
Temporal Logic Motion Control using Actor-Critic Methods
– Technical Report – ∗

Xu Chu Ding†, Jing Wang‡, Morteza Lahijanian‡, Ioannis Ch. Paschalidis‡, and Calin A. Belta‡

Abstract— In this paper, we consider the problem of deploy-
ing a robot from a specification given as a temporal logic
statement about some properties satisfied by the regions of
a large, partitioned environment. We assume that the robot
has noisy sensors and actuators and model its motion through
the regions of the environment as a Markov Decision Process
(MDP). The robot control problem becomes finding the control
policy maximizing the probability of satisfying the temporal
logic task on the MDP. For a large environment, obtaining
transition probabilities for each state-action pair, as well as
solving the necessary optimization problem for the optimal
policy are usually not computationally feasible. To address
these issues, we propose an approximate dynamic programming
framework based on a least-square temporal difference learning
method of the actor-critic type. This framework operates on
sample paths of the robot and optimizes a randomized control
policy with respect to a small set of parameters. The transition
probabilities are obtained only when needed. Hardware-in-the-
loop simulations confirm that convergence of the parameters
translates to an approximately optimal policy.

Index Terms— Motion planning, Markov Decision Processes,
dynamic programming, actor-critic methods.

I. INTRODUCTION

One major goal in robot motion planning and control is
to specify a mission task in an expressive and high-level
language and convert the task automatically to a control
strategy for the robot. The robot is subject to mechanical
constraints, actuation and measurement noise, and limited
communication and sensing capabilities. The challenge in
this area is the development of a computationally efficient
framework accommodating both the robot constraints and
the uncertainty of the environment, while allowing for a large
spectrum of task specifications.

In recent years, temporal logics such as Linear Temporal
Logic (LTL) and Computation Tree Logic (CTL) have been
promoted as formal task specification languages for robotic
applications [1]–[6]. They are appealing due to their high
expressivity and closeness to human language. Moreover,
several existing formal verification [7], [8] and synthesis [8]
tools can be adapted to generate motion plans and provably
correct control strategies for the robots.

* Research partially supported by the NSF under grant EFRI-0735974,
by the DOE under grant DE-FG52-06NA27490, by the ODDR&E MURI10
program under grant N00014-10-1-0952, and by ONR MURI under grant
N00014-09-1051.

† Xu Chu Ding is with Embedded Systems and Networks
group, United Technologies Research Center, East Hartford, CT 06108
(dingx@utrc.utc.com).

Jing Wang, Morteza Lahijanian, Ioannis Ch. Paschalidis, and Calin
A. Belta are with the Division of System Eng., Dept. of Mechanical
Eng., Dept. of Electrical & Computer Eng., and Dept. of Mechanical
Eng., Boston University, Boston, MA 02215 ({wangjing,morteza,
yannisp, cbelta}@bu.edu), respectively.

In this paper, we assume that the robot model in the envi-
ronment is described by a (finite) Markov Decision Process
(MDP). In this model, the robot can precisely determine its
current state, and by applying an action (corresponding to a
motion primitive) enabled at each state, it triggers a transition
to an adjacent state with a fixed probability. We are interested
in controlling the MDP robot model such that it maximizes
the probability of satisfying a temporal logic formula over
a set of properties satisfied at the states of the MDP. By
adapting existing probabilistic model checking [8]–[10] and
synthesis [11], [12] algorithms, we recently developed such
computational frameworks for formulas of LTL [13] and a
fragment of probabilistic CTL [14].

With the above approaches, an optimal control policy can
be generated to maximize the satisfying probability, given
that the transition probabilities are known for each state-
action pair of the MDP, which can be computed by using
a Monte-Carlo method and repeated forward simulations.
However, it is often not feasible for realistic robotic appli-
cations to obtain the transition probabilities for each state-
action pair, even if an accurate model or a simulator of
the robot in the environment is available. Moreover, the
problem size is even larger when considering temporal logic
specifications. For example, in order to find an optimal policy
for an MDP satisfying an LTL formula, one need to solve
a dynamical programming problem on the product between
the original MDP and a Rabin automaton representing the
formula. As such, exact solution can be computationally
prohibitive for realistic settings.

In this paper, we show that approximate dynamic pro-
gramming [15] can be effectively used to address the above
limitations. For large dynamic programming problems, an
approximately optimal solution can be provided using actor-
critic algorithms [16]. In particular, actor-critic algorithms
with Least Squares Temporal Difference (LSTD) learning
have been shown recently to be a powerful tool to solve
large-sized problems [17], [18]. This paper extends from
[19], in which we proposed an actor-critic method for
maximal reachability (MRP) problems, i.e., maximizing the
probability of reaching a set of states, to a computational
framework that finds a control policy such that the probabil-
ity of its paths satisfying an arbitrary LTL formula is locally
optimal over a set of parameters. This set of parameters is
designed to tailor to this class of approximate dynamical
programming problems.

Our proposed algorithm produces a randomized policy,
which gives a probability distribution over enabled actions
at a state. Our method requires transition probabilities to
be generated only along sample paths, and is therefore

ar
X

iv
:1

20
2.

