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Abstract

In this paper, we consider a class of continuous-time, continuous-space stochastic optimal
control problems. Building upon recent advances in Markov chain approximation methods and
sampling-based algorithms for deterministic path planning, we propose a novel algorithm called
the incremental Markov Decision Process (iMDP) to compute incrementally control policies that
approximate arbitrarily well an optimal policy in terms of the expected cost. The main idea
behind the algorithm is to generate a sequence of finite discretizations of the original problem
through random sampling of the state space. At each iteration, the discretized problem is a
Markov Decision Process that serves as an incrementally refined model of the original problem.
We show that with probability one, (i) the sequence of the optimal value functions for each of the
discretized problems converges uniformly to the optimal value function of the original stochastic
optimal control problem, and (ii) the original optimal value function can be computed efficiently
in an incremental manner using asynchronous value iterations. Thus, the proposed algorithm
provides an anytime approach to the computation of optimal control policies of the continuous
problem. The effectiveness of the proposed approach is demonstrated on motion planning and
control problems in cluttered environments in the presence of process noise.

1 Introduction

Stochastic optimal control has been an active research area for several decades with many applica-
tions in diverse fields ranging from finance, management science and economics [1, 2] to biology [3]
and robotics [4]. Unfortunately, general continuous-time, continuous-space stochastic optimal con-
trol problems do not admit closed-form or exact algorithmic solutions and are known to be compu-
tationally challenging [5]. Many algorithms are available to compute approximate solutions of such
problems. For instance, a popular approach is based on the numerical solution of the associated
Hamilton-Jacobi-Bellman PDE (see, e.g., [6, 7, 8]). Other methods approximate a continuous prob-
lem with a discrete Markov Decision Process (MDP), for which an exact solution can be computed
in finite time [9, 10]. However, the complexity of these two classes of deterministic algorithms scales
exponentially with the dimension of the state and control spaces, due to discretization. Remarkably,
algorithms based on random (or quasi-random) sampling of the state space provide a possibility
to alleviate the curse of dimensionality in the case in which the control inputs take values from a
finite set, as noted in [11, 12, 5].

Algorithms based on random sampling of the state space have recently been shown to be very
effective, both in theory and in practice, for computing solutions to deterministic path planning
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problems in robotics and other disciplines. For example, the Probabilistic RoadMap (PRM) algo-
rithm first proposed by Kavraki et al. [13] was the first practical planning algorithm that could han-
dle high-dimensional path planning problems. Their incremental counterparts, such as RRT [14],
later emerged as sampling-based algorithms suited for online applications and systems with differ-
ential constraints on the solution (e.g., dynamical systems). The RRT algorithm has been used in
many applications and demonstrated on various robotic platforms [15, 16]. Recently, optimality
properties of such algorithms were analyzed in [17]. In particular, it was shown that the RRT algo-
rithm fails to converge to optimal solutions with probability one. The authors have proposed the
RRT∗ algorithm which guarantees almost-sure convergence to globally optimal solutions without
any substantial computational overhead when compared to the RRT.

Although the RRT∗ algorithm is asymptotically optimal and computationally efficient (with
respect to RRT), it can not handle problems involving systems with uncertain dynamics. In this
work, building upon the Markov chain approximation method [18] and the rapidly-exploring sam-
pling technique [14], we introduce a novel algorithm called the incremental Markov Decision Process
(iMDP) to approximately solve a wide class of stochastic optimal control problems. More precisely,
we consider a continuous-time optimal control problem with continuous state and control spaces,
full state information, and stochastic process noise. In iMDP, we iteratively construct a sequence of
discrete Markov Decision Processes (MDPs) as discrete approximations to the original continuous
problem, as follows. Initially, an empty MDP model is created. At each iteration, the discrete
MDP is refined by adding new states sampled from the boundary as well as from the interior of
the state space. Subsequently, new stochastic transitions are constructed to connect the new states
to those already in the model. For the sake of efficiency, stochastic transitions are computed only
when needed. Then, an anytime policy for the refined model is computed using an incremental
value iteration algorithm, based on the value function of the previous model. The policy for the
discrete system is finally converted to a policy for the original continuous problem. This process is
iterated until convergence.

Our work is mostly related to the Stochastic Motion Roadmap (SMR) algorithm [19] and Markov
chain approximation methods [18]. The SMR algorithm constructs an MDP over a sampling-based
roadmap representation to maximize the probability of reaching a given goal region. However, in
SMR, actions are discretized, and the algorithm does not offer any formal optimality guarantees. On
the other hand, while available Markov chain approximation methods [18] provide formal optimality
guarantees under very general conditions, a sequence of a priori discretizations of state and control
spaces still impose expensive computation. The iMDP algorithm addresses this issue by sampling
in the state space and sampling or discovering necessary controls.

The main contribution of this paper is a method to incrementally refine a discrete model of
the original continuous problem in a way that ensures convergence to optimality while maintaining
low time and space complexity. We show that with probability one, the sequence of optimal
value functions induced by optimal control policies for each of the discretized problems converges
uniformly to the optimal value function of the original stochastic control problem. In addition,
the optimal value function of the original problem can be computed efficiently in an incremental
manner using asynchronous value iterations. Thus, the proposed algorithm provides an anytime
approach to the computation of optimal control policies of the continuous problem. Distributions of
approximating trajectories and control processes returned from the iMDP algorithm approximate
arbitrarily well distributions of optimal trajectories and optimal control processes of the original
problem. Each iteration of the iMDP algorithm can be implemented with the time complexity
O(kθ log k) where 0 < θ ≤ 1 while the space complexity is O(k), where k is the number of states in
an MDP model in the algorithm which increases linearly due to the sampling strategy. Thus, the
entire processing time until the algorithm stops can be implemented in O(k1+θ log k). Hence, the
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above space and time complexities make iMDP a practical incremental algorithm. The effectiveness
of the proposed approach is demonstrated on motion planning and control problems in cluttered
environments in the presence of process noise.

This paper is organized as follows. In Section 2, a formal problem definition is given. The
Markov chain approximation methods and the iMDP algorithm are described in Sections 3 and 4.
The analysis of the iMDP algorithm is presented in Section 5. Section 6 is devoted to simulation
examples and experimental results. The paper is concluded with remarks in Section 7. We provide
additional notations and preliminary results as well as proofs for theorems and lemmas in Appendix.

2 Problem Definition

In this section, we present a generic stochastic optimal control problem. Subsequently, we discuss
how the formulation extends the standard motion planning problem of reaching a goal region while
avoiding collision with obstacles.

Stochastic Dynamics Let dx, du, and dw be positive integers. The dx-dimensional and du-
dimensional Euclidean spaces are Rdx and Rdu respectively. Let S be a compact subset of Rdx ,
which is the closure of its interior So and has a smooth boundary ∂S. The state of the system at
time t is x(t) ∈ S, which is fully observable at all times. We also define a compact subset U of Rdu
as a control set.

Suppose that a stochastic process {w(t); t ≥ 0} is a dw-dimensional Brownian motion, also
called a Wiener process, on some probability space (Ω,F ,P). Let a control process {u(t); t ≥ 0}
be a U -valued, measurable process also defined on the same probability space. We say that the
control process u(·) is nonanticipative with respect to the Wiener process w(·) if there exists a
filtration {Ft; t ≥ 0} defined on (Ω,F ,P) such that u(·) is Ft-adapted, and w(·) is an Ft-Wiener
process. In this case, we say that u(·) is an admissible control inputs with respect to w(·), or the
pair (u(·), w(·)) is admissible. Let Rdx×dw denote the set of all dx by dw real matrices. We consider
stochastic dynamical systems, also called controlled diffusions, of the form

dx(t) = f(x(t), u(t)) dt+ F (x(t), u(t)) dw(t), ∀t ≥ 0 (1)

where f : S×U → Rdx and F : S×U → Rdx×dw are bounded measurable and continuous functions
as long as x(t) ∈ So. The matrix F (·, ·) is assumed to have full rank. More precisely, a solution to
the differential form given in Eq. (1) is a stochastic process {x(t); t ≥ 0} such that x(t) equals the
following stochastic integral in all sample paths:

x(t) = x(0) +

∫ t

0
f(x(τ), u(τ)) dτ +

∫ t

0
F (x(τ), u(τ))dw(τ), (2)

until x(·) exits So, where the last term on the right hand side is the usual Itô integral (see, e.g., [20]).
When the process x(·) hits ∂S, the process x(·) is stopped.

Weak Existence and Weak Uniqueness of Solutions Let Γ be the sample path space of
admissible pairs (u(·), w(·)). Suppose we are given probability measures Λ and P0 on Γ and on
S respectively. We say that solutions of (2) exist in the weak sense if there exists a probability
space (Ω,F ,P), a filtration {Ft; t ≥ 0}, an Ft-Wiener process w(·), an Ft-adapted control process
u(·), and an Ft-adapted process x(·) satisfying Eq. (2), such that Λ and P0 are the distributions
of (u(·), w(·)) and x(0) under P. We call such tuple {(Ω,F ,P),Ft, w(·), u(·), x(·)} a weak sense
solution of Eq. (1) [21, 18].
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Assume that we are given weak sense solutions {(Ωi,Fi,Pi),Ft,i, wi(·), ui(·), xi(·)}, i = 1, 2, to
Eq. (1). We say solutions are weakly unique if equality of the joint distributions of (wi(·), ui(·), xi(0))
under Pi, i = 1, 2, implies the equality of the distributions (xi(·), wi(·), ui(·), xi(0)) under Pi,
i = 1, 2 [21, 18].

