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Abstract

We propose optimal.r.t. the number of robots) solutions for tldeterministic terminating explo-
ration (explorationfor short) of a grid-shaped network by a teamkadsynchronous oblivious robots in
the asynchronous non-atomic model, so-called CORDA.

In more details, we first consider the ATOM model. We show thigtimpossible to explore a grid
of at least three nodes with less than three robots. Nexthaew ghat it is impossible to explore(&, 2)-
Grid with less than 4 robots, and 3, 3)-Grid with less than 5 robots, respectively. The two firstitess
hold for both deterministic and probabilistic settingsjhelthe latter holds only in the deterministic case.
ATOM being strictly stronger than CORDA, all these impodgioresults also hold in CORDA.

Then, we propose deterministic algorithms in CORDA to eithilie optimal number of robots al-
lowing to explore of a given grid. Our results show that extdapwo particular cases, 3 robots are
necessary and sufficient to deterministically explore d gfiat least three nodes. The optimal number
of robots for the two remaining cases is: 4 for {2e2)-Grid and 5 for thg3, 3)-Grid, respectively.

Keywords: Exploration, Grid, Oblivious Robots, CORDA model.

1 Introduction

We consider autonomous robots [17, 21] that are endowedmgtion actuators and visibility sensors, but
that are otherwise unable to communicate. Those robots collaborate to solve a collective task, here
the deterministic terminating grid exploratiofexplorationfor short), despite being limited with respect to
input from the environment, asymmetry, memory, etc.

So far, two universes have been studied: abetinuous two-dimensional Euclidean spacwl thedis-
crete universeln the former, robot entities freely move on a plane usirsgial sensors with perfect accuracy
that permit to locate all other robots with infinite precisi(seee.g, [4, 7, 11, 20, 21]). In the latter, the
space is partitioned into a finite number of locations, catiemally represented by a graph, where the nodes
represent the possible locations that a robot can take a&neldipes the possibility for a robot to move from
one location to anothee(qg, [1, 2, 3, 5, 6, 9, 10, 13, 14, 15, 16)).

In this paper, we pursue research in the discrete univeséans on thexploration problenwhen the
network is an anonymous unoriented grid, using a team ohamtous mobile robots. Exploration requires
that robots explore the grid and stop when the task is completother words, every node of the grid must
be visited by at least one robot and the protocol eventuailyinatesj.e., every robot eventually stays idle
forever.

The robots we consider are unable to communicate, howeggrcdn sense their environment and take
decisions according to their local view. We assume anongnamal uniform robotsi.g., they execute the
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same protocol and there is no way to distinguish between th@ny their appearance). In addition, they
are oblivious,i.e., they do not remember their past actions. In this contextptoasynchronously operate
in cycles of three phases: Look, Compute, and Move. In thiedirase, robots observe their environment in
order to get the position of all other robots in the grid. la gecond phase, they perform a local computation
using the previously obtained view and decide their targstidation to which they move during the last
phase.

The fact that the robots have to stop after the exploratiocgss implies that the robots somehow have
to remember which part of the graph has been explored. Nless, under this weak scenario, robots
have no memory and thus are unable to remember the varigos tsteen before. In addition, they are
unable to communicate explicitly. Therefore the positiofithe other robots are the only way to distinguish
the different stages of the exploration process. The maimpbexity measure is then the minimal number
of required robots. Since numerous symmetric configuratiaduce a large number of required robots,
minimizing the number of robots turns out to be a difficultideam. As a matter of fact, in [10], it is shown
that, in general§2(n) robots are necessary to explore a tree network wbdes deterministically.

Related Work. In [9], authors proved that no deterministic exploratiorpassible on a ring when the
number of robots divides the number of nodes In the same paper, the authors proposed a deterministic
algorithm that solves the problem using at ledBtrobots provided that and k& are co-prime. In [16],
Lamaniet al. proved that there exists no deterministic protocol that &guiore an even sized ring with
k < 4 robots, even in the atomic model, so-called ATOM [21]. Irsthiodel, robots execute their Look,
Compute and Move phases in an atomic marirerevery robot that is activated at instanhstantaneously
executes a full cycle betweemndt+1. Impossibility results in ATOM naturally extend in the asfinonous
non-atomic model, so-called CORDA [18]. Lamaial. also provide in [16] a deterministic protocol using
five robots and performing in CORDA, provided that five andre co-prime. By contrast, four robots are
necessary and sufficient to solve fhrebabilistic exploration of any ring of size at least 4 in ATOM [6, 5].

To our knowledge, grid-shaped networks were only consilaréhe context of anonymous and obliv-
ious robot exploration [1, 3] for a variant of the exploratiproblem where robots perpetually explore all
nodes in the grid (instead of stopping after exploring themetwork). Also, contrary to this paper, the
protocols presented in [1] make use of a common sense oftidinefor all robots (common north, south,
east, and west directions) and assume an essentially syraehe scheduling.

Contribution.  In this paper, we propose optimat.(.t. the number of robots) solutions for the determin-
istic terminating exploration of a grid-shaped network kiga@m ofk asynchronous oblivious robots in the
asynchronous and non-atomic CORDA model.

In more details, we first consider the ATOM model, which isricly stronger model than CORDA. We
show that it is impossible to explore a grid of at least thregas with less than three robots. Next, we show
that it is impossible to explore @, 2)-Grid with less than 4 robots, and 3, 3)-Grid with less than 5 robots,
respectively. The two first results hold for both deterntiniand probabilistic settings, while the latter holds
only in the deterministic case. Note also that these impdigiresults naturally extend to CORDA.

Then, we propose several deterministic algorithms in COR®&xhibit the optimal number of robots
allowing to explore of a given grid. Our results show thateptcin two particular cases, 3 robots are
necessary and sufficient to deterministically explore d gfiat least three nodes. The optimal number of
robots for the two remaining cases is: 4 for {Re2)-Grid and 5 for the(3, 3)-Grid, respectively.

The above results show that, perhaps surprisingly, exgcei grid is easier than exploring a ring. In
the ring, deterministic solutions essentially require fivieots [16] while probabilities enable solutions with
only four robots [6, 5]. In the grid, three robots are necgssad sufficient in the general case even for
deterministic protocols, while particular instances & ¢nid do require four or five robots. Also, determin-



istically exploring a grid requires no primality conditievhile deterministically exploring a ring expects the
numberk of robots to be co-prime with, the number of nodes.

Roadmap. Section 2 presents the system model and the problem to bedsdlower bounds are shown
in Section 3. The deterministic general solution usingemebots is given in Section 4, the special case
with five robots is studied in Section 5. Section 6 gives sooreluding remarks.

2 Preliminaries

Distributed Systems. We consider systems of autonomous mobile entities catieditsor robotsevolving

in asimple unoriented connected graph= (V, E), whereV is a finite set of nodes anfl a finite set of
edges. In7, nodes represent locations that can be sensed by robotslgesl iepresent the possibility for a
robot to move from one location to another. We assumehiatan(i, j)-Grid (or a Grid, for short) where
i, j are two positive integers.e., GG satisfies the following two conditions:

1. |V|=ixj,and
2. there exists an order on the noded/ofvy, . . ., v;.;, such that:

e Vx € [l..i xj], (x mod i) # 0= {v,,v,41} € F, and
o Vye[l.ix(j—1)],{vy,vy+i} € E.

We denote by = i x j the number of nodes it¥. We denote byi(v) the degree of node in G.
Nodes of the grid are anonymous (we may use indices, but fation purposes only). Moreover, given
two neighboring nodes andwv, there is no explicit or implicit labeling allowing the rotsoto determine
whetheru is either on the left, on the right, above, or belowRemark that arfi, j)-Grid and a(j, i)-Grid
are isomorphic. Hence, as the nodes are anonymous, we aistioguish ar(z, )-Grid from a(j, :)-Grid.
So, without loss of generality, we always considerj)-Grids, wherei < j. Note also that anyl, j)-Grid
is isomorphic to a chain. In anly, j)-Grid, if ¢ = 1, then either the grid consists of one single node, or two
nodes are of degree 1 and all other nodes are of degree 2niteewhery > 1, four nodes are of degree 2
and all other nodes are of degree either 3 or 4. In any gridndides of smallest degree are calsuiners
Inany(1, j)-Grid with j > 1, the unique chain linking the two corners is called boederline In any (i, j)-
Grid such that > 1, there exist four chains;, ..., v,, of length at least 2 such thatv,) = §(v,,) = 2,
andvz,1 < z < m, d(v,) = 3, these chains are also called tharderlines

Robots. Operating onz arek < n robots. The robots do not communicate in an explicit way; énmv
they see the position of the other robots and can acquire lkdge based on this information. We assume
that the robots cannot remember any previous observatiooamoputation performed in any previous step.
Such robots are said to loblivious (or memoryless

Each robot operates according to its (logahgram We callprotocola collection ofk programs each
one operating on one single robot. Here we assume that rabstsiform andanonymousi.e., they all
have the same program using no local parameter (such asrdityiithat could permit to differentiate them.
The program of a robot consists in executlrmpk-Compute-Move cyclésfinitely many times. That is, the
robot first observes its environment (Look phase). Basetsarbservation, a robot then decides to move or
stay idle (Compute phase). When a robot decides to move \iesibom its current node to a neighboring
node during the Move phase.



