is not
the case, the configuration reached is of type(3, 1, 1) and the lemma holds. ✷

Lemma VI Starting from a configuration of type(3, 1, 1), either a configuration of type(3, 2, 0) or of type
(2, 2, 1) is reached in a finite time.

Proof. In the case the configuration is similar to the one shown in Figure 9. The robots that are at the
corner having an free node as a neighbor are the one allowed tomove. Their destination is their adjacent free
node. Note that in the case the adversary activates both robots at the same time, the configuration reached is
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of type (2, 2, 1) and the lemma holds. In the case the adversary activates onlyone robot, then the configu-
ration reached remains of type(3, 1, 1) but it is different from the Figure 9. For the other configurations of
type(3, 1, 1) (all the configurations that are different from the one shownin Figure 9). The robot that is al-
lowed to move is the one that is single on the borderline that containsX3. Its destination is its adjacent free
node on the shortest path towards the line that containsX2. Note that once it has moved, the configuration
reached is of type(3, 2, 0) and the lemma holds. ✷

Lemma VII Starting from a configuration of type(1, 2, 2), a configuration of type(3, 2, 0) is reached in a
finite time.

Proof. From Lemma I, we are sure that starting from a configuration oftype(1, 2, 2), a configuration
of type(2, 3, 0) is reached in a finite time. From Lemma IV we are sure that starting from a configuration of
type (2, 3, 0), a configuration of type(3, 2, 0) is reached in a finite time. Thus we can deduce that starting
from a configuration of type(1, 2, 2), a configuration of type(3, 2, 0) is reached in a finite time and the
lemma holds. ✷

Lemma VIII Starting from a configuration of type(1, 3, 1), a configuration of type(3, 2, 0) is reached in a
finite time.

Proof. From Lemma II, we are sure that starting from a configuration of type (1, 3, 1), a configuration
of type(2, 2, 1) is reached in a finite time. From Lemma VII we are sure that starting from a configuration
of type(1, 2, 2), a configuration of type(3, 2, 0) is reached in a finite time. Thus we can deduce that starting
from a configuration of type(1, 3, 1), a configuration of type(3, 2, 0) is reached in a finite time and the
lemma holds. ✷

Lemma IX Starting from a configuration of type(2, 1, 2), a configuration of type(3, 2, 0) is reached in a
finite time.

Proof. From Lemma III, we are sure that starting from a configurationof type(2, 1, 2), a configuration
of type(3, 0, 2) is reached in a finite time. From Lemma V, we are sure that starting from a configuration of
type (3, 0, 2), a configuration of type(3, 2, 0) is reached in a finite time. Thus we can deduce that starting
from a configuration of type(2, 1, 2), a configuration of type(3, 2, 0) is reached in a finite time and the
lemma holds. ✷

Lemma X Starting from any configuration that is towerless, a configuration of type(3, 2, 0) is reached in
a finite time.

Proof. From Lemmas IV-IX, we can deduce that starting from any configuration that is towerless, a
configuration of type(3, 2, 0) is reached in a finite time and the lemma holds. ✷

Lemma XI Starting from one of the three special configurations, all the nodes of the grid are explored and
the algorithm stops.

Proof. It is easy to see from Figure 7, that all the nodes of the grid are explored. Thus the lemma
holds. ✷

Lemma XII Starting from any configuration of type(3, 2, 0), the exploration can be performed.
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Proof. If the configuration is the special configuration (refer to Figure 7 (step 1)), then according to
Lemma XI, the exploration task is performed and all the nodesof the ring are explored. If the configuration is
as the one show in Figure 14, then the two robots that are not part of the 1.block of size3 are the one allowed
to move, their destination is their adjacent node in the center of the grid. In the case where the adversary
activates only one of the two robots allowed to move, the special configuration is reached and the lemma
holds. If both robots are activated then a tower is created inthe center of the grid and the configuration
reached will be as the one shown in Figure 7 (Step2) and in thiscase too the exploration is performed and
the lemma holds. ✷

From the lemmas above we can deduce that:

Theorem 7The deterministic exploration of a(3, 3)-Grid can be solved in CORDA using 5 oblivious robots.
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