In this paper, given the boundedness of the set S, and the definition of the functions f and F in
Eq. (1), we have a weak solution to Eq. (1) that is unique in the weak sense [21]. The boundedness
requirement is naturally satisfied in many applications and is also needed for the implementation of
the proposed numerical method. We will also handle the case in which f and F are discontinuous
with extra mild technical assumptions to ensure asymptotic optimality in Section 3.

Policy and Cost-to-go Function A particular class of admissible controls, called Markov con-
trols, depends only on the current state, i.e., u(t) is a function only of x(t), for all t ≥ 0. It is well
known that in control problems with full state information, the best Markov control performs as
well as the best admissible control (see, e.g., [20, 21]). A Markov control defined on S is also called
a policy, and is represented by the function µ : S → U . The set of all policies is denoted by Π.
Define the first exit time Tµ : Π→ [0,+∞] under policy µ as

Tµ = inf
{
t : x(t) /∈ So and Eq. (1) and u(t) = µ(x(t))

}
.

Intuitively, Tµ is the first time that the trajectory of the dynamical system given by Eq. (1) with
u(t) = µ(x(t)) hits the boundary ∂S of S. By definition, Tµ = +∞ if x(·) never exits So. Clearly,
Tµ is a random variable. Then, the expected cost-to-go function under policy µ is a mapping from
S to R defined as

Jµ(z) = E
[∫ Tµ

0
αt g

(
x(t), µ(x(t))

)
dt+ h(x(Tµ)) | x(0) = z

]
,

where g : S × U → R and h : S → R are bounded measurable and continuous functions, called the
cost rate function and the terminal cost function, respectively, and α ∈ [0, 1) is the discount rate.
We further assume that g(x, u) is uniformly Hölder continuous in x with exponent 2ρ ∈ (0, 1] for
all u ∈ U . That is, there exists some constant C > 0 such that

|g(x, u)− g(x′, u)| ≤ C||x− x′||2ρ2 , ∀x, x
′ ∈ S.

We will address the discontinuity of g and h in Section 3.
The optimal cost-to-go function J∗ : S → R is defined as J∗(z) = infµ∈Π Jµ(z) for all z ∈ S. A

policy µ∗ is called optimal if Jµ∗ = J∗. For any ε > 0, a policy µ is called an ε-optimal policy if
||Jµ − J∗||∞ ≤ ε.

In this paper, we consider the problem of computing the optimal cost-to-go function J∗ and
an optimal policy µ∗ if obtainable. Our approach, outlined in Section 4, approximates the optimal
cost-to-go function and an optimal policy in an anytime fashion using incremental sampling-based
algorithms. This sequence of approximations is guaranteed to converge uniformly to the optimal
cost-to-go function and to find an ε-optimal policy for an arbitrarily small non-negative ε, almost
surely, as the number of samples approaches infinity.

Relationship with Standard Motion Planning The standard motion planning problem of
finding a collision-free trajectory that reaches a goal region for a deterministic dynamical system
can be defined as follows (see, e.g., [17]). Let X ⊂ Rdx be a compact set. Let the open sets
Xobs and Xgoal denote the obstacle region and the goal region, respectively. Define the obstacle-
free space as Xfree := X \ Xobs. Let xinit ∈ Xfree. Consider the deterministic dynamical system
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ẋ = f(x(t), u(t)) dt, where f : X × U → Rdx . The feasible motion planning problem is to find a
measurable control input u : [0, T ]→ U such that the resulting trajectory x(t) is collision free , i.e.,
x(t) ∈ Xfree and reaches the goal region, i.e., x(T ) ∈ Xgoal. The optimal motion planning problem is
to find a measurable control input u such that the resulting trajectory x solves the feasible motion
planning problem with minium trajectory cost.

The problem considered in this paper extends the classical motion planning problem with
stochastic dynamics as described by Eq. (1). Given a goal set Xgoal and an obstacle set Xobs,
define S := X \ (Xgoal ∪ Xobs) and thus ∂Xgoal ∪ ∂Xobs ∪ ∂X = ∂S. Due to the nature of Brownian
motion, under most policies, there is some non-zero probability that collision with an obstacle set
will occur. However, to penalize collision with obstacles in the control design process, the cost
of terminating by hitting the obstacle set, i.e., h(z) for z ∈ ∂Xobs, can be made arbitrarily high.
Clearly, the higher this number is, the more conservative the resulting policy will be. Similarly,
the terminal cost function on the goal set, i.e., h(z) for z ∈ ∂Xgoal, can be set to a small value to
encourage terminating by hitting the goal region.

3 Markov Chain Approximation

A discrete-state Markov decision process (MDP) is a tupleM = (X,A,P,G,H) where X is a finite
set of states, A is a set of actions that is possibly a continuous space, P (· | ·, ·) : X ×X ×A→ R≥0

is a function that denotes the transition probabilities satisfying
∑

ξ′∈X P (ξ′ | ξ, v) = 1 for all ξ ∈ X
and all v ∈ A, G(·, ·) : X×A→ R is an immediate cost function, and H : X → R is a terminal cost
funtion. If we start at time 0 with a state ξ0 ∈ X, and at time i ≥ 0, we apply an action vi ∈ A at
a state ξi to arrive at a next state ξi+1 according to the transition probability function P , we have
a controlled Markov chain {ξi; i ∈ N}. The chain {ξi; i ∈ N} due to the control sequence {vi; i ∈ N}
and an initial state ξ0 will also be called the trajectory of M under the said sequence of controls
and initial state.

Given a continuous-time dynamical system as described in Eq. (1), the Markov chain approxima-
tion method approximates the continuous stochastic dynamics using a sequence of MDPs {Mn}∞n=0

in whichMn = (Sn, U, Pn, Gn, Hn) where Sn is a discrete subset of S, and U is the original control
set. We define ∂Sn = ∂S∩Sn. For each n ∈ N, let {ξni ; i ∈ N} be a controlled Markov chain onMn

until it hits ∂Sn. We associate with each state z in S a non-negative interpolation interval ∆tn(z),
known as a holding time. We define tni =

∑i−1
0 ∆tn(ξni ) for i ≥ 1 and tn0 = 0. Let ∆ξni = ξni+1 − ξni .

Let uni denote the control used at step i for the controlled Markov chain. In addition, we define
Gn(z, v) = g(z, v)∆tn(z) and Hn(z) = h(z) for each z ∈ Sn and v ∈ U . Let Ωn be the sample space
ofMn. Holding times ∆tn and transition probabilities Pn are chosen to satisfy the local consistency
property given by the following conditions:

1. For all z ∈ S,

lim
n→∞

∆tn(z) = 0, (3)

2. For all z ∈ S and all v ∈ U :

lim
n→∞

EPn [∆ξni | ξni = z, uni = v]

∆tn(z)
= f(z, v), (4)

lim
n→∞

CovPn [∆ξni | ξni = z, uni = v]

∆tn(z)
= F (z, v)F (z, v)T , (5)

lim
n→∞

sup
i∈N,ω∈Ωn

||∆ξni ||2 = 0. (6)
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The chain {ξni ; i ∈ N} is a discrete-time process. In order to approximate the continuous-
time process x(·) in Eq. (2), we use an approximate continuous-time interpolation. We define the
(random) continuous-time interpolation ξn(·) of the chain {ξni ; i ∈ N} and the continuous-time
interpolation un(·) of the control sequence {uni ; i ∈ N} under the holding times function ∆tn as
follows: ξn(τ) = ξni , and un(τ) = uni for all τ ∈ [tni , t

n
i+1). Let Ddx [0,+∞) denote the set of all

Rdx-valued functions that are continuous from the left and has limits from the right. The process
ξn can be thought of as a random mapping from Ωn to the function space Ddx [0,+∞).

A control problem for the MDP Mn is analogous to that defined in Section 2. Similar to
previous section, a policy µn is a function that maps each state z ∈ Sn to a control µn(z) ∈ U . The
set of all such policies is Πn. Given a policy µn, the (discounted) cost-to-go due to µn is:

Jn,µn(z) = EPn

[
In−1∑
i=0

αt
n
i Gn(ξni , µn(ξni )) + αt

n
InHn(ξnIn)

∣∣∣ ξn0 = z

]
,

where EPn denotes the conditional expectation under Pn, the sequence {ξni ; i ∈ N} is the controlled
Markov chain under the policy µn, and In is termination time defined as In = min{i : ξni ∈ ∂Sn}.

The optimal cost function, denoted by J∗n satisfies

J∗n(z) = inf
µn∈Πn

Jn,µn(z), ∀z ∈ Sn. (7)

An optimal policy, denoted by µ∗n, satisfies Jn,µ∗n(z) = J∗n(z) for all z ∈ Sn. For any ε > 0, µn is an
ε-optimal policy if ||Jn,µn − J∗n||∞ ≤ ε.

As stated in the following theorem, under mild technical assumptions, local consistency implies
the convergence of continuous-time interpolations of the trajectories of the controlled Markov chain
to the trajectories of the stochastic dynamical system described by Eq. (1).

Theorem 1 (see Theorem 10.4.1 in [18]) Let us assume that f(·, ·) and F (·, ·) are measurable,
bounded and continuous. Thus, Eq. (1) has a weakly unique solution. Let {Mn}∞n=0 be a sequence of
MDPs, and {∆tn}∞n=0 be a sequence of holding times that are locally consistent with the stochastic
dynamical system described by Eq. (1). Let {uni ; i ∈ N} be a sequence of controls defined for
each n ∈ N. For all n ∈ N, let {ξn(t); t ∈ R≥0} denote the continuous-time interpolation to the
chain {ξni ; i ∈ N} under the control sequence {uni ; i ∈ N} starting from an initial state zinit, and
{un(t); t ∈ R≥0} denote the continuous-time interpolation of {uni ; i ∈ N}, according to the holding
time ∆tn. Then, any subsequence of {(ξn(·), un(·))}∞n=0 has a further subsequence that converges
in distribution to (x(·), u(·)) satisfying

x(t) = zinit +

∫ t

0
f(x(τ), u(τ))dτ +

∫ t

0
F (x(τ), u(τ))dw(τ).

Under the weak uniqueness condition for solutions of Eq. (1), the sequence {(ξn(·), un(·))}∞n=0 also
converges to (x(·), u(·)).