Computational Model. We consider two models: the semi-asynchronous and atomiein&TOM [8,
21] and the asynchronous non-atomic model, CORDA [9, 18]bdiih models, time is represented by an
infinite sequence of instants 0, 1, 2, ... No robot has acee#isid global time. Moreover, every robot
executes cycles infinitely many times. Each robot perfotsiewn cycles in sequence. However, the time
between two cycles of the same robot and the interleaviniysdea cycles of different robots are decided by
anadversary As a matter of facts, we are interested in algorithms thatectly operate despite the choices
of the adversary. In particular, our algorithms should asok even if the adversary forces the execution to
be fully sequential or fully synchronous.

In ATOM, each Look-Compute-Move cycle execution is assurttethe atomic every robot that is
activated (by the adversary) at instanmstantaneously executes a full cycle betweandt + 1.

In CORDA, Look-Compute-Move cycles are performed asyncebusly by each robot: the time be-
tween Look, Compute, and Move operations is finite yet undednand is decided by the adversary. The
only constraint is that both Move and Look are instantaneous

Remark that in both models, any robot performing a Look dpmresees all other robots on nodes and
not on edges. However, in the CORDA, a roBbmay perform a Look operation at some tim@erceiving
robots at some nodes, then Compute a target neighbor at soé t> ¢, and Move to this neighbor at
some later time” > ¢’ in which some robots are at different nodes from those pusloperceived byR
because in the meantime they moved. Hence, robots may meed ba significantly outdated perceptions.

Of course, ATOM is stronger than CORDA. So, to be as generpbasible, in this paper, our impossi-
bility results are written assuming ATOM, while our algbrits assume CORDA.

Multiplicity. ~ We assume that during the Look phase, every robot can perediether several robots are
located on the same node or not. This ability is caN&dtiplicity Detection We shall indicate byl;(¢) the
multiplicity of robots present in node; at instantt. We consider two kinds of multiplicity detection: the
strongandweakmultiplicity detections.

Under theweakmultiplicity detection, for every node;, d; is a functionlN — {o, L, T} defined as
follows: d;(t) is equal to eithep, L, or T according tou; contains none, one or several robots at time
instantt. If d;(t) = o, then we say that; is free at instantt, otherwiseu; is saidoccupiedat instantt. If
d;(t) = T, then we say that, contains aowerat instantt.

Under thestrong multiplicity detection, for every node;, d; is a functionlN — IN whered;(t) = j
indicates that there argrobots in nodey; at instantt. If d;(t) = 0, then we say that; is freeat instantt,
otherwiseu; is saidoccupiedat instantt. If d;(¢) > 1, then we say that,; contains aower (ofd;(t) robots)
at instantt.

As previously, to be as general as possible, our impodyib#isults are written assuming the strong
multiplicity detection, while our algorithms assume theakenultiplicity detection.

Configurations and Views. To define the notion ofonfiguration we need to use an arbitrary order
on nodes. The system being anonymous, robots do not knowrihés. (Actually, this order is used in the
reasoning only.) Lety, ..., v, be the list of the nodes i&@ ordered by<. The configuration at timeis
dy(t),...,dy(t). We denote bynitial configurationsthe configurations from which the system can start at
time 0. Every configuration where all robots stay idle foreigesaid to beterminal Two configurations
di,...,d, andd}, ..., d, areindistinguishable(distinguishableotherwise) if and only if there exists an
automorphismf on G satisfying the additional conditionfv; € V', we haved; = d;- wherev; = f(v;).

Theviewof robot R at timet is a labelled graph isomorphic t8, where every node; is labelled by
d;(t), except the node whefR is currently located, this latter nodg is labelled byd;(t), . (Indeed, any
robot knows the multiplicity of the node where it is locajeHdence, from its view, a robot can compute the
view of all other robots, and decide whether some other sobate the same view as its own.



Every decision to move is based on the view obtained duriegdkt Look action. However, it may
happen that some edges incident to a noderrently occupied by the deciding robot look identicaltm i
view, i.e, v lies on a symmetric axis of the configuration. In this casehéf robot decides to take one
of these edges, it may take any of them. As in related werd, (9, 10, 16]), we assume the worst-case
decision in such caseise. the actual edge among the identically looking ones is chbgdhe adversary.

Execution. We model the executions of our protocolGhby the list of configurations through which the
system goes. So, axecutionis a maximal list of configurations,, . .. ,; such that/j > 0, we have:

1 yj—1 # 5.
2. vy; is obtained fromy,_; after some robots move from their locations)in; to a neighboring node.

3. For every robofR that moves betweefy;_; and~;, there exist9) < j/ < j, such thatR takes its
decision to move according to its program and its view jin

An executionyy, ... ,~y; is said to besequentialif and only if Vj > 0, exactly one robot moves between
Yi—1 andyj.

Exploration. We consider thexplorationproblem, wherek robots, initially placed at different nodes,
collectively explore ars, j)-grid before stopping moving forever. By “collectively” gore we mean that
every node is eventually visited by at least one robot. Morenélly, a protocolP deterministically(resp.
probabilistically) solves the exploration problem if and only if every exeont of P starting from gower-
lessconfiguration satisfies: () terminates irfinite time(resp. infinite expected timjeand (2) every node
is visited by at least one robot during

Observe that the exploration problem is not definedkfor n and is straightforward fot = n. (In this
latter case the exploration is already accomplished inrttialitowerless configuration.)

3 Bounds

In this section, we first show that, except for trivial casdsermek = n, when robots are oblivious, the
model is atomic, and the multiplicity is strong, at leasethrobots are necessary to solve the (probabilistic
or deterministic) exploration of any grid (Theorem 1). Maower, in a(2, 2)-Grid, four robots are necessary
(Theorem 2). Finally, at least five robots are necessary lice she deterministic exploration of @, 3)-
Grid (Theorem 4). In the two next sections, we show that @&k¢éhbounds are also sufficient to solve the
deterministic exploration in the asynchronous and nomat@ ORDA model.

Given that robots are oblivious and there are more nodesritants, any terminal configuration should
be distinguishable from any possible initial (towerless)ftguration. So, we have:

Remark 1 Any terminal configuration of any (probabilistic or detemisitic) exploration protocol for a grid
of n nodes using: < n oblivious robots contains at least one tower.

Theorem 1 There exists no (probabilistic or deterministic) explooat protocol in ATOM usingt < 2
oblivious robots for anysi, j)-Grid made of at leass nodes.

Proof. By Remark 1, there is no protocol allowing one robot to explany (i, j)-Grid made of at least

2 nodes. Indeed, any configuration is towerless in this cAssume by contradiction, that there exists a
protocolP in ATOM to explore with 2 oblivious robots afi, j)-Grid made of at least 3 nodes. Consider a
sequential executionof P that terminates. (By definition, # is deterministic, all its executions terminates;
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Figure 1: Three possible configurations if3a3)-Grid with a tower ofk robots.

while if P is probabilistic, at least one of its sequential executiarsimterminate.) Therg starts from a
towerless configuration (by definition) and eventually tesca terminal configuration containing a tower
(by Remark 1). A= is sequential, the two last configurations cotonsist of a towerless configuration
followed by a configuration containing one tower. These twafigurations form a possible sequential
execution that terminates while only two nodes are visitieds a contradiction. O

Any (2,2)-Grid is isomorphic to a 4-size ring. It is shown in [6] that fprobabilistic or deterministic)
exploration using less than four oblivious robots is pdssibr any ring of size at least four in ATOM. So:

Theorem 2 ([6]) There exists no (probabilistic or deterministic) explaoatprotocol usingk < 3 oblivious
robots in ATOM for &2, 2)-Grid.