21
85

v2
 [

cs
.R

O
]

 2
3

Fe
b

20
12

Fig. 1. Robotic InDoor Environment (RIDE) platform. Left: An iCreate
mobile platform moving autonomously through the corridors and intersec-
tions of an indoor-like environment. Right: The partial schematics of the
environment. The black blocks represent walls, and the grey and white
regions are intersection and corridors, respectively. The labels inside a region
represents observations associated with regions, such as Un (unsafe regions)
and Ri (risky regions).

particularly suitable for robotic applications. To the best of
our knowledge, this is the first of combining temporal logic
formal synthesis with actor-critic type methods. We illustrate
the algorithms with hardware-in-the-loop simulations using
an accurate simulator of our Robotic InDoor Environment
(RIDE) platform [20].

Notation: We use bold letters to denote sequences and
vectors. Vectors are assumed to be column vectors. Transpose
of a vector x is denoted by xT. ‖ · ‖ stands for the Euclidean
norm. |S| denotes the cardinality of a set S.

II. PROBLEM FORMULATION AND APPROACH

We consider a robot moving in an environment partitioned
into regions such as the Robotic Indoor Environment (RIDE)
(see Fig. 1). Each region in the environment is associated
with a set of observations. Observations can be Un for unsafe
regions, or Up for a region where the robot can upload
data. We assume that the robot can detect its current region.
Moreover, the robot is programmed with a set of motion
primitives allowing it to move from a region to an adjacent
region. To capture noise in actuation and sensing, we make
the natural assumption that, at a given region, a motion
primitive designed to take the robot to a specific adjacent
region may take the robot to a different adjacent region.

Such a robot model naturally leads to a labeled Markov
Decision Process (MDP), which is defined below.
Definition II.1 (Labeled Markov Decision Process). A la-
beled Markov decision process (MDP) is a tuple M =
(Q, q0, U,A, P,Π, h), where

(i) Q = {1, . . . , n} is a finite set of states;
(ii) q0 ∈ Q is the initial state;

(iii) U is a finite set of actions;
(iv) A : Q → U maps a state q ∈ Q to actions enabled at

q;
(v) P : Q × U × Q → [0, 1] is the transition probability

function such that for all q ∈ Q,
∑
q′∈Q P (q, u, q′) = 1

if u ∈ A(q), and P (q, u, q′) = 0 for all q′ ∈ Q if
u /∈ A(q);

(vi) Π is a set of observations;
(vii) h : Q→ 2Π is the observation map.

Each state of the MDP M modeling the robot in the
environment corresponds to an ordered set of regions in the
environment, while the actions label the motion primitives
that can be applied at a region. For example, a state of
M may be labelled as I1-C1, which means that the robot
is currently at region C1, coming from region I1. Each
ordered set of regions corresponds to a recent history of
the robot trajectory, and is needed to ensure the Markov
property (more details on such MDP abstraction of the robot
in the environment can be found in e.g., [14]). The transition
probability function P can be obtained through extensive
simulations of the robot in the environment. We assume
that there exists an accurate simulator that is capable of
generating (computing) the transition probability P (q, u, ·)
for each state-action pair q ∈ Q and u ∈ A(q). More details
of the construction of the MDP model for a robot in the
RIDE platform are included in Sec. IV.

If the exact transition probabilities are not known, M
can be seen as a labeled non-deterministic transition system
(NTS) MN = (Q, q0, U,A, P

N ,Π, h), where P in M is
replaced by PN : Q×U×Q→ {0, 1}, and PN (q, u, q′) = 1
indicates a possible transition from q to q′ applying an
enabled action u ∈ A(q); if PN (q, u, q′) = 0, then the
transition from q to q′ is not possible under u.

A path on M is a sequence of states q = q0q1 . . . such
that for all k ≥ 0, there exists uk ∈ A(qk) such that
P (qk, uk, qk+1) > 0. Along a path q = q0q1 . . ., qk is
said to be the state at time k. The trajectory of the robot
in the environment is represented by a path q on M (which
corresponds to a sequence of regions in the environment).
A path q = q1q2 . . . generates a sequence of observations
h(q) := o1o2 . . ., where ok = h(qk) for all k ≥ 0. We call
o = h(q) the word generated by q.
Definition II.2 (Policy). A control policy for an MDPM is
an infinite sequence M = µ0µ1 . . ., where µk : Q × U →
[0, 1] is such that

∑
u∈A(q) µk(q, u) = 1, for all k ≥ 0.

Namely, at time k, µk(q, ·) is a discrete probability distri-
bution over A(q). If µ = µk for all k ≥ 0, then M = µµ . . .
is called a stationary policy. If for all k ≥ 0, µk(q, u) =
1 for some u, then M is deterministic; otherwise, M is
randomized. Given a policy M , we can then generate a set
of paths on M, by applying uk with probability µk(qk, uk)
at state qk for all time k.

We require the trajectory of the robot in the environment
to satisfy a rich task specification given as a Linear Temporal
Logic (LTL) (see, e.g., [7], [8]) formula over a set of
observations Π. An LTL formula over Π is evaluated over
an (infinite) sequence o = o0o1 . . . (e.g., a word generated
by a path on M), where ok ⊆ Π for all k ≥ 0. We denote
o � φ if word o satisfies the LTL formula φ, and we say q
satisfies φ if h(q) � φ. Roughly, φ can be constructed from
a set of observations Π, Boolean operators ¬ (negation),
∨ (disjunction), ∧ (conjunction), −→ (implication), and
temporal operators X (next), U (until), F (eventually), G

(always). A variety of robotic tasks can be easily translated
to LTL formulas. For example, the following complex task
command in natural language: “Gather data at locations Da
infinitely often. Only reach a risky region Ri if valuable data
at VD can be gathered, and always avoid unsafe regions
(Un)” can be translated to the LTL formula:

φ := GFDa ∧ G (Ri −→ VD) ∧ G¬Un.