Furthermore, a sequence of minimizing controls guarantees pointwise convergence of the cost func-
tion to the original optimal cost function in the following sense.

Theorem 2 (see Theorem 10.5.2 in [18]) Assume that f(·, ·), F (·, ·), g(·, ·) and h(·) are mea-
surable, bounded and continuous. For any trajectory x(·) of the system described by Eq. (1), define
τ̂(x) := inf{t : x(t) /∈ So}. Let {Mn = (Sn, U, Pn, Gn, Hn)}∞n=0 and {∆tn}∞n=0 be locally consistent
with the system described by Eq. (1).
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We suppose that the function τ̂(·) is continuous (as a mapping from Ddx [0,+∞) to the com-
pactified interval [0,+∞]) with probability one relative to the measure induced by any solution to
Eq. (1) for an initial state z, which is satisfied when the matrix F (·, ·)F (·, ·)T is nondegenerate.
Then, for any z ∈ Sn, the following equation holds:

lim
n→∞

|J∗n(z)− J∗(z)| = 0.

In particular, for any z ∈ Sn, for any sequence {εn > 0}∞n=0 such that limn→∞ εn = 0, and for any
sequence of policies {µn}∞n=0 such that µn is an εn-optimal policy of Mn, we have:

lim
n→∞

|Jn,µn(z)− J∗(z)| = 0.

Moreover, the sequence {tnIn ;n ∈ N} converges in distribution to the termination time of the optimal
control problem for the system in Eq. (1) when the system is under optimal control processes.

Under the assumption that the cost rate g is Hölder continuous [22] with exponent 2ρ, the sequence
of optimal value functions for approximating chains J∗n indeed converges uniformly to J∗ with a
proven rate. Let us denote ||b||Sn = supz∈Sn b(x) as the sup-norm over Sn of a function b with
domain containing Sn. Let

ζn = max
z∈Sn

min
z′∈Sn

||z′ − z||2 (8)

be the dispersion of Sn.

Theorem 3 (see Theorem 2.3 in [23] and Theorem 2.1 in [24]) Consider an MDP sequence
{Mn = (Sn, U, Pn, Gn, Hn)}∞n=0 and holding times {∆tn}∞n=0 that are locally consistent with the sys-
tem described by Eq. (1). Let J∗n be the optimal cost ofMn. Given the assumptions on the dynamics
and cost rate functions in Section 2, as n approaches ∞, we have

||J∗n − J∗||Sn = O(ζρn).

Discontinuity of dynamics and objective functions

We note that the above theorems continue to hold even when the functions f, F, g, and h are
discontinuous. In this case, the following conditions are sufficient to use the theorems: (i) For r to
be f, F, g, or h, r(x, u) takes either the form r0(x)+r1(u) or r0(x)r1(u) where the control dependent
terms are continuous and the x-dependent terms are measurable, and (ii) f(x, ·), F (x, ·), g(x, ·), and
h(x) are nondegenerate for each x, and the set of discontinuity in x of each function is a uniformly
smooth surface of lower dimension. Furthermore, instead of uniform Hölder continuity, the cost
rate g can be relaxed to be locally Hölder continuous with exponent 2ρ on S (see, e.g., page 275
in [18]).

Let us remark that the controlled Markov chain differs from the stochastic dynamical systems
described in Section 2 in that the former possesses a discrete state structure and evolves in a
discrete time manner while the latter is a continuous model both in terms of its state space and
the evolution of time. Yet, both models possess a continuous control space. It will be clear in the
following discussion that the control space does not have to be discretized if a certain optimization
problem can be solved numerically or via sampling.

The above theorems assert the asymptotic optimality given a sequence of a priori discretizations
of the state space and the availability of ε-optimal policies. In what follows, we describe an algorithm
that incrementally computes the optimal cost-to-go function and an optimal control policy of the
continuous problem.
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4 The iMDP Algorithm

Based on Markov chain approximation results, the iMDP algorithm incrementally builds a sequence
of discrete MDPs with probability transitions and cost-to-go functions that consistently approxi-
mate the original continuous counterparts. The algorithm refines the discrete models by using a
number of primitive procedures to add new states into the current approximate model. Finally,
the algorithm improves the quality of discrete-model policies in an iterative manner by effectively
using the computations inherited from the previous iterations. Before presenting the algorithm,
some primitive procedures which the algorithm relies on are presented in this section.

4.1 Primitive Procedures

4.1.1 Sampling

The Sample() and SampleBoundary() procedures sample states independently and uniformly from
the interior So and the boundary ∂S, respectively.

4.1.2 Nearest Neighbors

Given z ∈ S and a set Y ⊆ S of states. For any k ∈ N, the procedure Nearest(z, Y, k) returns the
k nearest states z′ ∈ Y that are closest to z in terms of the Euclidean norm.

4.1.3 Time Intervals

Given a state z ∈ S and a number k ∈ N, the procedure ComputeHoldingTime(z, k) returns a
holding time computed as follows:

ComputeHoldingTime(z, k) = γt

(
log k

k

)θςρ/dx
,

where γt > 0 is a constant, and ς, θ are constants in (0, 1) and (0, 1] respectively1. The parameter
ρ ∈ (0, 0.5] defines the Hölder continuity of the cost rate function g(·, ·) as in Section 2.

4.1.4 Transition Probabilities

Given a state z ∈ S, a subset Y ∈ S, a control v ∈ U , and a positive number τ describing a
holding time, the procedure ComputeTranProb(z, v, τ, Y ) returns (i) a finite set Znear ⊂ S of states
such that the state z + f(z, v)τ belongs to the convex hull of Znear and ||z′ − z||2 = O(τ) for all
z′ 6= z ∈ Znear, and (ii) a function p that maps Znear to a non-negative real numbers such that p(·)
is a probability distribution over the support Znear. It is crucial to ensure that these transition
probabilities result in a sequence of locally consistent chains in the algorithm.

There are several ways to construct such transition probabilities. One possible construction
by solving a system of linear equations can be found in [18]. In particular, we choose Znear =
Nearest(z + f(z, v)τ, Y, s) where s ∈ N is some constant. We define the transition probabilities
p : Znear → R≥0 that satisfies:

(i)
∑

z′∈Znear
p(z′)(z′ − z) = f(z, v)τ + o(τ),

(ii)
∑

z′∈Znear
p(z′)(z′ − z)(z′ − z)T = F (z, v)F (z, v)T τ + f(z, v)f(z, v)T τ2 + o(τ).

1Typical values of ς is [0.999,1).
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(iii)
∑

z′∈Znear
p(z′) = 1.

An alternate way to compute the transition probabilities is to approximate using local Gaussian
distributions. We choose Znear = Nearest(z + f(z, v)τ, Y, s) where s = Θ(log(|Y |)). Let Nm,σ(·)
denote the density of the (possibly multivariate) Gaussian distribution with mean m and variance
σ. Define the transition probabilities as follows:

p(z′) =
Nm,σ(z′)∑

y∈Znear
Nm,σ(y)

,

where m = z + f(z, v)τ and σ = F (z, v)F (z, v)T τ . This expression can be evaluated easily for any
fixed v ∈ U . As |Znear| approaches infinity, the above construction satisfies the local consistency
almost surely.

As we will discuss in Section 4.2, the size of the support Znear affects the complexity of the iMDP
algorithm. We note that solving a system of linear equations requires computing and handling a
matrix of size (d2

x + dx + 1)× |Znear| where |Znear| is constant. When dx and |Znear| are large, the
constant factor of the complexity is large. In contrast, computing local Gaussian approximation
requires only |Znear| evaluations. Thus, although local Gaussian approximation yields higher time
complexity, this approximation is more convenient to compute.

4.1.5 Backward Extension

Given T > 0 and two states z, z′ ∈ S, the procedure ExtendBackwards(z, z′, T ) returns a triple
(x, v, τ) such that (i) ẋ(t) = f(x(t), u(t))dt and u(t) = v ∈ U for all t ∈ [0, τ ], (ii) τ ≤ T , (iii)
x(t) ∈ S for all t ∈ [0, τ ], (iv) x(τ) = z, and (v) x(0) is close to z′. If no such trajectory exists, then
the procedure returns failure2. We can solve for the triple (x, v, τ) by sampling several controls v
and choose the control resulting in x(0) that is closest to z′.

4.1.6 Sampling and Discovering Controls

The procedure ConstructControls(k, z, Y, T ) returns a set of k controls in U . We can uniformly
sample k controls in U . Alternatively, for each state z′ ∈ Nearest(z, Y, k), we solve for a control
v ∈ U such that (i) ẋ(t) = f(x(t), u(t))dt and u(t) = v ∈ U for all t ∈ [0, T ], (ii) x(t) ∈ S for all
t ∈ [0, T ], (iii) x(0) = z and x(T ) = z′.