Lemma 1 Considering any deterministic exploration protoglin ATOM usingk oblivious robots for a
(3,3)-Grid, there exist sequential executionsiyfe = o, . . . , Y4, in Which:

e Foreveryz,y with0 < z <y, ~, and~, are distinguishable.

e Only the first configurationy, is towerless.

Proof. Consider any exploration protocB!in ATOM using . oblivious robots for 43, 3)-Grid. Consider
any sequential executionof P. By definition of the exploratione is finite and starts from a towerless
configuration. Moreover, the terminal configuratioreafontains a tower, by Remark 1.

Take the last towerless configurationecodnd all remaining configurations that follow én(all of them
contain a tower) and forrd. ¢ is a possible sequential executionffvhere only the first configuration is
towerless.

Lete’ = al,...,a™. Lettwo configurationsy® = df,...,d% anda? = df,...,d} of ¢, that are
indistinguishable witl) < x < y. Then, by definition, there exists an automorphigron GG satisfying
the additional condition: Lety, ..., v, be the nodes of/, for all s € [0..r], we haved? = d! where
ve = f(vs). Then,a?, ..., a%, BY*TL ™ is a possible sequential execution®fsuch thatrz > y + 1, we
haves® = d? ... .., d; ., whereg is a bijection such thats [1..n], f(vs) = vg(s) @Nda® = df, ..., d;,.
Moreover, ina?, ..., o, g¥*1, g™, the number of configurations indistinguishable frafdecreases by
one. Repeating the same construction, we eventually ohtaassible sequential executigh= py, ..., pw
of P starting from a towerless configuration only followed by figarations containing at least one tower
such that for every, y with 0 < = < y, p, andp, are distinguishable. O

Lemma 2 Considering any deterministic exploration protodlin ATOM model using: oblivious robots
for a (3, 3)-Grid, if there exists an execution fe = vy ..., ... where~, contains a tower ok robots,



then there exists an executiehstarting with the prefix = ;. .. v, such that at most one new node can be
visited aftery,..

Proof. Assume the existence of an execution®f = v;...v, ... where~, contains a tower ok
robots. Thensy, is not~y, and is indistinguishable from configuratida), (b), or (c) of Figure 1. In Figure
1, symbols inside the circles represent the multiplicitythe@ node and numbers next the circle are node’s
labels to help explanations only. Without loss of generatissume that,, is either configuratioria), (b),
or (c).

To visit a new node, one of the robots should eventually detodmove. Moreover, in,., all robots
have the same view. So, the adversary can choose any of thaavin

(1) Consider configuratioia). Then, all possible destinations for the robots are symmeto, the
adversary can activate the robots in a way we retrieve cawfiign v, 1. Then, it can activate robots
in a way that the system return4@, and so on. Hence, in this case, there exists a possibletexecu
of P that is infinite, a contradiction. So, frofa), P cannot try to visit a new node.

(2) Consider configuratiofb).

If robots synchronously move to node 5, node 5 may be undisifo, it is possible to visit a new
node, but then we retrieve CaSlg. So, we can conclude that in this case fr@monly one new node
can be visited.

If robots synchronously move to node 1 (resp. 7), then thdenoay be unvisited. So, it is possible
to visit a new node. But, in node 1, all possible destinatifmnghe robots are symmetric. So, the
adversary can activate the robots in a way that we retriewg@itlvious configuration, if we want to
visit another node. So, as for Cade, we can conclude that no new node can be visited, that is from
(b) only one new node can be visited.

(3) Using a reasoning similar to cagg, we can conclude that froifa), 7 cannot try to visit a new node.

O

Lemma 3 Assume that there exists a deterministic exploration p@t® in ATOM model using oblivious
robots for a(3, 3)-Grid. Consider any suffix,,, ... ,~, of any sequential execution Bfwhere:

e Foreveryz,y with0 < z <y, -, and~, are distinguishable.
e y,, contains a tower o robots.

Then, at most 4 new nodes can be visited frgnibefore a robot of the tower moves.

Proof. Proving this lemma is particularly tedious and error-prbeeause many cases must be taken into
account (positions of robots, symmetry classes, etc.). prbef was thus completed as automatically as
possible, by using model-checking techniques. The methbdefly sketched here, a detailed presentation,
together with the source code and the necessary tools camibe 6n the web. First, an operational model
of the problem is built: this model is a reactive program thahages an abstract view of the grid and robots,
according to a flow of (random) move commands. This modeldioted to the configurations relevant for
the property: an immobile two-robots tower and a mobile Isingbot. The reactive progranm.€., the
model) computes the consequences of the moves induced bgpilecommands; in particular, it takes
trace of thevisitednodes, and the encountered indistinguishable configaratasses. As soon as such a

Yhttp://www-verimag.imag.fr/~raymond/misc/robots/.



class has been reached twice, a Bagkis raised. And, all along the executionyalidity flag is computed
that way: stuck=- number of newvisited nodes is< 4. A model-checker tool is then used to check the
following invariant: whatever be a sequence of input movac@andsyvalid remains true. In other terms,
the invariance ofalid is sufficient to establish that, starting from any configiaratvith a tower and a single
moving robot, at most 4 new nodes can be visited before thiggtwation becomes indistinguishable from
some already encountered configuration. Concretely, thdehis written in the Lustre language [12, 19],
and is itself partially generated by a "meta” program wntte oCaml (which computes, in particular, the
classes). The source is made of approximately 150 lines afdGand 100 lines of Lustre. The invariance
checking is performed by the model-checker from the luss&ildution. O

Theorem 3 There exists no deterministic exploration protocol in AT@8ihgk < 3 oblivious robots for a
(3,3)-Grid.

Proof. According to Theorem 1, we only need to consider the caseralbots.

Assume that there exists an exploration protoPoin ATOM for a (3, 3)-Grid using 3 robots. By
Lemma 1, there exists a sequential executiea, .. . , v, that starts from a towerless configuration, only
followed by configurations containing at least one towens, such that for every, y with 0 < x < ¥, v,
and~y, are distinguishable.

In v, 3 nodes are visited. The execution being sequential, nonoels is visited in the first step where
a tower of two robots is created. Son, 3 nodes are visited and there exists a tower of two roRgtand
Ra.

e Assume thafR; andRs hever moved aftet;. Then, by Lemma 3, at most 4 new nodes are visited
until the termination ok. So, at the termination af, at most 7 distinct nodes have been visited, a
contradiction.

e Assume thalR, or R» eventually moved. Let, the first configuration from whict®, or R, moves.
From the previous case, at most 7 distinct nodes have beisdviseforey,. The execution being
sequential, only one robot of the tower moves during the fstep -, to ;4.1 and as ire only the first
configuration is towerless, that robot moves to an occupaten Now, the view ofR; and R, are
identical inv,. So, there exists an executiehstarting from the prefixy, ..., v, where bothR; and
R move from~, to the same occupied node. As no new node is visited duringtéme still at most
7 nodes are visited once the system is in the new configuratidrthis configuration contains a tower
of 3 robots. By Lemma 2, at most one new node is visited from ldier configuration. So, at the
termination ofe/, at most 8 distinct nodes have been visited, a contradiction

|

Theorem 4 There exists no deterministic exploration protocol in AT@8ihgk < 4 oblivious robots for a
(3,3)-Grid.

Proof. According to Theorem 3, we only need to consider the cadealbots.

Assume, by the way of contradiction, that there exists atoeation protocolP for a (3, 3)-Grid with 4
robots in ATOM.

Figure 2 depicts three possible configurations faB#3)-Grid with 4 robots. In Figure 2, symbols
inside the circles represent the multiplicity of the nodd anmbers next the circle are node’s labels to help
explanations only. Note that both Configurati@) and(b) can be initial configuration.

From now on, consider any synchronous executiof®dsynchronous executions are possible in the
asynchronous model) starting from configuratian. By “synchronous” we mean that robots execute each
operation of each cycle at the same time.
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Figure 2: Three possible configurations if3a3)-Grid with 4 robots. Numbers inside the circles represent
the multiplicity of the node. Numbers near the circles arda®wlabels that are used to ease the explanations
only.

Configuration(a) is not a terminal configuration by Remark 1. So at least onetroiove in the next
Move operation. Moreover, the views of all robots are idsaitin (a). So, every robot moves in the next
Move operation. Two cases are possible:

e Every robot moves to Node 5 and the system reaches Configur@l. In this case, none of the
corners has been visited, so Configurationis not terminal and at least one robot moves in during
the next Move operation. Moreover, the views of all robotsidentical, so every robot moves in the
next Move operation. Each robot cannot differentiate itg foossible possible destinations. So, the
adversary can choose destinations so that the system seamhiggurationa) again.

e Every robot moves to a corner node and as its view is symmétecdestination corner is chosen be
the adversary. In this case, the adversary can choose atésti so that the system reaches config-
uration (b). Configuration(b) being not terminal, at least one robot moves in during the Move
operation. Moreover, the views of all robots are identisal,every robot moves in the next Move
operation. Each robot cannot differentiate its two possfimssible destinations. So, the adversary
can choose to destinations so that the system reaches catifigia) again.