In this paper, we consider the following problem.

Problem II.3. Given a labeled MDP M =
(Q, q0, U,A, P,Π, h) modeling the motion of a robot
in a partitioned environment and a mission task specified
as an LTL formula φ over Π, find a control policy that
maximizes the probability of its path satisfying φ.

The probability that paths generated under a policy M
satisfy an LTL formula φ is well defined with a suitable
measure over the set of all paths generated by M [8].

In [13], we proposed a computational framework to solve
Prob. II.3, by adapting methods from the area of probabilistic
model checking [8]–[10]. However, this framework relies
upon the fact that the transition probabilities are known
for all state-action pairs. These transition probabilities are
typically not available for robotic applications and com-
putationally expensive to compute. Moreover, even if the
transition probabilities are obtained for each state-action
pair, this method still requires solving a linear program on
the product of the MDP and the automata representing the
formula, which can be very large (thousands or even millions
of states). In this case an approximate method might be
more desirable. For these reasons, we instead focus on the
following problem.

Problem II.4. Given a labeled NTS MN =
(Q, q0, U,A, P

N ,Π, h) modeling a robot in a partitioned
environment, a mission task specified as an LTL formula φ
over Π, and an accurate simulator to compute transition
probabilities P (q, u, ·) given a state-action pair (q, u),
find a control policy that approximately maximizes the
probability of its path satisfying φ.

In many robotic applications, the NTS model MN =
(Q, q0, U,A, P

N ,Π, h) can be quickly constructed for the
robot in the environment. Our approach to Prob. II.4 can
be summarized as follows: First, we proceed to translate
the problem to a maximal reachability probability (MRP)
problem using MN and φ (Sec. III-A). We then use an
actor critic framework to find a randomized policy giving
an approximate solution to the MRP problem (Sec. III-B).
The randomized policy is constructed to be a function of a
small set of parameters and we find a policy that is locally
optimal with respect to these parameters. The construction of
a class of policies suitable for MRP problems without using
the transition probabilities is explained in Sec. III-C. The
algorithmic framework presented in this paper is summarized
in Sec. III-D.

III. CONTROL SYNTHESIS

A. Formulation of the MRP Problem

The formulation of the MRP problem is based on [8]–[10],
[13] with modification if needed when using the NTS MN
instead of M. We start by converting the LTL formula φ
over Π to a so-called deterministic Rabin automaton, which
is defined as follows.
Definition III.1 (Deterministic Rabin Automaton). A de-
terministic Rabin automaton (DRA) is a tuple R =
(S, s0,Σ, δ, F), where

(i) S is a finite set of states;
(ii) s0 ∈ S is the initial state;

(iii) Σ is a set of inputs (alphabet);
(iv) δ : S × Σ→ S is the transition function;
(v) F = {(L(1),K(1)), . . . , (L(M),K(M))} is a set of

pairs of sets of states such that L(i),K(i) ⊆ S for all
i = 1, . . . ,M .

A run of a Rabin automatonR, denoted by r = s0s1 . . ., is
an infinite sequence of states in R such that for each k ≥ 0,
sk+1 ∈ δ(sk, α) for some α ∈ Σ. A run r is accepting if
there exists a pair (L,K) ∈ F such that r intersects with
L finitely many times and K infinitely many times. For any
LTL formula φ over Π, one can construct a DRA (for which
we denote by Rφ) with input alphabet Σ = 2Π accepting all
and only words over Π that satisfy φ (see [21]).

We then obtain an MDP as the product of a labeled
MDP M and a DRA Rφ, which captures all paths of
M satisfying φ. Note that this product MDP can only be
constructed from an MDP and a deterministic automaton,
this is why we require a DRA instead of, e.g., a (generally
non-deterministic) Büchi automaton (see [8]).
Definition III.2 (Product MDP). The product MDP M×
Rφ between a labeled MDP M = (Q, q0, U,A, P,Π, h)
and a DRA Rφ = (S, s0, 2

Π, δ, F) is an MDP P =
(SP , sP0, UP , AP , PP ,Π, hP), where

(i) SP = Q× S is a set of states;
(ii) sP0 = (q0, s0) is the initial state;

(iii) UP = U is a set of actions inherited from M;
(iv) AP is also inherited from M and AP((q, s)) := A(q);
(v) PP gives the transition probabilities:

PP((q, s), u, (q′, s′))=

{
P (q, u, q′) if q′ = δ(s, h(q))

0 otherwise;

Note that hP is not used in the product MDP. Moreover, P
is associated with pairs of accepting states (similar to a DRA)
FP := {(LP(1),KP(1)), . . . , (LP(M),KP(M))} where
LP(i) = Q× L(i), KP(i) = Q×K(i), for i = 1, . . . ,M ;

The product MDP is constructed in a ways such that, given
a path (s0, q0)(s1, q1) . . ., the corresponding path s0s1 . . . on
M satisfies φ if and only if there exists a pair (LP ,KP) ∈
FP satisfying the Rabin acceptance condition, i.e., the set
KP is visited infinitely often and the set LP is visited finitely
often.