4.2 Algorithm Description

The iMDP algorithm is given in Algorithm 1. The algorithm incrementally refines a sequence of
(finite-state) MDPs Mn = (Sn, U, Pn, Gn, Hn) and the associated holding time function ∆tn that
consistently approximates the sytem in Eq. (1). In particular, given a state z ∈ Sn and a holding
time ∆tn(z), we can implicitly define the stage cost function Gn(z, v) = ∆tn(z)g(z, v) for all v ∈ U
and terminal cost function Hn(z) = h(z). We also associate with z ∈ Sn a cost value Jn(z), and
a control µn(z). We refer to Jn as a cost value function over Sn. In the following discussion, we
describe how to construct Sn, Pn, Jn, µn over iterations. We note that, in most cases, we only need
to construct and access Pn on demand.

In every iteration of the main loop (Lines 4-16), we sample an additional state from the boundary
of the state space S. We set Jn, µn,∆tn for those states at Line 5. Subsequently, we also sample a

2This procedure is used in the algorithm solely for the purpose of inheriting the “rapid exploration” property of
the RRT algorithm [14, 17].
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Algorithm 1: iMDP()

1 (n, S0, J0, µ0,∆t0)← (1, ∅, ∅, ∅, ∅);
2 while n < N do
3 (Sn, Jn, µn,∆tn)← (Sn−1, Jn−1, µn−1,∆tn−1);

// Add a new state to the boundary

4 zs ← SampleBoundary();
5 (Sn, Jn(zs), µn(zs),∆tn(zs))← (Sn ∪ {zs}, h(zs), null, 0) ;

// Add a new state to the interior

6 zs ← Sample();
7 znearest ← Nearest(zs, Sn, 1);
8 if (xnew, unew, τ)← ExtendBackwards(znearest, zs, T0) then
9 znew ← xnew(0);

10 cost = τg(znew, unew) + ατJn(znearest);
11 (Sn, Jn(znew), µn(znew),∆tn(znew))← (Sn ∪ {znew}, cost, unew, τ) ;

// Perform Ln ≥ 1 (asynchronous) value iterations

12 for i = 1→ Ln do

// Update znew and Kn = Θ
(
|Sn|θ

)
states

(
0 < θ ≤ 1, Kn < |Sn|

)
13 Zupdate ← Nearest(znew, Sn\∂Sn,Kn) ∪ {znew};
14 for z ∈ Zupdate do
15 Update(z, Sn, Jn, µn,∆tn);

16 n← n+ 1;

state from the interior of S (Line 6) denoted as zs. We compute the nearest state znearest, which is
already in the current MDP, to the sampled state (Line 7). The algorithm computes a trajectory
that reaches znearest starting at some state near zs (Line 8) using a control signal unew(0..τ). The
new trajectory is denoted by xnew : [0, τ ]→ S and the starting state of the trajectory, i.e., xnew(0),
is denoted by znew. The new state znew is added to the state set, and the cost value Jn(znew),
control µn(znew), and holding time ∆tn(znew) are initialized at Line 11.

Update of cost value and control

The algorithm updates the cost values and controls of the finer MDP in Lines 13-15. We perform
Ln ≥ 1 value iterations in which we update the new state znew and other Kn = Θ

(
|Sn|θ

)
states

in the state set where Kn < |Sn|. When all states in the MDP are updated, i.e. Kn + 1 = |Sn|,
Ln value iterations are implemented in a synchronous manner. Otherwise, Ln value iterations are
implemented in an asynchronous manner.

The set of states to be updated is denoted as Zupdate (Line 13). To update a state z ∈ Zupdate

that is not on the boundary, in the call to the procedure Update (Line 15), we solve the following
Bellman equation:3

Jn(z) = min
v∈U
{Gn(z, v) + α∆tn(z)EPn [Jn−1(y)|z, v]}, (9)

3Although the argument of Update at Line 15 is Jn, we actually process the previous cost values Jn−1 due to
Line 3. We can implement Line 3 by simply sharing memory for (Sn, Jn, µn,∆tn) and (Sn−1, Jn−1, µn−1,∆tn−1).

10



Algorithm 2: Update(z ∈ Sn, Sn, Jn, µn,∆tn)

1 τ ← ComputeHoldingTime(z, |Sn|);

// Sample or discover Cn = Θ(log(|Sn|)) controls

2 Un ← ConstructControls(Cn, z, Sn, τ);
3 for v ∈ Un do
4 (Znear, pn)← ComputeTranProb(z, v, τ, Sn);
5 J ← τg(z, v) + ατ

∑
y∈Znear

pn(y)Jn(y);

6 if J < Jn(z) then
7 (Jn(z), µn(z),∆tn(z), κn(z))← (J, v, τ, |Sn|);

Algorithm 3: Policy(z ∈ S, n)

1 znearest ← Nearest(z, Sn, 1);
2 return µ(z) = (µn(znearest),∆tn(znearest))

and set µn(z) = v∗(z), where v∗(z) is the minimizing control of the above optimization problem.
There are several ways to solve Eq. (9) over the the continuous control space U efficiently. If
Pn(· | z, v) and g(z, v) are affine functions of v, and U is convex, the above optimization has a
linear objective function and a convex set of constraints. Such problems are widely studied in
the literature [25]. More generally, we can uniformly sample the set of controls, called Un, in the
control space U . Hence, we can evaluate the right hand side (RHS) of Eq. (9) for each v ∈ Un to
find the best v∗ in Un with the smallest RHS value and thus to update Jn(z) and µn(z). When
limn→∞ |Un| =∞, we can solve Eq. (9) arbitrarily well (see Theorem 8).

Thus, it is sufficient to construct the set Un with Θ(log(|Sn|)) controls using the procedure
ConstructControls as described in Algorithm 2 (Line 2). The set Znear and the transition
probability Pn(· | z, v) constructed consistently over the set Znear are returned from the procedure
ComputeTranProb for each v ∈ Un (Line 4). Depending on a particular method to build Pn (i.e.
solving a system of linear equations or evaluating a local Gaussian distribution), the cardinality
of Znear is set to a constant or increases as Θ(log(|Sn|)). Subsequently, the procedure chooses the
best control among the constructed controls to update Jn(z) and µn(z) (Line 7). We note that in
Algorithm 2, before making improvement for the cost value at z by comparing new controls, we can
re-evaluate the cost value with the current control µn(z) over the holding time ∆tn(z) by adding
the current control µn(z) to Un. The reason is that the current control may be still the best control
compared to other controls in Un.

Complexity of iMDP

The time complexity per iteration of the implementation in Algorithms 1-2 is either O
(
|Sn|θ log |Sn|

)
or O

(
|Sn|θ(log |Sn|)2

)
. In particular, if the procedure ComputeTranProb solves a set of linear equa-

tions to construct Pn such that the cardinality of Znear can remain constant, the time complexity
per iteration is O

(
|Sn|θ log |Sn|

)
where log |Sn| accounts for the number of processed controls, and

|Sn|θ accounts for the number of updated states in one iteration. Otherwise, if the procedure
ComputeTranProb uses a local Gaussian distribution to construct Pn such that the cardinality of
Znear increases as Θ(log |Sn|), the time complexity per iteration is O

(
|Sn|θ(log |Sn|)2

)
. The pro-

cessing time from the beginning until the iMDP algorithm stops after n iterations is thus either
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O
(
|Sn|1+θ log |Sn|

)
or O

(
|Sn|1+θ(log |Sn|)2

)
. Since we only need to access locally consistent transi-

tion probability on demand, the space complexity of the iMDP algorithm is O(|Sn|). Finally, the
size of state space Sn is |Sn| = Θ(n) due to our sampling strategy.

4.3 Feedback Control

As we will see in Theorems 7-8, the sequence of cost value functions Jn arbitrarily approximates the
original optimal cost-to-go J∗. Therefore, we can perform a Bellman update based on the approxi-
mated cost-to-go Jn (using the stochastic continuous-time dynamics) to obtain a policy control for
any n. However, we will discuss in Theorem 9 that the sequence of µn also approximates arbitrarily
well an optimal control policy. In other words, in the iMDP algorithm, we also incrementally con-
struct an optimal control policy. In the following paragraph, we present an algorithm that converts
a policy for a discrete system to a policy for the original continuous problem.

Given a level of approximation n ∈ N, the control policy µn generated by the iMDP algorithm
is used for controlling the original system described by Eq. (1) using the procedure given in Al-
gorithm 3. This procedure computes the state in Mn that is closest to the current state of the
original system and applies the control attached to this closest state over the associated holding
time.

5 Analysis

In this section, let (Mn = (Sn, U, Pn, Gn, Hn),∆tn, Jn, µn) denote the MDP, holding times, cost
value function, and policy returned by Algorithm 1 at the end n iterations. The proofs of lemmas
and theorems in this section can be found in Appendix.

For large n, states in Sn are sampled uniformly in the state space S [17]. Moreover, the
dispersion of Sn shrinks with the rate O((log |Sn|/|Sn|)1/dx) as described in the next lemma.

Lemma 4 Recall that ζn measures of the dispersion of Sn (Eq. 8). We have the following event
happens with probability one:

ζn = O((log |Sn|/|Sn|)1/dx).

The proof is based on the fact that, if we partition Rdx into cells of volume O (log(|Sn|)/|Sn|), then,
almost surely, every cell contains at least an element of Sn, as |Sn| approaches infinity. The above
lemma leads to the following results.

Lemma 5 The MDP sequence {Mn}∞n=0 and holding times {∆tn}∞n=0 returned by Algorithm 1 are
locally consistent with the system described by Eq. (1) for large n with probability one.

Theorem 1 and Lemma 5 together imply that the trajectories of the controlled Markov chains
approximate those of the original stochastic dynamical system in Eq. (1) arbitrarily well as n
approaches to infinity. Moreover, recall that || · ||Sn is the sup-norm over Sn, the following theorem
shows that J∗n converges uniformly, with probability one, to the original optimal value function J∗.