From the two previous case, we can deduce that there existitexes ofP that never terminates, $8 is
not an exploration protocol, a contradiction. O

4 Deterministic solution using three robots

In this section, we focus on solutions for the exploratioobbem that use three robots only, in CORDA, and
assuming weak multiplicity detection. Recall that therestsxno deterministic solution for the exploration
using three robots in g, 2)- or (3, 3)-grid assuming that model (Section 3). Moreover, exploang, 1)-
grid using three robots is straightforward. So, we consaderemaining cases. We split our study in two
cases. A general deterministic solution for diyj)-grid such that > 3 is given in Subsection 4.1. The
particular case of thé2, 3)-grid is solved in Subsection 4.2.

4.1 General Solution

Overview. Our deterministic algorithm works according to the follogithree main phases:

Set—-Up phase: The aim of this phase is to create a single line of robotsistpét a corner and along one
of the longest borderlines of the grid — refer to Figure 3. ustrefer to this configuration as the
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Figure 4: Coordinate system built by the
Figure 3:set-Up Configuration Orientation phase

Set—-Up configuration. The phase can be initiated from any arbittewerless configuration that is
not aset -Up configuration. Note that no tower is created during this phas

Orientation phase: This phase follows theet-Up phase. Starting from aet-Up configuration,
this phase aims at giving an orientation to the grid. To aghtbat, one tower is created allowing the
robots to establish a common coordinate system — refer tor&id. The resulting configuration is
called anoriented configuration.

Exploration phase: This phase starts from anriented configuration in which exactly one node is
occupied by one single robot, call&kplorer. Based on the coordinate system defined during the
Orientation phase, the explorer visits all the nodes, except threedlreigited ones — refer to
Figure 6, page 17.

We now describe the three above phases in more details.

Set-Up Phase. Starting from any towerless configuration, thet —-Up phase ends in aet-Up config-
uration, where there is a single line of robots starting atraer and along a longest borderline of the grid.
In this phase, we distinguish three main configurations:

Leader: Insuch a configuration, there is exactly one robot locatedcairner of the grid.

Choice: Insuch a configuration, at least two robots are located atreecof the grid. We choose one of
them to remain at a corner. The other ones have to leave threieic

Undefined: In such a configuration, there is no robot at any corner of tite g he idea is then to elect
one robot that will move to join a corner of the grid.

In the following, we present the behavior of the three ropmspectively referred to é&1, R2, and
R3,2 in each of the main configurations. These configurations eckred into several subconfigurations.

1. The configuration is of typeeader: In such a configuration, there is exactly one robot that & at
corner of the grid. LeR 1 be this robot. We consider the following subcases:

A) The configuration is of typstrict-Leader: In such a configuration, there is no other robot
on any borderline having the corner whégd is located as extremity. In this case, the robots that
are the closest t®& 1 are the ones allowed to move. Their destination is theircadijafree node on a
shortest path towards the closest free node that is on adbhgederline having the corner whekd

is located as extremity. (If there is several shortest pdtiesadversary makes the choice.)

B) The configuration is of typgal f-Leader: In such a configuration, amorig2 andR 3, only one
robot, sayR2, is on a borderline having the corner whéeé is located as extremity. Two subcases

are possible:

%Recall that robots are anonymous, so these notations aldaisase the explanations only.
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e The configuration is of typEalf-Leaderl: R2is on a longest borderline. In this case, the
third robotR3 is the one allowed to move. Its destination is an adjacemt fiede towards a
closest free node on the borderline that contains BothandR2. (If there is several shortest
paths, the adversary makes the choice.)

e The configuration is of typgal f-Leader2: R2 is not on the longest borderline. In this case,
R2 is the one allowed to move, its destination is the adjaces® frode outside the borderline,
if any. In the case where there is no such a free n@i&moves to a free node on its own
borderline (In case of symmetry, the adversary makes thieeho

C) The configuration is of typall-Leader: All the robots are on a borderline having the corner
whereR1 is located as extremity. In this case2 andR3 are not necessary on the same borderline.
Thus, we have two subcases:

e The configuration is of typfully-Leader: In such a configuration, all the robots are on the
same borderline)1. The two following subcases are then possible:
(1) The configuration is of typ&ully-Leaderl: In this case,D1 is a longest borderline.
If the robots form a line, then theet-Up configuration is reached and the phase is done.
Otherwise, lefR2 be the closest robot froR 1. If R1 andR2 are not neighbors, theR2 is the
only allowed to move and its destination is the adjacenttiege towardsR 1. In the other case,
R3 is the only robot allowed to move and its destination is thia@eht free node towards2.
(74) The configuration is of typ@ully-Leader2: In this case,D1 is not the longest bor-
derline. Then, the robot amorig2 andR3 that is the closest t& 1 leaves the borderline by
moving to its neighboring free node outside the borderline.

e The configuration is of typgsemi-Leader: R2 andR3 are not on the same borderline. Two
subcases are possible:
(1) The configuration is of typgemi-Leader1l: In this casej # j. The unique robot among
R2 andR3 which is located on the smallest borderline moves to thecadjafree node outside
its borderline.
(1) The configuration is of typsemi-Leader2: Inthis case; = j. Letdenote byDist(R,R')
the distance(that is, the length of a shortest path) in the grid betweentwo nodes wher®
andR’ are respectively located. Bist(R1,R2) # Dist(R1,R3) then the robot amon®2
andR3 that is the closest t& 1 is the only one allowed to move, its destination is the adjace
free node outside the borderline. Otherwigg{t(R1,R2) = Dist(R1, R3)), either (a) there
is a free node betweeR1 andR2, or (b) R1 is both neighbor ofR2 andR3. In case (a)R1
is the only robot allowed to move and its destination is th@eht free node towards one of
its two borderlines (the adversary makes the choice). Ie ¢ R2 andR3 move and their
destination is their adjacent free node on their borderline

2. The configuration is of typehoice: At least two robots are located at a corner. We consider two
cases:

A) The configuration is of typehoice1l: In this configuration, there are exactly two robots that are
located at a corner of the grid. L& andR2 be these robots.

e In the case wher&3 is on the same borderline as eitleil or R2 but not both — suppose
R1—thenR2 is the one allowed to move, its destination is the adjacemt fiode towards the
closest free node of the borderline that contains FotrandR 3.

e In the case where the three robots are on the same bordérhee:

11



(i) If Dist(R1,R3) # Dist(R2,R3), then the robot amon@1 andR2 that is farthest taR3
moves to the adjacent free node on the borderline tow&ais
(i7) Otherwise Dist(R1,R3) = Dist(R2,R3)), andR3 has either or not an adjacent free
node on the borderline. In the former ca®3 moves to an adjacent free node on the borderline
towards eithefR1 or R2 (the adversary makes the choice). In the latter cRsemoves to its
adjacent free node outside the borderline.

e If R3 is not on any borderline, it moves to an adjacent free node sinoaest path towards
the closest free node that is on a longest borderline thaacmneitherR1 or R2. (In case of
symmetry, the adversary makes the choice.)

B) The configuration is of typehoice2: In this configuration, all the robots are located at a corner
The robot allowed to move is the one that is located at a naateiglitommon to the two borderlines
of the other robots. LeR 1 be this robot. The destination &1 is the adjacent free node on a longest
borderline. (In case of symmetry, the adversary makes theel)

. The configuration is of typgndefined: In this configuration, there is no robot that is located at
any corner. The cases below are then possible:

A) The configuration is of typ&ndefinedl: In this casej = j and there is one borderline that
contains two robotdR1 andR2 such thatR1 is closer from a corner thaR2 andR3. Let D1 be

this borderline.R3 is the only one allowed to move and its destination is an adiafree node on

a shortest path towards a closest free nod®bdf (If there are several shortest paths, the adversary
makes the choice.)

B) The configuration is of typgndefined2: Itis any configuration different frorindefinedl,
where there is exactly one robot that is the closest to a colmehis case, this robot is the only one
allowed to move, its destination is an adjacent free nodeghoeest path to a closest corner. (If there
are several possibilities, the adversary makes the choice.