We can make a very similar product between a la-
beled NTS MN = (Q, q0, U,A, P

N ,Π, h) and Rφ. This

product is also an NTS, which we denote by PN =
(SP , sP0, UP , AP , P

N
P ,Π, hP) := MN × Rφ, associated

with accepting sets FP . The definition (and the accepting
condition) of PN is exactly the same as for the product
MDP. The only difference between PN and P is in PNP ,
which is either 0 or 1 for every state-action-state tuple.

From the product P or equivalently PN , we can proceed
to construct the MRP problem. To do so, it is necessary to
produce the so-called accepting maximum end components
(AMECs). An end component is a subset of an MDP
(consisting of a subset of states and a subset of enabled
actions at each state) such that for each pair of states (i, j)
in P , there is a sequence of actions such that i can be
reached from j with positive probability, and states outside
the component cannot be reached. An AMEC of P is the
largest end component containing at least one state in KP
and no state in LP , for a pair (KP , LP) ∈ FP .

A procedure to obtain all AMECs of an MDP is outlined
in [8]. This procedure is intended to be used for the product
MDP P , but it can be used without modification to find
all AMECs associated with P when PN is used instead of
P . This is because the information needed to construct the
AMECs is the set of all possible state transitions at each
state, and this information is already contained in PN .

If we denote S?P as the union of all states in all AMECs
associated with P , it has been shown in probabilistic model
checking (see e.g., [8]) that the probability of satisfying the
LTL formula is given by the maximal probability of reaching
the set S?P from the initial state SP0. The desired optimal
policy can then be obtained as the policy maximizing this
probability. If transition probabilities are available for each
state-action pair, then the solution to this MRP problem can
be solved as by a linear program (see [8], [22]). The resultant
optimal policy is deterministic and (i.e., M = µµ . . .) on
the product MDP P . To implement this policy on M, it is
necessary to use the DRA as a feedback automaton to keep
track of the current state sP on P , and apply the action u
where µ(sP , u) = 1 (since µ is deterministic).
Remark III.3. It is only necessary to find the optimal
policy for states not in the set S?P . This is because by
construction, there exists a policy inside any AMEC that
almost surely satisfies the LTL formula φ by reaching a state
in KP infinitely often. This policy can be obtained by simply
choosing an action (among the subset of actions retained by
the AMEC) at each state randomly, i.e., a trivial randomized
stationary policy exists that almost surely satisfies φ.

B. LSTD Actor-Critic Method

We now describe how relevant results in [19] can be
applied to solve Prob. II.4. An approximate dynamic pro-
gramming algorithm of the actor-critic type was presented
in [19], which obtains a stationary randomized policy (RSP)
(see Def. II.2) M = µθµθ . . ., where µθ(q, u) is a function of
the state-action pair (q, u) and θ ∈ Rn, which is a vector of
parameters. For the convenience of notations, we denote an
RSP µθµθ . . . simply by µθ. In this sub-section we assume

that the RSP µθ(q, u) to be given, and we will describe in
Sec. III-C on how to design a suitable RSP.

Given an RSP µθ, actor-Critic algorithms can be applied
to optimize the parameter vector θ by policy gradient estima-
tions. The basic idea is to use stochastic learning techniques
to find θ that locally optimizes a cost function. In particular,
the algorithm presented in [19] is targeted at Stochastic
Shortest Path (SSP) problems commonly studied in literature
(see e.g., [22]). Given an MDP M = (Q, q0, U,A, P,Π, h),
a termination state q? ∈ Q and a function g(q, u) defining
the one-step cost of applying action u at state q, the expected
total cost is defined as:

ᾱ(θ) = lim
N→∞

E

{
N−1∑
k=0

g(qk, uk)

}
, (1)

where (qk, uk) is the state-action pair at time k along a path
under RSP µθ.

The SSP problem is formulated as the problem of finding
θ? minimizing (1). Note that, in general, we assume q? to be
cost-free and absorbing, i.e., g(q?, u) = 0 and P (q?, u, q?) =
1 for all u ∈ A(q?). Under these conditions, the expected
total cost (1) is finite.

We note that an MRP problem as described in Sec. III-A
can be immediately converted to an SSP problem.
Definition III.4 (Conversion from MRP to SSP). Given the
product MDP P = (SP , sP0, UP , AP , PP , FP) and a set of
states S?P ⊆ SP , the problem of maximizing the probability
of reaching S?P can be converted to an SSP problem by
defining a new MDP P̃ = (S̃P , s̃P0, ŨP , ÃP , P̃P , gP), where

(i) S̃P = (SP \ S?P) ∪ {s?P}, where s?P is a “dummy”
terminal state;

(ii) s̃P0 = sP0 (without the loss of generality, we exclude
the trivial case where sP0 ∈ S?P);

(iii) ŨP = UP ;
(iv) ÃP(sP) = AP(sP) for all sP ∈ SP , and for the dummy

state we set ÃP(s?P) = ŨP ;
(v) The transition probability is redefined as follows. We

first define S̄?P as the set of states on P that cannot
reach S?P under any policy. We then define:

P̃P(sP , u, s
′
P)

=


∑

s′′P∈S?
P

PP(sP , u, s
′′
P), if s′P = s?P

PP(sP , u, s
′
P), if s′P ∈ SP \ S?P

for all sP ∈ SP \(S?P ∪ S̄?P) and u ∈ ŨP . Moreover, for
all sP ∈ S̄?P and u ∈ ŨP , we set P̃P(s?P , u, s

?
P) = 1

and P̃P(sP , u, sP0) = 1;
(vi) For all sP ∈ S̃P and u ∈ ŨP , we define the one-step

cost gP(sP , u) = 1 if sP ∈ S̄?P , and g(sP , u) = 0
otherwise.

We have shown in [19] that the policy minimizing (1) for
the SSP problem with MDP P̃ and the termination state s?P
is a policy maximizing the probability of reaching the set
S?P on P , i.e., a solution to the MRP problem formulated in
Sec. III-A.

Fig. 2. Diagram illustrating an actor-critic algorithm.

The SSP problem can also be constructed from
the NTS PN . In this case we obtain an NTS
P̃N (S̃P , s̃P0, ŨP , ÃP , P̃

N
P , gP), using the exact same

construction as Def. III.4, except for the definition of P̃NP .
The transition function P̃NP (sP , u, s

′
P) is instead defined as:

P̃NP (sP , u, s
′
P)

=

{
max
s′′P∈S?

P

PNP (sP , u, s
′′
P), if s′P = s?P

PNP (sP , u, s
′
P), if s′P ∈ SP \ S?P

for all sP ∈ SP \ (S?P ∪ S̄?P) and u ∈ ŨP . Moreover, for
all sP ∈ S̄?P and u ∈ ŨP , we set P̃NP (s?P , u, s

?
P) = 1 and

P̃NP (sP , u, sP0) = 1.
Once the SSP problem is constructed, the algorithm pre-

sented in [19] is an iterative procedure that obtains a policy
that locally minimizes the cost function (1) by simulating
sample paths on P̃ . Each sample paths on P̃ starts at sP0

and ends when the termination state s?P is reached. Since
the probabilities is needed only along the sample path, we
do not require the MDP P̃ , but only P̃N .

An actor-critic algorithm operates in the following way:
the critic observes state and one-step cost from MDP and
uses observed information to update the critic parameters,
then the critic parameters are used to update the policy; the
actor generates the action based on the policy and applies the
action to the MDP. The algorithm stops when the gradient of
ᾱ(θ) is small enough (i.e., θ is locally optimal). The actor-
critic update mechanism is shown in Fig. 2.

We summarize the actor-critic update algorithm in Alg. 1,
and we note that it does not depend on the form of RSP µθ.
The vectors zk ∈ Rn,bk ∈ Rn, rk ∈ Rn and the matrix
Ak ∈ Rn×n are updated during each critic update, while
simultaneously, the vector θk ∈ Rn is updated during each
actor update. Both the critic and actor update depend on

ψθ(x, u) := ∇θ ln(µθ(x, u)), (2)

which is the gradient of the logarithm of µθ(x, u), to estimate
the gradient ∇ᾱ(θ). Lastly, sequence {γk} controls the critic
step-size, while {βk} and Γ(rk) control the actor step-size.
We note that all step-size parameters are positive, and their
effect on the convergence rate is discussed in [19].

The critic update algorithm in Alg. 1 is of the LSTD
type, which has shown to be superior to other approximate

dynamic programming methods in terms of the convergence
rate [18]. More detail of this algorithm can be found in [19].

Algorithm 1 LSTD Actor-critic algorithm for SSP problems

Input: The NTS P̃N (S̃P , s̃P0, ŨP , ÃP , P̃
N
P , gP) with the termi-

nal state s?P , the RSP µθ , and a computation tool to obtain
P̃P(sP , u, ·) for a given (sP , u) state-action pair.

1: Initialization: Set all entries in z0,A0,b0 and r0 to zeros. Let
θ0 take some initial value. Set initial state x0 := s̃P0. Obtain
action u0 using the RSP µθ0 .

2: repeat
3: Compute the transition probabilities P̃ (xk, uk, ·).
4: Obtain the simulated subsequent state xk+1 using the transi-

tion probabilities P̃ (xk, uk, ·). If xk = s?P , set xk+1 := x0.
5: Obtain action uk+1 using the RSP µθk

6: Critic Update:

zk+1 = λzk +ψθk
(xk, uk)

bk+1 = bk + γk (g(xk, uk)zk − bk)

Ak+1 = Ak + γk(zk(ψT
θk

(xk+1, uk+1)−ψT
θk

(xk, uk))

−Ak),

rk+1 = −A−1
k bk.

7: Actor Update:

θk+1 = θk−βkΓ(rk)rTkψθk (xk+1, uk+1)ψθk (xk+1, uk+1)

8: until ||∇ᾱ(θk)|| ≤ ε for some given ε

C. Designing an RSP

In this section we describe a randomized policy suitable
to be used in Alg. 1 for MRP problems, and do not require
the transition probabilities. We propose a family of RSPs
that perform a “t steps look-ahead”. This class of policies
consider all possible sequences of actions in t steps and
obtain a probability for each action sequence.