Theorem 6 Given n ∈ N, for all z ∈ Sn, J∗n(z) denotes the optimal value function evaluated at
state z for the finite-state MDP Mn returned by Algorithm 1. Then, the following event holds with
probability one:

lim
n→∞

||J∗n − J∗||Sn = 0.

12



In other words, J∗n converges to J∗ uniformly. In particular,

||J∗n − J∗||Sn = O((log |Sn|/|Sn|)ρ/dx).

The proof follows immediately from Lemmas 4-5 and Theorems 2-3. The theorem suggests that
we can compute J∗n for each discrete MDP Mn before sampling more states to construct Mn+1.
Indeed, in Algorithm 1, when updated states are chosen randomly as subsets of Sn, and Ln is large
enough, we compute J∗n using asynchronous value iterations [26, 27]. Subsequent theorems present
stronger results.

We will prove the asymptotic optimality of the cost value Jn returned by the iMDP algorithm
when n approaches infinity without directly approximating J∗n for each n. We first consider the
case when we can solve the Bellman update (Eq. 9) exactly and 1 ≤ Ln, Kn = Θ(|Sn|θ) < |Sn|.

Theorem 7 For all z ∈ Sn, Jn(z) is the cost value of the state z computed by Algorithm 1 and
Algorithm 2 after n iterations with 1 ≤ Ln, and Kn = Θ(|Sn|θ) < |Sn|. Let Jn,µn be the cost-to-go
function of the returned policy µn on the discrete MDP Mn. If the Bellman update at Eq. 9 is
solved exactly, then, the following events hold with probability one:

i. limn→∞ ||Jn − J∗n||Sn = 0, and limn→∞ ||Jn − J∗||Sn = 0,

ii. limn→∞ |Jn,µn(z)− J∗(z)| = 0, ∀z ∈ Sn.

Theorem 7 enables an incremental computation of the optimal cost J∗ without the need to com-
pute J∗n exactly before sampling more samples. Moreover, cost-to-go functions Jn,µn induced by
approximating policies µn also converges pointwise to the optimal cost-to-go J∗ with probability
one.

When we solve the Bellman update at Eq. 9 via sampling, the following result holds.

Theorem 8 For all z ∈ Sn, Jn(z) is the cost value of the state z computed by Algorithm 1 and
Algorithm 2 after n iterations with 1 ≤ Ln, and Kn = Θ(|Sn|θ) < |Sn|. Let Jn,µn be the cost-to-go
function of the returned policy µn on the discrete MDP Mn. If the Bellman update at Eq. 9 is
solved via sampling such that limn→∞ |Un| =∞, then

i. ||Jn− J∗n||Sn converges to 0 in probability. Thus, Jn converges uniformly to J∗ in probability,

ii. limn→∞ |Jn,µn(z)− J∗(z)| = 0 for all z ∈ Sn with probability one.

We emphasize that while the convergence of Jn to J∗ is weaker than the convergence in Theorem 7,
the convergence of Jn,µn to J∗ remains intact. Importantly, Theorem 1 and Theorems 7-8 together
assert that starting from any initial state, trajectories and control processes provided by the iMDP
algorithm approximate arbitrarily well optimal trajectories and optimal control processes of the
original continuous problem. More precisely, with probability one, the induced random probability
measures of approximating trajectories and approximating control processes converge weakly to
the probability measures of optimal trajectories and optimal control processes of the continuous
problem.

Finally, the next theorem evaluates the quality of any-time control policies returned by Algo-
rithm 3.

Theorem 9 Let µn : S → U be the interpolated policy on S of µn : Sn → U as described in
Algorithm 3:

∀z ∈ S : µn(z) = µn(yn) where yn = argminz′∈Sn ||z
′ − z||2.
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Then there exists an optimal control policy µ∗ of the original problem4 so that for all z ∈ S:

lim
n→∞

µn(z) = µ∗(z) w.p.1,

if µ∗ is continuous at z.

6 Experiments
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(b) After 200 iterations (0.39s).
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(c) After 600 iterations (2.16s).
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Figure 1: Results of iMDP on a stochastic LQR problem. Figure 1(a) shows the convergence of
approximated cost-to-go to the optimal analytical cost-to-go over iterations. Anytime solutions are
compared to the analytical optimal solution after 200 and 600 iterations in Figs. 1(b)-1(c). Mean
and 1-σ interval of the error ||Jn − J∗||Sn are shown in 1(d) using 50 trials. The corresponding
mean and standard deviation of the error ||Jn − J∗||Sn are depicted on a log-log plot in Fig. 1(e).
In Fig. 1(f), we plot the ratio of ||Jn− J∗||Sn to (log(|Sn|)/|Sn|)0.5 to show the convergence rate of
Jn to J∗. Figure 1(g) shows the ratio of running time per iteration Tn to |Sn|0.5 log(|Sn|). Ratios
in Figs. 1(f)-1(g) are averaged over 50 trials.

We used a computer with a 2.0-GHz Intel Core 2 Duo T6400 processor and 4 GB of RAM to
run experiments. In the first experiment, we investigated the convergence of the iMDP algorithm
on a stochastic LQR problem: inf E

[ ∫ τ
0 0.95t{3.5x(t)2 + 200u(t)2}dt + h(x(τ))

]
such that dx =

4Otherwise, an optimal relaxed control policy m∗ exists [18], and µn approximates m∗ arbitrarily well.
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(a) Policy after 500 iterations (0.5s).
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(b) Policy after 1,000 iterations (1.2s).
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(c) Policy after 2,000 iterations (2.1s).
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(d) Contour of J500
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(e) Contour of J1,000
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(f) Contour of J2,000
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(g) Policy after 4,000 iterations (7.6s).
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(h) Policy with 10,000 nodes (28s).

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(i) Policy after 20,000 iterations (80s).
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(j) Contour of J4,000
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(k) Contour of J10,000

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

 

 

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

(l) Contour of J20,000

Figure 2: A system with stochastic single integrator dynamics in a cluttered environment. With
appropriate cost structure assigned to the goal and obstacle regions, the system reaches the goal in
the upper right corner and avoids obstacles. The standard deviation of noise in x and y directions
is 0.26. The maximum velocity is one. Anytime control policies and corresponding contours of
approximated cost-to-go as shown in Figs. 2(a)-2(l) indicate that iMDP quickly explores the state
space and refines control policies over time.
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(a) Noise-free: 1,000 iterations(1.2s).
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(b) Stochastic: 300 iterations (0.4s).
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(c) Stochastic: 1,000 iterations (1.1s).

Figure 3: Performance against different process noise magnitude. The system starts from (0,-5) to
reach the goal. In Fig. 3(a), the environment is noise-free. In Figs. 3(b)-3(c), standard deviation
of noise in x and y directions is 0.37. In the latter, the system first discovers an unsafe route that
is prone to collisions and discovers a safer route after a few seconds. (In Fig. 3(b), we temporarily
let the system continue even after collision to observe the entire trajectory.)

(3x+11u)dt+
√

0.2dw on the state space S = [−6, 6] where τ is the first hitting time to the boundary
∂S = {−6, 6}, and h(z) = 414.55 for z ∈ ∂S and 0 otherwise. The optimal cost-to-go from x(0) = z
is 10.39z2+40.51, and the optimal control policy is u(t) = −0.5714x(t). Since the cost-rate function
is bounded on S and Hölder continuous with exponent 1.0, we use ρ = 0.5. In addition, we choose
θ = 0.5, and ς = 0.99 in the procedure ComputeHoldingTime. We used the procedure Update as
presented in Alogrithm 2 with log(n) sampled controls and transition probabilities having constant
support size. Figures 1(a)-1(c) show the convergence of approximated cost-to-go, anytime controls
and trajectory to the optimal analytical counterparts over iterations. We observe that in Fig.
1(d), both the mean and variance of cost-to-go error decreases quickly to zero. The log-log plot in
Fig. 1(e) clearly indicates that both mean and standard deviation of the error ||Jn−J∗||Sn continue
to decrease. This observation is consistent with Theorems 7-8. Moreover, Fig. 1(f) shows the ratio
of ||Jn−J∗||Sn to (log(|Sn|)/|Sn|)0.5 indicating the convergence rate of Jn to J∗, which agrees with
Theorem 6. Finally, Fig. 1(g) plots the ratio of running time per iteration Tn to |Sn|0.5 log(|Sn|)
asserting that the time complexity per iteration is O

(
|Sn|0.5 log(|Sn|)

)
.

In the second experiment, we controlled a system with stochastic single integrator dynamics
to a goal region with free ending time in a cluttered environment. The cost objective function is
discounted with α = 0.95. The system pays zero cost for each action it takes and pays a cost of -1
when reaching the goal region Xgoal. The maximum velocity of the system is one. The system stops
when it collides with obstacles. We show how the system reaches the goal in the upper right corner
and avoids obstacles with different anytime controls. Anytime control policies after up-to 2,000
iterations in Figs. 2(a)-2(c), which were obtained within 2.1 seconds, indicate that iMDP quickly
explores the state space and refines control policies over time. Corresponding contours of cost value
functions are shown in Figs. 2(d)-2(f) further illustrate the refinement and convergence of cost value
functions to the original optimal cost-to-go over time. We observe that the performance is suitable
for real-time control. Furthermore, anytime control policies and cost value functions after up-to
20,000 iterations are shown in Figs. 2(g)-2(i) and Figs. 2(j)-2(l) respectively. We note that the
control policies seem to converge faster than cost value functions over iterations. The phenomenon
is due to the fact that cost value functions Jn are the estimates of the optimal cost-to-go J∗. Thus,
when Jn(z) − J∗(z) is constant for all z ∈ Sn, updated controls after a Bellman update are close
to their optimal values. Thus, the phenomenon favors the use of the iMDP algorithm in real-time
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(a) Trajectory snapshots after 3000 iterations (15.8s).
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(b) Mean and standard deviation of cost values Jn(x0).