C) The configuration is of typ&@ndefined3: There are exactly two robots that are closest to a
corner. LetR1 andR2 be these two robots.

o If Dist(R1,R3) = Dist(R2,R3) thenR3is the only one allowed to move, and eith@ist(R1,
R3) =1 or Dist(R1,R3) > 1. In the former caseR3 moves to an adjacent free node. (If
there are two possibilities, the adversary make the choicethe latter caseR3 moves to an
adjacent free node that is on a shortest path towards é&har R2 but not both.

o If Dist(R1,R3) # Dist(R2,R3) then the robot amon@1 andR2 that is closest t&R3 is the
only one allowed to move. Its destination is the adjacer frede that is on a shortest path to a
closest corner. (If there are several possibilities, theeeshry makes the choice.)

D) The configuration is of typ@ndefined4: There are three robots that are closest to a corner.
Again, four cases are possible:

e The configuration is of typgnde fined4-1: There is exactly one robot that is on a borderline.
In this case, this robot is the only one allowed to move. Isidation is an adjacent free node
that is on a shortest path to a closest corner. (In case oftiamdest paths, the adversary breaks
the symmetry in the first step.)

e The configuration is of typ@ndefined4-2: In such a configuration, there are exactly two
robots on a borderline. L&21 andR2 be these two robots. The robot allowed to mov&is
Its destination is the adjacent free node towards a closesec (The adversary may have to
break the symmetry.)

12
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Figure 5: Sample of a configuration of typedefined4-4

e The configuration is of typgndefined4-3: The three robots are on borderlines of the grid.
(1) If there are more than one robot on the same borderline. $nctise, there are exactly two
robots on the same borderline, and 7t andR2 be these robots. TheR3 is the only one
allowed to move and its destination is an adjacent free nodertls a closest corner. (The
adversary may have to break the symmetry.)

(i) If there is at most one robot on each borderline: Exactly arddrline is perpendicular to
the two others. The robot on that borderline is the only ofmvald to move and its destination
is the adjacent node towards a closest corner. (The adyersar have to break the symmetry.)

e The configuration is of typgndefined4-4: In this case, there is no robot on any borderline.
(1) In the case where there are two robdtd, andR2, that are closest to the same corner, and
this corner is not a closest corner R8, thenR3 is the only robot allowed to move and its
destination is an adjacent free node on a shortest path deveaclosest corner. (If there are
several possibilities, the adversary makes the choice.)

(74) In the case where there are two robd®d, and’R2, that are closest to cornefsl andC2,
respectively, wher€&'l # C2, andR3 is closest to botlC'1 andC'2, then’R3 is the only one
allowed to move (refer to Figure 5), and it moves towaftior C'2 according to a choice of the
adversary.

(#3¢) In the case where all the robots are closest to differentersrnhere is one rob@®1 whom
corner is between the two other targeted cornerR®»fandR3. The robot allowed to move is
R1, its destination is an adjacent free node on a shortest patrds its closest corner. (If there
are several shortest paths, the adversary makes the ghoice.

The correctness of the&et —Up phase is established by Lemmas 4 and 8.

Lemma 4 Starting from any arbitrary towerless configuratiobet -Up phase does not create any tower.

Proof. lItis clear that in the case where one robot is allowed to movdower is created because the robot
always moves to an free adjacent node. Thus lets consideaties in which there are at least two robots
that are allowed to move:

e The configuration is of typstrict-Leader: Suppose that the robot that is at the corneRis
and the two other ones (that are neither at a corner nor atithe borderline aR1) areR2 andR3,
respectively.R2 andR3 are allowed to move at the same time only in the case they dhe same
distance fromR1. Since their destination is their adjacent free node on liloetest path towards the
longest borderline that contaifi&l, we are sure that the both will move to different free noddsisT
no tower is created in this case.

e The configuration is of typegemi-Leader2: we consider the case in whichist(R1,R2) =
Dist(R1,R3) such as there is no free node betwéeh and bothR2 and R3 respectively. It is
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clear that if the adversary activates them at the same timewer is created since they move to
their adjacent free node on the borderline they belong ttheropposite direction dR1 (recall that
they are in two different borderlines). In the case the ashbgr activates only one roboRg), no
tower is created as well since it moves to its adjacent frakmm the borderline it belongs to (note
that is this casé = j). Note that the configuration reached remains of type Seaddr2, however,
Dist(R1,R2) # Dist(R1,R3). Thus the robot that is allowed to move nowR$, which is the one
that was supposed to move at the first place. Thus either wevwethe configuration in which both
robots moved (this will happen in the caB8 has an outdated view). Or the configuration reached is
of type Half leaderl and all the robots have a correct view.

From the cases above we can deduce that starting from anyomation that is towerlesset-Up
phase does not create any tower and the lemma holds. O

Lemma 8 is established using the following three technmalrhas.

Lemma 5 Starting from a configuration of typeeader, a configuration of typget-Up is reached in a
finite time.

Proof. In a configuration of typa.eader, there is only one robot that is at the corner (suppose that
this robot isR1). It is easy to see that in the caseZ j all the robots will be on the longest borderline
that containsR 1 (refer to Strict Leader, HalfLeaderl configurations). Otleerobots on the same longest
borderline, it is also easy to create a line of robots keepimgrobot at the corner. (The rob@® %) that is

the closest tdR1 moves first until it becomes neighbor &fl. Once it is done, the remaining robdt§)
moves to become neighbor &f2.) Hence we are sure that a configuration of t@ee- -Up is reached in a
finite time. In the casé = j when the robots move to the closest borderline that confainsither we have

the same result as whengZ j (all the robots will be on the same borderline) and hence weiare to reach

a configuration of typset -Up. Or, each roboR2 andR3 is on the same borderline &sl, however both

of them are on different borderlines. The sub-cases aregbesible as follow:

1. Dist(R1,R2) # Dist(R1,R3). Inthis case, the robot that is the closesRtbmoves to its adjacent
node outside its own borderline (Let this robot/®2). Note that when it moves, its new destination is
the closest free node on the same borderline asRaothndR 3 (seesemi-Leader?2 configuration).
Thus we are sure th&2 will be on the same borderline ®1 andR3 in a finite time, thus we are
sure that theset —Up configuration is reached in a finite time.

2. Dist(R1,R2) = Dist(R1,R3). The two sub-case below are possible:

(&) There is an free node betwe®&i and the other robotsR1 is the one that will move, its
destination is its adjacent free node on one of its two adjdoerderlines (Suppose that it moves
towardsRR2). Note that once it has moved, all the robots are in a borgeduch as there is one
borderline that contains two robot®{ andR2), let D1 be this borderline (the configuration
is of type Undefinedl). The robot allowed to move i®3 (Note thatRR3 is not part of
D1), its destination is its adjacent free node on a shortest foatards the closest free node of
D1. Once it moves, it becomes at the same distancRlafom a corner. The configuration
becomes of typ&ndefined3 such thatDist(R1,R2) # Dist(R1,R3). R1is the only one
allowed to move, its destination is its adjacent empty nasleatds the corner. Once it moves,
it joins one corner of the grid. The configuration becomes/péisSemi-Leader2 such that
Dist(R1,R2) # Dist(R1,R3). R3 is the only robot allowed to move, its destination is its
adjacent free node outside the borderline it belongs to.e@nmoves, its new destination will
be the borderline that contains two robots. Thus, we aretbateall the robots will be part of
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the same borderline in a finite time. It is clear that from @usfiguration is easy to build a
configuration of typeset -Up. (Note that it is easy to break the symmetry,if any, since axeh
three robots.)

(b) There is no free node betwe®1 and the other robotR2 andRR3. In this caseR2 andR 3 will
be the ones allowed to move. Their destination is their @&djafree node on their borderline.
In the case the adversary activates them at the same timetwexve case 2a. If the adversary
activates only one of the two robots, the configuration redahill be of typesemi-Leader2
such asDist(R1,R2) # Dist(R1,R3), thus, The robot that is the closestRd is the one that
is allowed to move. (Note that this robot is the one that wapesed to move at the first place.)
If it has an outdated view it will move to its adjacent free aahd we retrieve case 2a. If not,
it will move to its adjacent free node outside its borderlivghen it does, its new destination
is the closest free node on the same borderline of the two othets. Note that when such a
robot joins the new borderline, the configuration is of tyee —Up.

From the cases above, we can deduce that starting from a w@tfan of typelL.eader, a configuration of
type Set-Up is reached in a finite time and the lemma holds.
O

Lemma 6 Starting from a configuration of typehoice, a configuration of typ&.eader in reached in a
finite time.