To simplify notation, for a pair of states i, j ∈ S̃P , we
denote i t→ j if there is a positive probability of reaching
j from i in t step. This can be quickly verified given
P̃NP without transition probabilities. At state i ∈ S̃P , we
denote an action sequence from i with t steps look-ahead
as e = u1u2 . . . ut, where uk ∈ ÃP(j) for some j such
that i k→ j, for all k = 1, . . . t. We denote the set of all
action sequences from state i as E(i). Given e ∈ E(i), we
denote P̃NP (i, e, j) = 1 if there is a positive probability of
reaching j from i with the action sequence e. This can also
be recursively obtained given P̃NP (i, u, ·).

For each pair of states i, j ∈ S̃P , we define d(i, j) as the
minimum number of steps from i to reach j (this again can be
obtained quickly from P̃NP without transition probabilities).
We denote j ∈ N(i) if and only if d(i, j) ≤ rN , where rN
is a fixed integer given apriori. If j ∈ N(i), then we say i
is in the neighborhood of j, and rN represents the radius of
the neighborhood around each state.

For each state i ∈ S̃P , We define the safety score safe(i)
as the ratio of the neighboring states not in S̄?P over all
neighboring states of i. Recall that S̄?P is the set of states
with 0 probability of reaching the goal states S?P . To be

more specific, we define:

safe(i) :=

∑
j∈N(i) I(j)

|N(i)|
, (3)

where I(i) is an indicator function such that I(i) = 1 if and
only if i ∈ S̃P\S̄?P and I(i) = 0 if otherwise. A higher safety
score for the current state implies that it is less likely to reach
S̄?P in the near future. Furthermore, we define the progress
score of a state i ∈ S̃P as progress(i) := minj∈S?

P
d(i, j),

which is the minimum number of transitions from i to any
goal state.

We can now present the definition of our RSP. Let θ :=
[θ1, θ2]T. We define:

a (θ, i, e)

= exp
(
θ1

∑
j∈N(i)

safe(j)P̃NP (i, e, j)

+θ2

∑
j∈N(i)

(progress (j)− progress (i))

P̃NP (i, e, j)
)
, (4)

where exp is the exponential function. Note that a(θ, i, e) is
the combination of the expected safety score of the next state
applying the action sequence e, and the expected improved
progress score from the current state applying e, weighted
by θ1 and θ2. We assign the probability of pick the action
sequence e at i proportional to the combined score a(θ, i, e).
Hence, the probability to pick action sequence e at state i is
defined as:

µ̃θ (i, e) =
a (θ, i, e)∑

e∈E(i) a (θ, i, e)
. (5)

Note that, if the action sequence e = u1u2 . . . ut is picked,
only the first action u1 is applied. Hence, at stat i, the
probability that an action u ∈ ÃP(i) can be derived from
Eq. (5):

µθ (i, u) =
∑

{e∈E(i) | e=uu2...ut}

µ̃θ(i, e), (6)

which completes the definition of the RSP.

D. Overall Algorithm

We now connect all the pieces together and present the
overall algorithm giving a solution to Prob. II.4.
Proposition III.5. Alg. 2 returns in finite time with θ? locally
maximizing the probability of the RSP µθ satisfying the LTL
formula φ.

Proof. In [19], we have shown that the actor-critic algorithm
used in this paper returns in finite time with a locally optimal
θ? such that ||∇ᾱ(θ?)|| ≤ ε for a given ε. We have shown
throughout the paper that the optimal policy maximizing the
probability of reaching S?P on P is a policy maximizing
the probability of satisfying φ. We also showed throughout
the paper that the SSP problem, as well as the RSP µθ can
be constructed without the transition probabilities, and only
with MN . Therefore, Alg. 2 produces an RSP maximizing

Algorithm 2 Overall algorithm providing a solution to Prob.
II.4
Input: A labeled NTS MN = (Q, q0, U,A, P

N ,Π, h) modeling
a robot in a partitioned environment, LTL formula φ over Π,
and a simulator to compute P (q, u, ·) given a state-action pair
(q, u)

1: Translate the LTL formula φ to a DRA Rφ
2: Generate the product NTS PN =MN ×Rφ
3: Find the union of all AMECs S?P associated with PN
4: Convert from an MRP to an SSP and generate P̃N
5: Obtained the RSP µθ with PN
6: Execute Alg. 1 with P̃N and µθ as inputs until ||∇ᾱ(θ?)|| ≤ ε

for a θ? and a given ε
Output: RSP µθ and θ? locally maximizing the probability of

satisfying φ with respect to θ up to a threshold ε

the probability of satisfying φ with respect to θ up to a
threshold ε.

IV. HARDWARE-IN-THE-LOOP SIMULATION

We test the algorithms proposed in this paper through
hardware-in-the-loop simulation for the RIDE environment
(as shown in Fig. 1). The transition probabilities are com-
puted by an accurate simulator of RIDE as needed. We apply
both LTL control synthesis methods of linear programming
(exact solution) and actor-critic (approximate solution) and
compare the results.