Figure 4: Results of a 6D manipulator example. The system is modeled as a single integrator with
states representing angles between segments and the horizontal line. Control magnitude is bounded
by 0.3. The standard deviation of noise at each joint is 0.032 rad. In Fig. 4(a), the manipulator
is controlled to reach a goal with the final upright position. In Fig. 4(b), the mean and standard
deviation of the computed cost values for the initial position are plotted using 50 trials.

applications where only a small number of iterations are executed.
In the third experiment, we tested the effect of process noise magnitude on the solution trajec-

tories. In Figs. 3(a)-3(c), the system wants to arrive at a goal area either by passing through a
narrow corridor or detouring around the two blocks. In Fig. 3(a), when the dynamics is noise-free
(by setting a small diffusion matrix), the iMDP algorithm quickly determines to follow a narrow
corridor. In contrast, when the environment affects the dynamics of the system (Figs. 3(b)-3(c)),
the iMDP algorithm decides to detour to have a safer route. This experiment demonstrates the
benefit of iMDP in handling process noise compared to RRT-like algorithms [14, 17]. We empha-
size that although iMDP spends slightly more time on computation per iteration, iMDP provides
feedback policies rather than open-loop policies; thus, re-planning is not crucial in iMDP.

In the forth experiment, we examined the performance of the iMDP algorithm for high dimen-
sional systems such as a manipulator with six degrees of freedom. The manipulator is modeled as
a single integrator where states represents angles between segments and the horizontal line. The
maximum control magnitude for all joints is 0.3. The standard deviation of noise at each joint is
0.032 rad. The manipulator is controlled to reach a goal with the final upright position in minimum
time. In Fig. 4(a), we show a resulting trajectory after 3000 iterations computed in 15.8 seconds.
In addition, we show the mean and standard deviation of the computed cost values for the initial
position using 50 trials in Fig. 4(b). As shown in the plots, the solution converges quickly after
about 1000 iterations. These results highlight the suitability of the iMDP algorithm to compute
feedback policies for complex high dimensional systems in stochastic environments.

7 Conclusions

We have introduced and analyzed the incremental sampling-based iMDP algorithm for stochastic
optimal control. The algorithm natively handles continuous time, continuous state space as well
as continuous control space. The main idea is to consistently approximate underlying continuous
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problems by discrete structures in an incremental manner. In particular, we incrementally build
discrete MDPs by sampling and extending states in the state space. The iMDP algorithm refines
the quality of anytime control policies from discrete MDPs in terms of expected costs over iterations
and ensures almost sure convergence to an optimal continuous control policy. The iMDP algorithm
can be implemented such that its time complexity per iteration grows as O

(
kθ log k

)
with 0 < θ ≤ 1

leading to the total processing time O
(
k1+θ log k

)
, where k is the number of states in MDPs which

increases linearly over iterations. Together with linear space complexity, iMDP is a practical
incremental algorithm. The enabling technical ideas lie in novel methods to compute Bellman
updates.

Further extension of the work is broad. In the future, we would like to study the effect of biased-
sampling techniques on the performance of iMDP. The algorithm is also highly parallelizable, and
efficient parallel versions of the iMDP algorithm are left for future study. Remarkably, Markov
chain approximation methods are also tools to handle deterministic control and non-linear filtering
problems. Thus, applications of the iMDP algorithm can be extended to classical path planning
with deterministic dynamics. We emphasize that the iMDP algorithm would remove the necessity
for exact point-to-point steering of RRT-like algorithms in path planning applications. In addition,
we plan to investigate incremental sampling-based algorithms for online smoothing and estimation
in the presence of sensor noise. The combination of incremental sampling-based algorithms for
control and estimation will provide insights into addressing stochastic optimal control problems with
imperfect state information, known as Partially Observable Markov Decision Processes (POMDPs).
Although POMDPs are fundamentally more challenging than the problem that is studied in this
paper, our approach differentiates itself from existing sampling-based POMDP solvers (see, e.g., [28,
29]) with its incremental nature and computationally-efficient search. Hence, the research presented
in this paper opens a new alley to handle POMDPs in our future work.
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Appendix

A Notations and Preliminaries

We denote N as a set of natural numbers and R as a set of real numbers. A sequence on a set X
is a mapping from N to X, denoted as {xn}∞n=0, where xn ∈ X for each n ∈ N. Given a metric
space X endowed with a metric d, a sequence {xn}∞n=0 ⊂ X is said to converge if there is a point
x ∈ X, denoted as limn→∞ xn, with the following property: For every ε > 0, there is an integer
N such that n ≥ N implies that d(xn, x) < ε. On the one hand, a sequence of functions {fn}∞n=1

in which each function fn is a mapping from X to R converges pointwise to a function f on X if
for every x ∈ X, the sequence of numbers {fn(x)}∞n=0 converges to f(x). On the other hand, a
sequence of functions {fn}∞n=1 converges uniformly to a function f on X if the following sequence
{Mn | Mn = supx∈X |fn(x)− f(x)|}∞n=0 converges to 0.

Let us consider a probability space (Ω,F ,P) where Ω is a sample space, F is a σ-algebra, and
P is a probability measure. A subset A of F is called an event. The complement of an event A is
denoted as Ac. Given a sequence of events {An}∞n=0, we define lim supn→∞An as ∩∞n=0 ∪∞k=n Ak,
i.e. the event that An occurs infinitely often. In addition, the event lim infn→∞An is defined as
∪∞n=0 ∩∞k=n Ak. A random variable is a measurable function mapping from Ω to R. The expected
value of a random variable Y is defined as E[Y ] =

∫
Ω Y dP. A sequence of random variables {Yn}∞n=0

converges surely to a random variable Y if limn→∞ Yn(ω) = Y (ω) for all ω ∈ Ω. A sequence of
random variables {Yn}∞n=0 converges almost surely or with probability one (w.p.1) to a random
variable Y if P(ω ∈ Ω | limn→∞ Yn(ω) = Y (ω)) = 1. Almost sure convergence of {Yn}∞n=0 to

Y is denoted as Yn
a.s.→ Y . We say that a sequence of random variables {Yn}∞n=0 converges in

distribution to a random variable Y if limn→∞ Fn(x) = F (x) for every x ∈ R at which F is
continuous where {Fn}∞n=0 and F are the associated CDFs of {Yn}∞n=0 and Y srespectively. We
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denote this convergence as Yn
d→ Y . Convergence in distribution is also called weak convergence. If

Yn
d→ Y , then limn→∞ E[f(Yn)] = E[f(Y )] for all bounded continuous functions f . As a corollary,

when {Yn}∞n=0 converges in distribution to 0, and Yn is bounded for all n, we have limn→∞ E[Yn] = 0
and limn→∞ E[Y 2

n ] = 0, which together imply limn→∞ V ar(Yn) = 0. We say that a sequence of

random variables {Yn}∞n=0 converges in probability to a random variable Y , denoted as Yn
p→ Y ,

if for every ε > 0, we have limn→∞ P(|Xn − X| ≥ ε) = 0. For every continuous function f(·), if

Yn
p→ Y , then we also have f(Yn)

p→ f(Y ). If Yn
p→ Y and Zn

p→ Z, then (Yn, Zn)
p→ (Y, Z) . If

|Zn − Yn|
p→ 0 and Yn

d→ Y , we have Zn
d→ Y . Finally, we say that a sequence of random variables

{Yn}∞n=0 converges in rth mean to a random variable Y , denoted as Yn
r→ Y , if E[|Xn|r] <∞ for all

n, and limn→∞ E[|Xn−X|r] = 0. We have the following implications: (i) almost sure convergence or
rth mean convergence (r ≥ 1) implies convergence in probability, and (ii) convergence in probability
implies convergence in distribution. The above results still hold for random vectors in higher
dimensional spaces.

Let f(n) and g(n) be two functions with domain and range N or R. The function f(n) is called
O(g(n)) if there exists two constants M and n0 such that f(n) ≤ Mg(n) for all n ≥ n0. The
function f(n) is called Ω(g(n)) if g(n) is O(f(n)). Finally, the function f(n) is called Θ(g(n)) if
f(n) is both O(g(n)) and Ω(g(n)).