Proof. Itis clear that in the case where all the robots are on onescafrthe grid, the next configuration
reached is of typehoicel since there will be a single robot that will move (refer to @guration of type
Choice2). Note that when the configuration is of typ@oicel the cases below are possible (Let the
robots that are at the corner B2 andR2 respectively and the third robot 3&3):

1. R3is on the same borderlin®1 asR1 (Note that in this cas®2 is not onD1). In this caseR2 is
the one allowed to move. Note that once it moves, it leavesdhger and the configuration will be of
typeLeader (refer toCchoicel, case (i)).

2. All the robots are on the same borderlihd. In this case, the robot®3 will be used to elect
one of the two robots at the corner (referdboicel configuration case (ii)). 1Dist(R1,R3) #
Dist(R2,R3) then the robot that is the farthest frdR8 leaves the corner, thus, the configuration will
contain a single robot that is at one corner. Hence the caafign will be of typeLeader in a finite
time. In the casdist(R1,R3) = Dist(R2,R3), (a) if there is at least one empty node between
R1 andR3 thenR3 will be the one allowed to move on the borderline towardseziR1 or R2
breaking the symmetry. Thus, we retrieve the case in whiéht(R1, R3) # Dist(R2,R3). (b) In
the case where there is no empty nodes betwekandR 3, thenR3 is the one allowed to move. Its
destination is its adjacent node outside the borderlinee@rmoves, it remains the only one allowed
to move in the configuration reached. Its destination isdja@nt node on a shortest path towards the
closest free node that is on a longest borderline that amn&itherR1 or R2 (the adversary makes
the choice). Once it moves we retrieve the case in whicki(R1, R3) # Dist(R2,R3). Thus we
are sure that a configuration of typeader is reached in a finite time.

3. R3is not on a borderline. In this caskg3 is the one allowed to move. Its destination is its adjacent
free node on a shortest path towards the closest longesertiosdthat contains eitheR1 or R2.
Thus we are sure that one of the two cases described abovéenittached (refer tghoicel
configuration, case (iii)).
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From the cases above we can deduce that a configuration of.&gpee r is reached in a finite time and
the lemma holds. O

Lemma 7 Starting from a configuration of typénde fined, a configuration of typ@.eader is reached
in a finite time.

Proof. Itis clear that in the case where the configuration is of typele fined2, we are sure to reach
a configuration of type.eader in a finite time, since there is only one robot that is the dbse one
corner (this robot will move until it reaches the closestnew). It is also clear that in the case where the
configuration is of typ@indefined1, either a configuration of typendefined?2 is reached and hence
a configuration of typ&.eader is eventually reached or a configuration where there are twots that are
both the closest to a corner is reached, this case is part aitbes below:

1. There are exactly two robots that are the closest to oneecdlet these two robots B81 andR2
respectively). In this casé3 will be used to break the symmetry: In the caSeést(R1,R3) =
Dist(R2,R3), R3 will be the one allowed to move, it destination is its adjdaswde towards either
(a) R1 or R2 if Dist(R1,R3) > 1. Or (b) its adjacent free node from which its distanceRa
will be different from its distance t@&2. In both casesd andb), we reach a configuration where
Dist(R1,R3) # Dist(R2,R3). In the caseDist(R1,R3) # Dist(R2,R3), the robot that is the
closest toR3 will be the one allowed to move, its destination is its adjadese node on a shortest
path towards the corner. Note that once it has moved, eitlieaches the corner or it becomes the
closest one. Thus we are sure that a configuration of typeier is reached in a finite time.

2. All the robots are the closest to a corner. If the configonais of typeUndefined4-1, then there
will be one robot that will be allowed to move (the one thatisaoborderline), once it has moved,
it becomes the closest to one corner of the grid, thus we aeeteueach a configuration of type
Leader in a finite time. In the case there are two robots at a bordgriline third robot (which is
not on a borderline) is the one that will move becoming theetb robot to one corner of the grid.
Thus in this case too, we are sure to reach a configuratiorpefitgader. In the case all the robots
are on a borderline then, i) if there is more than one robothensame borderline (note that in this
case the borderline contains two robots), the robot thabigpart of the borderline moves towards
the closest corner becoming the closest one, thus we ardl&ira configuration of typeeader
is reached in a finite time. In the case there is one robot &t kaderline, then one robot is easily
elected to move becoming the closest to one corner of the g§hds, in this case too we are sure to
reach a configuration of typeeader in a finite time. In the case there is no robot on the borderline
If there are two robots that are the closest to the same ceunéras the third robot is the only closest
robot to another corner then this robot is the one alloweddganwhen it does it becomes the only
one that is the closest to one corner of the grid. Thus we aestsureach a configuration of type
Leader. In the case there is one rob@ %) that is the closest to both cornets and C?2 such as
R1 andR2 are also the closest {01 C2 respectively, therR3 is the one allowed to move towards
one of the closest corner. Note that once it has moved, itrhesdhe closest one and hence we are
sure that a configuration of tygesader is reached in a finite time. In the case all the robots are the
closest to different corner, we are sure that one of theneislthsest one to one corner that is between
the two other target corners (the closest to the other riabdtss robot is the one allowed to move,
its destination is its adjacent free node towards the ctaseser. Note that one it moves it becomes
either even closer (and hence it will be the only one that caweor it will reach the corner. In both
cases we are sure that a configuration of typader is reached.

From the cases above we can deduce that starting from a caiftguof typeUnde £ ined, a configu-
ration of typeLeader is reached in a finite time and the lemma holds.
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Lemma 8 Starting from any towerless configuration, a configuratidype Set-Up is reached in a finite
time.

Proof. From Lemma 5, 6 and 7 we can deduce that starting from anyampitbwerless configuration that
does not contain a line of robots on the longest line of the, griconfiguration of typset-Up is reached
in a finite time and the lemma holds. O

Orientation Phase. In this phase, an orientation of the grid is determined inftlewing manner: The
starting configuration contains a line of robots on one ofltmgest borderline (of length greater than 3)
starting at one of its corner. The robot which is at the corme¢ihe one allowed to move, its destination is
its adjacent occupied node. Once it has moved, a tower isectedhen, we can determine a coordination
system where each node has unique coordinates, see Figueget,10. The node with coordinatés 0)
is the unique corner that is the closest to the tower. The iX-@xgiven by the vector linking the node
(0,0) to the node where the tower is located. The Y-axis is giverhbwector linking the nodé, 0) to its
neighboring node that does not contain the tower.

The following lemma is straightforward:

Lemma 9 Starting from a configuration of typ@et —Up, a configuration of typ@rientedis reached in
one step.

Exploration Phase. This phase starts from abriented configura-
tion. Note that, once this configuration is reached, nodaofdinates
(0,0), (0,1), and(0,2) have been necessarily visited. Then, the goal is
to visit all other nodes. To ensure that the exploration phiamains dis-
tinct from the previous phases and keep the coordinaterayste only
authorize the robot that is single on a node to move. Thistrisbealled
the explorer

To explore all remaining nodes, the explorer should ordecair-
dinates in such a way that (&),0) and (0,1) are before its initial position (that i€, 2)) and all other
coordinates are after; and (b) for all non-maximum coordisér, v), if (z/,y') is successor ofz,y) in
the order, then the nodes of coordinatesy) and(2’,y’) are neighbors. Such an order can be defined as
follows:

Figure 6: Exploration phase

(a,b) R (e,d)=b<dVb=dAN((a=c)V(bmod2=0ANa<c)V (bmod2=1Aa > c)]

Using the orders, the explorer moves as follows: While the explorer is noated at the node having the
maximum coordinates according 49 the explorer moves to the neighbor whose coordinates acessors
of the coordinates of its current position, as describedgure 6.

The following lemma is straightforward:

Lemma 10 TheExploration phase terminates in finite time and once terminated all ndde® been
visited.

By Lemmas 4-10, follows:

Theorem 5 The deterministic exploration of arfy, j)-Grid with j > 3 can be solved in CORDA using 3
oblivious robots and the three phasgest -Up, Orientation,andExploration.
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4.2 Exploring a (2,3)-Grid

The idea of the solution for th@, 3)-Grid is rather simple. Consider the two longest bordesgliokthe grid.
Since there are initially three isolated robots on the dhidre exists one of the two longest borderlines, say
D, that contains either all the robots or exactly two robotsthe second case, the robot that is not part of
D moves to the adjacent free node on the shortest path towssdeste node of). Thus, the three robots
are eventually located oR. Next, the robot not located on any corner moves to one ovibsrieighboring
occupied nodes (the destination is chosen by the advers@hys, a tower is created. Once the tower is
created, the grid is oriented. Then, the single robot mav#set adjacent free node in the longest borderline
that does not contain any tower. Next, it explores the nodki® line by moving in towards the tower.
When it becomes neighbor of the tower, all the nodes of208)-Grid have been explored.