A. Environment

In this case study, we consider an environment whose
topology is shown in Fig. 3. This environment is made of
square blocks forming 164 corridors and 84 intersections.
The corridors (C1, C2, . . . , C164) shown as white regions in
Fig. 3 are of three different lengths, one-, two-, and three-unit
lengths. The three-unit corridors are used to build corners
in the environment. The intersections (I1, I2, . . . , I84) are of
two types, three-way and four-way, and are shown as grey
blocks in Fig. 3. The black regions in this figure represent
the walls of the environment. Note that there is always a
corridor between two intersections.

There are five properties of interest (observations) associ-
ated with the regions of the environment. These properties
are: VD = ValuableData (regions containing valuable data to
be collected), RD = RegularData (regions containing regular
data to be collected), Up = Upload (regions where data can
be uploaded), Ri = Risky (regions that could pose a threat to
the robot), and Un = Unsafe (regions that are unsafe for the
robot).

B. Construction of the MDP model

The robot is equipped with a set of feedback control
primitives (actions) - FollowRoad, GoRight, GoLeft, and
GoStraight. The controller FollowRoad is only available
(enabled) at the corridors. At four-way intersections, con-
trollers are GoRight, GoLeft, and GoStraight. At three-
way intersections, depending on the shape of the intersection,
two of the four controllers are available. Due to the presence
of noise in the actuators and sensors, however, the resulting

Fig. 3. Schematic representation of the environment with 84 intersections
and 164 corridors. The black blocks represent walls, and the grey and
white regions are intersection and corridors, respectively. There are five
properties of interest in the regions indicated with VD = ValuableData, RD
= RegularData, Up = Upload, Ri = Risky, and Un = Unsafe. The initial
position of the robot is shown with a blue disk and the upload region is
indicated with a red star.

motion may be different than intended. Thus, the outcome
of each control primitive is characterized probabilistically.

To create an MDP model of the robot in RIDE, we define
each state of the MDP as a collection of two adjacent regions
(a corridor and an intersection). For instance the pairs C1-I2
and I3-C4 are two states of the MDP. Through this pairing
of regions, it was shown that the Markov property (i.e., the
result of an action at a state depends only on the current state)
can be achieved [14]. The resulting MDP has 608 states.

The set of actions available at a state is the set of
controllers available at the last region corresponding to the
state. For example, when in state C1-I2 only those actions
from region I2 are allowed. Each state of the MDP whose
second region satisfies an observation in Π is mapped to that
observation.

To obtain transition probabilities, we use an accurate
simulator (see Fig. 4) incorporating the motion and sensing
of an iRobot Create platform with a Hokoyu URG-04LX
laser range finder, APSX RW-210 RFID reader, and an MSI
Wind U100-420US netbook (the robot is shown in Fig. 1)
in RIDE. Specifically, it emulates experimentally measured
response times, sensing and control errors, and noise levels
and distributions in the laser scanner readings. More detail
for the software implementation of the simulator can be
found in [14]. We perform a total of 1,000 simulations for
each action available in each MDP state.

C. Task specification and results

We consider the following mission task:

Fig. 4. Simulation snapshots. The white disk represents the robot and
the different circles around it indicate different ”zones” in which different
controllers are activated. The yellow dots represent the laser readings used
to define the target angle. (a) The robot centers itself on a stretch of corridor
by using FollowRoad; (b) The robot applies GoRight in an intersection;
(c) The robot applies GoLeft.

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration Number

R
ea

ch
ab

ilit
y

Pr
ob

ab
ilit

y

Fig. 5. The optimal solution (the maximal probability of satisfying the
specification) is shown with the dashed line, and the solid line represents
the exact reachability probability for the RSP as a function of the number
of iterations applying the proposed algorithm.

Specification: Reach a location with ValuableData (VD) or
RegularData (RD), and then reach Upload (Up). Do not
reach Risky (Ri) regions unless eventually reach a location
with ValuableData (VD). Always avoid Unsafe (Un) regions
until Upload (Up) is reached (and mission completed).

The above task specification can be translated to the LTL
formula:

φ := FUp ∧ (¬UnUUp) ∧ G (Ri −→ FVD)

∧G (VD ∨ RD −→ XFUp) (7)

The initial position of the robot is shown as a blue circle
in Fig. 3 with the orientation towards the neighboring inter-
section. We used the computational frameworks described

in this paper to find the control strategy maximizing the
probabilities of satisfying the specification. The size of the
DRA is 17 which results in the product MDP with 10336
states. By applying both methods of linear programming
(exact solution) and actor-critic (approximate solution), we
found the maximum probabilities of satisfying the specifi-
cation were 92% and 75%, respectively. The graph of the
convergence of the actor-critic solution is shown in Fig. 5.
The parameters for this examples are: λ = 0.9, and the initial
θ = [5,−0.5]T. The look-ahead window t for the RSP is 2.

It should be emphasized that, we only compute the tran-
sition probabilities along the sample path. Thus, when Alg.
2 is completed (at iteration 1100), at most 1100 transition
probabilities of state-action pairs were computed. In com-
parison, in order to solve the probability exactly, arround
30000 transition probabilities of state-action pairs must be
computed.