B Proof of Lemma 4

For each n ∈ N, divide the state space S into grid cells with side length 1/2γr(log |Sn|/|Sn|)1/dx as
follows. Let Z denote the set of integers. Define the grid cell i ∈ Zdx as

Wn(i) := i

(
γr
2

log |Sn|
|Sn|

)1/dx

+

[
−1

4
γr

(
log |Sn|
|Sn|

)1/dx

,
1

4
γr

(
log |Sn|
|Sn|

)1/dx
]dx

,

where [−a, a]dx denotes the dx-dimensional cube with side length 2 a centered at the origin. Hence,
the expression above translates the dx-dimensional cube with side length (1/2) γr(log |Sn|/|Sn|)1/dx

to the point with coordinates i γr2 (log n/n)1/dx .
Let Qn denote the indices of set of all cells that lie completely inside the state space S, i.e.,

Qn = {i ∈ Zd : Wn(i) ⊆ S}. Clearly, Qn is finite since S is bounded. Let ∂Qn denote the set of all
grid cells that intersect the boundary of S, i.e., ∂Qn = {i ∈ Zd : Wn(i)∩ ∂S 6= ∅}. We claim for all
large n, all grid cells in Qn contain one vertex of Sn, and all grid cells in ∂Qn contain one vertex
from ∂Sn. First, let us show that each cell in Qn contains at least one vertex. Given an event A, let
Ac denote its complement. Let An,k denote the event that the cell Wn(k), where k ∈ Qn contains a
vertex from Sn, and let An denote the event that all grid cells in Qn contain a vertex in Sn. Then,
for all k ∈ Qn,

P
(
Acn,k

)
=

(
1− (γr/2)dx

m(S)

log |Sn|
|Sn|

)|Sn|
≤ exp

(
−
(
(γr/2)dx/m(S)

)
log |Sn|

)
= |Sn|−(γr/2)dx/m(S),

where m(S) denotes Lebesgue measure assigned to S. Then,

P(Acn) = P
((⋂

k∈Qn
An,k

)c)
= P

(⋃
k∈Qn

Acn,k

)
≤
∑

k∈Qn
P
(
Acn,k

)
= |Qn| |Sn|−(γr/2)dx/m(S),

where the first inequality follows from the union bound and |Qn| denotes the cardinality of the set
Qn. By calculating the maximum number of cubes that can fit into S, we can bound |Qn|:

|Qn| ≤
m(S)

(γr/2)dx log |Sn|
|Sn|

=
m(S)

(γr/2)dx
|Sn|

log |Sn|
.
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Note that by construction, we have |Sn| = Θ(n). Thus,

P (Acn) ≤ m(S)

(γr/2)dx
|Sn|

log |Sn|
|Sn|−(γr/2)dx/m(S) =

m(S)

(γr/2)dx
1

log |Sn|
|Sn|1−(γr/2)dx/m(S)

≤ m(S)

(γr/2)dx
|Sn|1−(γr/2)dx/m(S),

which is summable for all γr > 2 (2m(S))1/dx . Hence, by the Borel-Cantelli lemma, the probability
that Acn occurs infinitely often is zero, which implies that the probability that An occurs for all
large n is one, i.e., P(lim infn→∞An) = 1.

Similarly, each grid cell in ∂Qn can be shown to contain at least one vertex from ∂Sn for all
large n, with probability one. This implies each grid cell in both sets Qn and ∂Qn contain one
vertex of Sn and ∂Sn, respectively, for all large n, with probability one. Hence the following event
happens with probability one:

ζn = max
z∈Sn

min
z′∈Sn

||z′ − z||2 = O((log |Sn|/|Sn|)1/dx).

�

C Proof of Lemma 5

We show that each state that is added to the approximating MDPs is updated infinitely often.
That is, for any z ∈ Sn, the set of all iterations in which the procedure Update is applied on z is
unbounded. Indeed, let us denote ζn(z) = minz′∈Sn ||z′ − z||2. From Lemma 4, limn→∞ ζn(z) = 0
happens almost surely. Therefore, with probability one, there are infinitely many n such that
ζn(z) < ζn−1(z) . In other words, with probability one, we can find infinitely many znew at Line 13
of Algorithm 1 such that z is updated. For those n, the holding time at z is recomputed as

∆tn(z) = γt

(
log |Sn|
|Sn|

)θςρ/dx
at Line 1 of Algorithm 2. Thus, the following event happens with

probability one:
lim
n→∞

∆tn(z) = 0,

which satisfies the first condition of local consistency in Eq. 3.
The other conditions of local consistency in Eqs. 4-6 are satisfied immediately by the way that

the transition probabilities are computed (see the description of the ComputeTranProb procedure
given in Section 4.1). Hence, the MDP sequence {Mn}∞n=0 and holding times {∆tn}∞n=0 are locally
consistent for large n with probability one. �

D Proof of Theorem 7

To highlight the idea of the entire proof, we first prove the convergence under synchronous value
iterations before presenting the convergence under asynchronous value iterations. As we will see,
the shrinking rate of holding times plays a crucial role in the convergence proof. The outline of the
proof is as follows.

S1: Convergence under synchronous value iterations: In Algorithm 1, we take Ln ≥ 1 and Kn =
|Sn|−1. In other words, in each iteration, we perform synchronous value iterations. Moreover,
we assume that we are able to solve the Bellman equation (Eq. 9) exactly. We show that Jn
converges uniformly to J∗ almost surely in this setting.
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S2: Convergence under asynchronous value iterations: When Kn = Θ(|Sn|θ) < |Sn|, we only
update a subset of Sn in each of Ln passes. We show that Jn still converges uniformly to J∗

almost surely in this new setting.

In the following discussion and next sections, we need to compare functions on different do-
mains Sn. To ease the discussion and simplify the notation, we adopt the following interpolation
convention. Given X ⊂ Y and J : X → R, we interpolate J to J on the entire domain Y via
nearest neighbor value:

∀y ∈ Y : J(y) = J(z) where z = argminz′∈X ||z′ − y||.

To compare J : X → R and J ′ : Y → R where X,Y ⊂ S, we define the sup-norm:

||J − J ′||∞ = ||J − J ′||∞,

where J and J ′ are interpolations of J and J ′ from the domains X and Y to the entire domain S
respectively. In particular, given Jn : Sn → R, and J : S → R, then ||Jn − J ||Sn ≤ ||Jn − J ||∞.
Thus, if ||Jn − J ||∞ approaches 0 when n approaches ∞, so does ||Jn − J ||Sn . Hence, we will work
with the (new) sup-norm || · ||∞ instead of || · ||Sn in the proofs of Theorems 7-8. The triangle
inequality also holds for any functions J, J ′, J ′′ defined on subsets of S with respect to the above
sup-norm:

||J − J ′||∞ ≤ ||J − J ′′||∞ + ||J ′′ − J ′||∞.

Let B(X) denote a set of all real-valued bounded functions over a domain X. For Sn ⊂ Sn′

when n < n′, a function J in B(Sn) also belongs to B(Sn′), meaning that we can interpolate J on
Sn to a function J ′ on Sn′ . In particular, we say that J in B(Sn) also belongs to B(S).

Lastly, due to random sampling, Sn is a random set, and therefore functions Jn and J∗n defined
on Sn are random variables. In the following discussion, inequalities hold surely without further
explanation when it is clear from the context, and inequalities hold almost surely if they are followed
by “w.p.1”.

S1: Convergence under synchronous value iterations

In this step, we first set Ln ≥ 1 and Kn = |Sn| − 1 in Algorithm 1. Thus, for all z ∈ Sn,

the holding time ∆tn(z) equals γt

(
log |Sn|
|Sn|

)θςρ/dx
and is denoted as ∆tn. We consider the MDP

Mn = (Sn, U, Pn, Gn, Hn) at nth iteration and define the following operator Tn : B(Sn) → B(Sn)
that transforms every J ∈ B(Sn) after a Bellman update as:

TnJ(z) = min
v∈U
{Gn(z, v) + α∆tnEPn [J(y)|z, v]}, ∀z ∈ Sn, (10)

assuming that we can solve the minimization on the RHS of Eq. 10 exactly. For each k ≥ 2,
operators T kn are defined recursively as T kn = TnT

k−1
n and T 1

n = Tn. When we apply Tn on
J ∈ B(Sk) where k < n, J is interpolated to Sn before applying Tn. Thus, in Algorithms 1-2, we
implement the next update

Jn = TLnn Jn−1.

From [26], we have the following results: J∗n = TnJ
∗
n, and Tn is a contraction mapping. For any J

and J ′ in B(Sn), the following inequality happens surely:

||TnJ − TnJ ′||∞ ≤ α∆tn ||J − J ′||∞.
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Combining the above results:

||J∗n − Jn||∞ = ||TLnn J∗n − TLnn Jn−1||∞ ≤ αLn∆tn ||J∗n − Jn−1||∞
≤ α∆tn(||J∗n − J∗n−1||∞ + ||J∗n−1 − Jn−1||∞),

where the second inequality follows from the triangle inequality, and Ln ≥ 1, α ∈ (0, 1).
Thus, by iterating over n, for any N ≥ 1 and n > N , we have:

||J∗n − Jn||∞ ≤ An + α∆tn+∆tn−1...+∆tN+1 ||J∗N − JN ||∞, (11)

where An are defined recursively:

An = α∆tn(||J∗n − J∗n−1||∞ +An−1), ∀n > N + 1, (12)

AN+1 = α∆tN+1 ||J∗N+1 − J∗N ||∞. (13)

Note that for any N ≥ 1:
lim
n→∞

∆tn + ∆tn−1...+ ∆tN+1 =∞,

due to the choice of holding times ∆tn in the procedure ComputeHoldingTime. Therefore,

lim
n→∞

α∆tn+...+∆tN+1 ||J∗N − JN ||∞ = 0.

By Theorem 6, the following event happens with probability 1 (w.p.1):

lim
n→∞

||J∗n − J∗||∞ = 0,

hence,
lim
n→∞

||J∗n − J∗n−1||∞ = 0 w.p.1.

Thus, for any fixed ε > 0, we can choose N large enough such that:

||J∗n − J∗n−1||1−ς∞ < ε w.p.1 for all n > N, and (14)

α∆tn+...+∆tN+1 ||J∗N − JN ||∞ < ε surely, (15)

where ς ∈ (0, 1) is the constant defined in the procedure ComputeHoldingTime.
Now, for all n > N , we rearrange Eqs.12-13 to have

An ≤ εBn w.p.1,

where

Bn = α∆tn(||J∗n − J∗n−1||ς∞ +Bn−1), ∀n > N + 1,

BN+1 = α∆tN+1 ||J∗N+1 − J∗N ||ς∞.