The following theorem is straightforward.

Theorem 6 The deterministic exploration of &, 3)-Grid can be solved in CORDA using 3 oblivious
robots.

5 Deterministic solution for a (3,3)-grid using five robots

@ ® ® @
| b—‘b—o‘ ——=—
[ '
® ® @

Figure 7: Exploration task on grid8, 3)

In this section, we propose an algorithm that explores uuggrobots the(3, 3)-Grid, in CORDA and
assuming weak multiplicity detection. The algorithm wonkgwo phases, thExploration phase and
thePreparation phase. Figures 7 and 8 depict theploration phase.

The Exploration phase starts from any of the three special configurationsvrsho Figure 7-
Case(1), Figure 8-Casda), and Figure 8-Caseb), respectively. In the former case, the unique robot
that is (1) on a borderline, (2) not at a corner, and (3) noterbiorderline linking the two occupied corners,
moves toward the center. In Cade) of Figure 8, the unique robot located at a corner moves towaedof
its neighbors (chosen by the adversary). Similarly, in Gasgin Figure 8, the robot located at the center
moves toward one of its neighbors. In the three cases, orer iswreated and the system reaches Qade
either Figure 7 or Figure 8, depending on the initial configion. Next, the exploration is made following
the moves depicted in either Figure 7 or Figure 8, respdygtive
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Figure 8: Special Exploration of grids, 3)

The Preparation phase starts from any towerless configuration that is notodrike three initial
configurations of the exploration phase. Theeparation phase aims at reaching one of these three
configurations. The detailed algorithm of this phase isdefan exercise for the reader — a solution is given
in the appendix.

Theorem 7 The deterministic exploration of &, 3)-Grid can be solved in CORDA using 5 oblivious
robots.

6 Conclusion

We presented necessary and sufficient conditions to explgréd-shaped network with a team lfasyn-
chronous oblivious robots. Our results show that, perhapsrisingly, exploring a grid is easier than ex-
ploring a ring. In the ring, deterministic (respectivelypbabilistic) solutions essentially require five (resp.,
four) robots. In the grid, three robots are necessary (evérei probabilistic case) and sufficient (even in the
deterministic case) in the general case, while particuistances of the grid do require four or five robots.
Note that the general algorithm given in that paper requésexctly three robots. It is worth investigating
whether exploration of a grid of nodes can be achieved using any numb& > k£ > n — 1) of robots, in
particular wherk is even.
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A Preparation phase of the algorithm working with 5 robots in the (3, 3)-
Grid

The aim of thee reparation phase is to reach one of the special configurations, whegth&oration
phase can start. It starts from an arbitrary towerless corgimn that is not one of the three initial configu-
rations shown in either Figure 7 or Figure 8.

-«

Figure 9: Configuratiori3, 1, 1) Figure 10: Instance of a configuratio®, 1, 2)

4

—

Figure 11: Instance of a configuratié®, 1, 2) Figure 12: Instance of a configuratié®, 1, 2)

Let us define some terms that will be used later: let the iigendced be the minimal distance among
distances between each pair of robots. We call a d.blockugeseg of consecutive robots that are at distance
d. The size of an 1.block is the number of robots it contains.réfler to a configuration by a set of three
values(X1, X2, X3) such asXi represents the number of robots on the lindote that X1 and X3 are
borderlines. Since the grid is of siZg, 3), we do not know which borderlines correspondXa and X 3.
Some ambiguities can appear and thus for the same confryurdere will be many possible sequences
(X1, X2, X3). The robots could be confused not knowing which action te.tdlo avoid this situation, we
will use the following method: First we will choose one or tgoide lines in the following manner: the
line that contains the d.biggest d.block of robots is elketea guide line. Note that the guide line can only
contain two or three robots. In the case there are two paesgibide lines that are perpendicular to each
other, then i) in the case only one of this two guide lines ikhatborderline of the grid, then this line is the
guide line. ii) In the other case, the guide line is electetbisw: Let D1 be one possible guide line and
D2, D3 be the lines that are horizontal o1. In the same manner Ié?’1 be the other possible guide line
andD’2, D'3 be the lines that are horizontal i#1. Let B be the number of the biggest d.blocks on the lines
Di and B’ be the number of the biggest d.blocks on the lilgs The guide line is the one corresponding to
the biggest value amonf and B’. For Instance in Figure 13, the configuration car(hd, 2) or (2,2, 1).

We can see that = 1, and the size of the biggest 1.block is equatdNote that there is an 1.block of size

2 on two borderlines that are perpendicular to each otherd{drand D’'1 —refer to Figure 13). LeB be

the number of 1.blocks on the lines that are horizontaD® clearly B = 2. In the same manner, |ét’

be the number of 1.blocks of siZeon the lines that are horizontal 10’1 (clearly B’ = 1). We can see
that B > B’, thus the guide lines are bofh3 and D1 (The lines that are considered are the ones that are
horizontal toD3 and D1). Thus the configuration is of typ@, 1, 2).

The triple set( X1, X2, X3) refer then to the number of robots that are horizontal to thideglines.
The following cases are then possible:

e The configuration is of typél, 1, 3). Two sub-cases are possible: i) The configuration is sirtoltre
one shown in Figure 9. Itis clear that in this case no guidedian be determined. The robots allowed
to move are the ones that are at the corner having one freeawdeneighbor, their destination is
their adjacent free node on the borderline they belong jorhie remaining cases: One line can be



elected as the guide line, this line is the one that contairklalock of size3 (X3). The robot that is
alone on the borderlineX(1) is the one allowed to move, its destination is its adjacese fiode on
the shortest path towards the middle line (the one that ctun#2). Note that in a case of symmetry,
the adversary will break the symmetry by choosing one ofwleedossible neighboring nodes.

The configuration is of typél, 2, 2). The robot that is alone on the borderlin€1() is the one allowed
to move, its destination is its adjacent free node on thetsbiopath towards the free node on the line
that containsX 2.

The configuration is of typél, 3,1). Two sub-cases are possible: i) The configuration is sinar
the one shown in Figure 8, Step 1. Note that for this configmmathere is a dedicated algorithm that
solves the exploration problem. The algorithm is detaile@igure 8. Note that since the system is
asynchronous, the adversary in some steps of the algoriéimactivates one of the two robots that
are allowed to move. In this case, the robot that was supgosedve in the first place is the only one
that can move, thus by moving the configuration reached wbémnrobots were activated is reached
again ii) The remaining cases: we are sure that there is dma tbat is part of an 1.block of size
3 (in the middle line) that has two neighboring free nodes é\tbiat there is only five robots and a
single 1.block of siz&), let this robot beR1. R1 is the only one allowed to move, its destination is
its adjacent free node towards the closest robot that iserobthe two borderlines that are horizontal
to the 1.block of siz&.

The configuration is of type2( 1, 2). Note that the configuration does not contain an 1.blockasf%i
Let D1 and D3 be the two borderlines correspondingXd, X2 respectively. The sub-cases below
are possible:

— Both D1 and D2 contains robots at distan@(d = 2). In this case, we are sure that there is
one robot on the center of the grid (on the middle of the mitldks otherwise the configuration
will contains an 1.block of siz8). This robot is the one allowed to move, its destination is on
of adjacent free node towards the borderline (refer to Eidi®).

— The robots onD1 are at distancé and the robots o2 are at distance. If the robot that is in
the middle line (according to the guide line) is also on a bdide (see Figure 11), we are sure
that there is one robot at the corner of the grid not havingrasighboring robot. This robot is
the one allowed to move, its destination is one of its adjafee node. If the robot is in the
center of the grid (see Figure 12), then this robot is the doeed to move its destination is its
adjacent free node towards2.

— Both D1 andD2 contains robots at distanddd = 1). Let D3 be the middle line that is horizon-
tal to bothD1 and D2. The robot allowed to move is the one that is08, its destination is its
adjacent node toward31 or D2 (The scheduler will make the choice in the case of symmetry).