V. CONCLUSIONS

We presented a framework that brings together an approx-
imate dynamic programming computational method of the
actor critic type, with formal control synthesis for Markov
Decision Processes (MDPs) from temporal logic specifi-
cations. We show that this approach is particular suitable
for problems where the transition probabilities of the MDP
are difficult or computationally expensive to compute, such
as for many robotic applications. We show that this ap-
proach effectively finds an approximate optimal policy within
a class of randomized stationary polices maximizing the
probability of satisfying the temporal logic formula. Future
direction includes extending this result to multi-robot teams,
examining exactly how to choose an appropriate look-ahead
window when designing the RSP, and applying the result
to more realistic problem settings with the MDP containing
possibility millions of states.

REFERENCES

[1] H. Kress-Gazit, G. Fainekos, and G. J. Pappas, “Where’s Waldo?
Sensor-based temporal logic motion planning,” in IEEE Int. Conf. on
Robotics and Automation, Rome, Italy, 2007, pp. 3116–3121.

[2] S. Karaman and E. Frazzoli, “Sampling-based motion planning with
deterministic µ-calculus specifications,” in IEEE Conf. on Decision
and Control, Shanghai, China, 2009, pp. 2222 – 2229.

[3] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of
multiagent motion tasks based on LTL specifications,” in 43rd IEEE
Conference on Decision and Control, December 2004.

[4] M. M. Quottrup, T. Bak, and R. Izadi-Zamanabadi, “Multi-robot
motion planning: A timed automata approach,” in IEEE Int. Conf.
on Robotics and Automation, New Orleans, LA, Apr. 2004, pp. 4417–
4422.

[5] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning for dynamical systems,” in IEEE Conference
on Decision and Control, Shanghai, China, 2009.

[6] A. Bhatia, L. Kavraki, and M. Vardi, “Sampling-based motion plan-
ning with temporal goals,” in Robotics and Automation (ICRA), 2010
IEEE International Conference on. IEEE, 2010, pp. 2689–2696.

[7] E. M. M. Clarke, D. Peled, and O. Grumberg, Model checking. MIT
Press, 1999.

[8] C. Baier, J.-P. Katoen, and K. G. Larsen, Principles of Model Check-
ing. MIT Press, 2008.

[9] L. De Alfaro, “Formal verification of probabilistic systems,” Ph.D.
dissertation, Stanford University, 1997.

[10] M. Vardi, “Probabilistic linear-time model checking: An overview of
the automata-theoretic approach,” Formal Methods for Real-Time and
Probabilistic Systems, pp. 265–276, 1999.

[11] C. Courcoubetis and M. Yannakakis, “Markov decision processes and
regular events,” IEEE Transactions on Automatic Control, vol. 43,
no. 10, pp. 1399–1418, 1998.

[12] C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesinski, “Con-
troller synthesis for probabilistic systems,” in In Proceedings of IFIP
TCS?2004. Citeseer, 2004.

[13] X. C. Ding, S. L. Smith, C. Belta, and D. Rus, “LTL planning for
groups of robots control in uncertain environments with probabilistic
satisfaction guarantees,” in 18th IFAC World Congress, 2011.

[14] M. Lahijanian, J. Wasniewski, S. B. Andersson, and C. Belta, “Motion
planning and control from temporal logic specifications with proba-
bilistic satisfaction guarantees,” in IEEE Int. Conf. on Robotics and
Automation, Anchorage, AK, 2010, pp. 3227 – 3232.

[15] J. Si, Handbook of learning and approximate dynamic programming.
Wiley-IEEE Press, 2004, vol. 2.

[16] A. Barto, R. Sutton, and C. Anderson, “Neuronlike adaptive elements
that can solve difficult learning control problems.” IEEE Transactions
on Systems, Man, & Cybernetics, 1983.

[17] I. Paschalidis, K. Li, and R. Estanjini, “An actor-critic method using
least squares temporal difference learning,” in Decision and Control,
2009 held jointly with the 2009 28th Chinese Control Conference.
CDC/CCC 2009. Proceedings of the 48th IEEE Conference on. IEEE,
pp. 2564–2569.

[18] V. Konda and J. Tsitsiklis, “On actor-critic algorithms,” SIAM Journal
on Control and Optimization, vol. 42, no. 4, pp. 1143–1166, 2004.

[19] R. Estanjini, X. Ding, M. Lahijanian, J. Wang, C. Belta, and I. Pascha-
lidis, “Least squares temporal difference actor-critic methods with
applications to robot motion control,” in IEEE Conference on Decision
and Control (CDC), Orlando, FL, December 2011.

[20] “Robotic indoor environment.” [Online]. Available: www.hyness.bu.
edu/ride

[21] E. Gradel, W. Thomas, and T. Wilke, Automata, logics, and infinite
games: A guide to current research, ser. Lecture Notes in Computer
Science. Springer, 2002, vol. 2500.

[22] M. Puterman, Markov decision processes: Discrete stochastic dynamic
programming. John Wiley & Sons, Inc. New York, NY, USA, 1994.

www.hyness.bu.edu/ride
www.hyness.bu.edu/ride

	I Introduction
	II Problem Formulation and Approach
	III Control Synthesis
	III-A Formulation of the MRP Problem
	III-B LSTD Actor-Critic Method
	III-C Designing an RSP
	III-D Overall Algorithm

	IV Hardware-in-the-loop simulation
	IV-A Environment
	IV-B Construction of the MDP model
	IV-C Task specification and results

	V Conclusions
	References