D3 D2 D'l

DI <— Guide line

D2

D3 <— Guide line

Figure 13: Guide-lines, configuration of type, 1, 2)



e The configuration is of typ€2, 3,0). In this case the robot that in the middle line that contaimee
robots having an free node as a neighbor on the line that iosntao robots is the one allowed to
move, its destination is this adjacent free node.

e The configuration is of typé3, 0, 2). In this case the robots that are X8 (the line that contains two
robots) are the one allowed to move, their destination i Hajacent free node on the shortest path
towardsX2.

e The configuration is of typé€3,2,0) but is different from the special configuration (refer to Uig
14). The robots allowed to move are the two robots that arderirte corresponding t&2. Their
destination is their adjacent free node on the line thatainatX2. Its is clear that in the case the
adversary activates only one of these two robots the coratigur reached will be the Special configu-
ration (see Figure 7, step 1), Thus the exploration task egrelformed as shown in 7. In the case the
adversary activates both robots at the same time, then a ®aeated and the configuration reached
is like the one shown in Figure 7, step 2. In this case too tipoextion can be performed.

Note that once one of the two special configurations is boile tower is created and the exploration
task can be performed. refer to Figures 7 and 8.

Correctness Proof.

Lemma | Starting from a configuration of typgl, 2,2), a configuration of typé2, 3,0) is reached in a
finite time.

Proof.  In a configuration of typé1, 2, 2) the robot that is allowed to move is the one that is alone
on the borderline containing’ 1, let R1 be this robot, its destination is its adjacent free node td&/X 2,
Since lineX 2 contains two robots, wheR1 joins X2, X2 will contain an 1.block of siz& and X1 will
contain no robot. Thus the configuration reached is of {8, 0) and the lemma holds. O

Lemma Il Starting from a configuration of typd, 3, 1), either a configuration of typ€, 2, 1) or of type
(2,1,2) is reached in a finite time.

Proof. ~ When the configuration is of typ@, 3, 1), we are sure that there is one robot that is part of
the 1.block of size8 on X2 that has two neighboring free nodes. This robot is the ormvall to move
its destination is its adjacent free node towards the closé®t on eitherX'1 or X2. Suppose that such a
robot is the one that is in the middle of the 1.block of sizé€Dnce the robot has moved, the configuration
becomes of typ€2, 1,2) and the lemma holds. If such a robot is at the extremity of théogk of size3,
then by moving, the configuration reached is of type2, 1) and the lemma holds. O

Figure 14: Instance of a configuratiés, 2, 0)



Lemma lll Starting from a configuration of typ@, 1, 2), a configuration of typ&3, 0, 2) is reached in a
finite time.

Proof. The cases below are possible:

1. Both D1 and D2 contains robots at distan@(d = 2). It is clear that in this case there is one robot
that is in the center of the grid. This robot is the one allow@dnove, its destination is one of its
adjacent free node. By moving, the robot join a borderlineateNthat this borderline contains an
1.block of size3. Thus the configuration reached will k& 0, 2).

2. The robots orD1 are at distancé and the robots o2 are at distanc@. In this case the robot that
is on the borderline o2, being at the corner of the grid and not having any neighlgorabot is
the one that moves towards one of its adjacent free node. tNatence the robot has moved, the
configuration reached remains of ty(® 1, 2), however, bothD1 and D2 contains robots at distance
1.

3. Both D1 and D2 contains robots at distande(d = 1). Let D3 be the middle line that is horizontal
to both D1 and D2. In this case the robot that is dn3 is the one allowed to move, its destination
is its adjacent free node towards one of the two neighboromgldylines that contain an 1.block of
size2. Note that we are sure that this robot has at least one free a®d neighbor otherwise the
configuration contains a single 1.block of sizand the configuration will not be of typ@, 1, 2).
Once the robot has moved, a new 1.block of size created at one borderline and the configuration
will be of type (3,0, 2).

From the cases above, we can deduce that starting from a eatfan of type(2, 1, 2), a configuration
of type (3,0, 2) is reached in a finite time and the lemma holds. O

Lemma IV Starting from a configuration of typg, 3,0), a configuration of typg3, 2,0) is reached in a
finite time.

Proof. When the configuration is of typ@, 3,0), the robot allowed to move is the one that is on the
line that containsX 2 having an free node as a neighbor on the line that containsdlats. Note that once
the robot has moved, a new 1.block of si&s created one borderline of the grid. Thus the configuration
reached will be of typé3, 2, 0) and the lemma holds. m

Lemma V Starting from a configuration of type, 0, 2), either a configuration of typé3, 2, 0) or of type
(3,1,1) is reached in a finite time.

Proof. When the configuration is of typ@, 0, 2), the robots that are on the line th&g are the one
allowed to move. When they do, they move to their adjacemt fiede towards the line that is horizontal to
the the one containing an 1.block of sizeNote that in the case the adversary activates both rototsead
to move at the same time, then the configuration reached ype{3, 2,0) and the lemma holds. If it is not
the case, the configuration reached is of typd, 1) and the lemma holds. O

Lemma VI Starting from a configuration of typ@, 1, 1), either a configuration of typ€3, 2, 0) or of type
(2,2,1) is reached in a finite time.

Proof. Inthe case the configuration is similar to the one shown imf€i@. The robots that are at the
corner having an free node as a neighbor are the one allowadve. Their destination is their adjacent free
node. Note that in the case the adversary activates botlsrabthe same time, the configuration reached is
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of type (2,2,1) and the lemma holds. In the case the adversary activatenglyobot, then the configu-
ration reached remains of ty®, 1, 1) but it is different from the Figure 9. For the other configioas of
type (3,1, 1) (all the configurations that are different from the one shawhigure 9). The robot that is al-
lowed to move is the one that is single on the borderline thatainsX 3. Its destination is its adjacent free
node on the shortest path towards the line that contdizisNote that once it has moved, the configuration
reached is of typé3, 2,0) and the lemma holds. O

Lemma VIl Starting from a configuration of typd, 2, 2), a configuration of typé3, 2,0) is reached in a
finite time.

Proof. From Lemma I, we are sure that starting from a configuratiotypé (1, 2, 2), a configuration
of type(2, 3,0) is reached in a finite time. From Lemma IV we are sure thatisgaftom a configuration of
type (2, 3,0), a configuration of typé3, 2,0) is reached in a finite time. Thus we can deduce that starting
from a configuration of typé1l, 2,2), a configuration of typd3,2,0) is reached in a finite time and the
lemma holds. O

Lemma VIII Starting from a configuration of typd, 3, 1), a configuration of typ€3, 2, 0) is reached in a
finite time.

Proof. From Lemma Il, we are sure that starting from a configuratibiyee (1, 3, 1), a configuration
of type (2,2, 1) is reached in a finite time. From Lemma VIl we are sure thatiefrom a configuration
of type(1,2,2), a configuration of typ€3, 2, 0) is reached in a finite time. Thus we can deduce that starting
from a configuration of typé1,3, 1), a configuration of typé3,2,0) is reached in a finite time and the
lemma holds. O

Lemma IX Starting from a configuration of typ@, 1,2), a configuration of typ€3, 2,0) is reached in a
finite time.

Proof. From Lemma lll, we are sure that starting from a configuratibtype (2, 1, 2), a configuration
of type (3,0, 2) is reached in a finite time. From Lemma V, we are sure thatisggitom a configuration of
type (3,0, 2), a configuration of typ€3, 2,0) is reached in a finite time. Thus we can deduce that starting
from a configuration of typé2, 1,2), a configuration of typ€3,2,0) is reached in a finite time and the
lemma holds. O

Lemma X Starting from any configuration that is towerless, a confegian of type(3, 2, 0) is reached in
a finite time.

Proof. From Lemmas IV-1X, we can deduce that starting from any caméiion that is towerless, a
configuration of type3, 2, 0) is reached in a finite time and the lemma holds. O

Lemma X| Starting from one of the three special configurations, &l tlodes of the grid are explored and
the algorithm stops.

Proof. Itis easy to see from Figure 7, that all the nodes of the grdexiplored. Thus the lemma
holds. O

Lemma XIl Starting from any configuration of tyg8, 2, 0), the exploration can be performed.



Proof. If the configuration is the special configuration (refer tgufe 7 (step 1)), then according to
Lemma XI, the exploration task is performed and all the naddise ring are explored. If the configuration is
as the one show in Figure 14, then the two robots that are modfihe 1.block of siz& are the one allowed
to move, their destination is their adjacent node in theareot the grid. In the case where the adversary
activates only one of the two robots allowed to move, the igpeonfiguration is reached and the lemma
holds. If both robots are activated then a tower is createtiéncenter of the grid and the configuration
reached will be as the one shown in Figure 7 (Step2) and ircHse too the exploration is performed and
the lemma holds. O

From the lemmas above we can deduce that:

Theorem 7The deterministic exploration of@, 3)-Grid can be solved in CORDA using 5 oblivious robots.
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