We can see that for n > N + 1:

Bn = α∆tn(||J∗n − J∗n−1||ς∞ +Bn−1) < ες/(1−ς) +Bn−1 w.p.1, (16)

BN+1 = α∆tN+1 ||J∗N+1 − J∗N ||ς∞ < ες/(1−ς) w.p.1. (17)
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We now prove that almost surely, Bn is bounded for all n ≥ N . Indeed, we derive the conditions
so that Bn−1 < Bn or Bn−1 ≥ Bn as follows:

Bn−1 < Bn

⇔ Bn−1 < α∆tn(||J∗n − J∗n−1||ς∞ +Bn−1)

⇔ Bn−1 <
α∆tn ||J∗n − J∗n−1||ς∞

1− α∆tn

⇒ Bn−1 < K
α
γt
(

log |Sn|
|Sn|

)θςρ/dx (
log |Sn|
|Sn|

)ςρ/dx
1− αγt

(
log |Sn|
|Sn|

)θςρ/dx w.p.1.

The last inequality is due to Theorem 6 and |Sn| = Θ(n), |Sn−1| = Θ(n− 1):

||J∗n − J∗n−1||∞ = O((log |Sn−1|/|Sn−1|)ρ/dx) < K
(

log |Sn|
|Sn|

)ρ/dx
w.p.1,

for large n where K is some finite constant. Let β = αγt ∈ (0, 1). For large n, log |Sn|
|Sn| are in (0, 1)

and θ ∈ (0, 1]. Let us define

xn =

(
log |Sn|
|Sn|

)θςρ/dx
, and yn =

(
log |Sn|
|Sn|

)ςρ/dx
.

Then, xn ≥ yn > 0. The above condition is simplified to

Bn−1 < K
βxnyn

1− βxn
≤ K βxnxn

1− βxn
, w.p.1.

Consider the function r : [0,∞) → R such that r(x) = βxx
1−βx , we can verify that r(x) is non-

increasing and is bounded by r(0) = −1/ log(β). Therefore:

Bn−1 < Bn ⇒ Bn−1 < −
K

log(β)
= − K

γt log(α)
w.p.1. (18)

Or conversely,

Bn−1 ≥ −
K

γt log(α)
w.p.1 ⇒ Bn−1 ≥ Bn w.p.1. (19)

The above discussion characterizes the random sequence Bn. In particular, Fig. 5 shows a possible
realization of the random sequence Bn for n > N . As shown visually in this plot, BN+1 is less
than ες/(1−ς) w.p.1 and thus is less than ες/(1−ς) − K

γt log(α) w.p.1. For n > N + 1, assume that

we have already shown that Bn−1 is bounded from above by ες/(1−ς) − K
γt log(α) w.p.1. When

Bn−1 ≥ − K
γt log(α) w.p.1, the sequence is non-increasing w.p.1. Conversely, when the sequence

is increasing, i.e. Bn−1 < Bn, we assert that Bn−1 < − K
γt log(α) w.p.1 due to Eq. 18, and the

increment is less than ες/(1−ς) due to Eq. 16. In both cases, we conclude that Bn is also bounded by
ες/(1−ς) − K

γt log(α) w.p.1. Hence, from Eqs. 16-19, we infer that Bn is bounded w.p.1 for all n > N :

Bn < ες/(1−ς) − K
γt log(α)

w.p.1.
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N+1N+2N+3 N+k

Figure 5: A realization of the random sequence Bn. We have BN+1 less than ες/(1−ς) w.p.1.
For n larger than N + 1, when Bn−1 ≥ − K

γt log(α) w.p.1, the sequence is non-increasing w.p.1,
i.e. Bn−1 ≥ Bn w.p.1. Conversely, when the sequence is increasing, i.e. Bn−1 < Bn, we have
Bn−1 < − K

γt log(α) w.p.1, and the increment is less than ες/(1−ς). Hence, the random sequence Bn is

bounded by ες/(1−ς) − K
γt log(α) w.p.1.

Thus, for all n > N :

An ≤ εBn < ε
(
ες/(1−ς) − K

γt log(α)

)
w.p.1. (20)

Combining Eqs. 11,15, and 20, we conclude that for any ε > 0, there exists N ≥ 1 such that for
all n > N , we have

||J∗n − Jn||∞ < ε
(
ες/(1−ς) − K

γt log(α)
+ 1
)

w.p.1.

Therefore,
lim
n→∞

||J∗n − Jn||∞ = 0 w.p.1.

Combining with
lim
n→∞

||J∗n − J∗||∞ = 0 w.p.1,

we obtain
lim
n→∞

||Jn − J∗||∞ = 0 w.p.1.

In the above analysis, the shrinking rate
(

log |Sn|
|Sn|

)θςρ/dx
of holding times plays an important role

to construct an upper bound of the sequence Bn. This rate must be slower than the convergence

rate
(

log |Sn|
|Sn|

)ρ/dx
of J∗n to J∗ so that the function r(x) is bounded, enabling the convergence of

cost value functions Jn to the optimal cost-to-go J∗. Remarkably, we have accomplished this
convergence by carefully selecting the range (0, 1) of the parameter ς. The role of the parameter θ
in this convergence will be clear in Step S2. Lastly, we note that if we are able to obtain a faster
convergence rate of J∗n to J∗, we can have faster shrinking rate for holding times.
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S2: Convergence under asynchronous value iterations

When 1 ≤ Ln and Kn = Θ(|Sn|θ) < |Sn|, we first claim the following result:

Lemma 10 Consider any increasing sequence {nk}∞k=0 as a subset of N such that n0 = 0 and
k ≤ |Snk | ≤ k1/θ. For J ∈ B(S), we define:

A
(
{nj}kj=0

)
= α∆tnk+∆tnk−1

+...+∆tn1 ||J∗n1
− J ||∞ + α∆tnk+∆tnk−1

+...+∆tn2 ||J∗n2
− J∗n1

||∞
+ ...+ α∆tnk ||J∗nk − J

∗
nk−1
||∞.

The following event happens with probability one:

lim
k→∞

A
(
{nj}kj=0

)
= 0.

Proof We rewrite A
(
{nj}kj=0

)
= Ank where Ank are defined recursively:

Ank = α∆tnk (||J∗nk − J
∗
nk−1
||∞ +Ank−1

), ∀k > K, (21)

AnK = A
(
{nj}Kj=0

)
, ∀K ≥ 1. (22)

We note that

∆tnk + ∆tnk−1
+ ...+ ∆tnK

= γt

(
log |Snk |
|Snk |

)θςρ/dx
+ γt

(
log |Snk−1

|
|Snk−1

|

)θςρ/dx
+ ...+ γt

(
log |SnK |
|SnK |

)θςρ/dx
≥ γt

(
1

|Snk |

)θςρ/dx
+ γt

(
1

|Snk−1
|

)θςρ/dx
+ ...+ γt

(
1

|SnK |

)θςρ/dx
≥ γt

1

kςρ/dx
+ γt

1

(k − 1)ςρ/dx
+ ...+ γt

1

(K)ςρ/dx
≥ γt(

1

k
+

1

k − 1
+ ...+

1

K
),

where the second inequality uses the given fact that |Snk | ≤ k1/θ. Therefore, for any K ≥ 1:

lim
k→∞

α∆tnk+∆tnk−1
...+∆tnK = 0.

We choose a constant % > 1 such that %ς < 1. For any fixed ε > 0, we can choose K large enough
such that:

||J∗nk − J
∗
nk−1
||1−%ς∞ < ε w.p.1 for all k > K. (23)

For all k > K, we can write

Ank ≤ εBnk + α∆tnk+...+∆tnK+1A
(
{nj}Kj=0

)
.

where

Bnk = α∆tnk (||J∗nk − J
∗
nk−1
||%ς∞ +Bnk−1

), ∀k > K,

BnK = 0.

Furthermore, we can choose K ′ sufficiently large such that K ′ ≥ K and for all k > K ′:

α∆tnk+...+∆tnK+1A
(
{nj}Kj=0

)
≤ ε.
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We obtain:
Ank ≤ εBnk + ε, ∀k > K ′ ≥ K ≥ 1.

We can also see that for k > K:

Bnk = α∆tnk (||J∗nk − J
∗
nk−1
||%ς∞ +Bnk−1

) < ε%ς/(1−%ς) +Bnk−1
w.p.1. (24)

Similar to Step S1, we characterize the random sequence Bnk as follows:

Bnk−1
< Bnk

⇔ Bnk−1
<
α∆tnk ||J∗nk − J

∗
nk−1
||%ς∞

1− α∆tnk

⇒ Bnk−1
< K

α
γt

(
log |Snk |
|Snk |

)θςρ/dx (
log |Snk−1

|
|Snk−1

|

)%ςρ/dx
1− α

γt

(
log |Snk |
|Snk |

)θςρ/dx w.p.1.

Let β = αγt ∈ (0, 1). We define:

xk =

(
log |Snk |
|Snk |

)θςρ/dx
, and yk =

(
log |Snk−1

|
|Snk−1

|

)%ςρ/dx
.

We note that log x
x is a decreasing function for positive x. Since |Snk−1

| ≥ k − 1 and |Snk | ≤ k1/θ,
we have the following inequalities:

xk ≥

(
( log k

θ )θ

k

)ςρ/dx
, yk ≤

(
(log(k − 1))%

(k − 1)%

)ςρ/dx
.

Since θ ∈ (0, 1] and % > 1, we can find a finite constant K1 such that yk < K1xk for large k. Thus,
the above condition leads to

Bnk−1
< K βxkyk

1− βxk
< KK1

βxkxk
1− βxk

, w.p.1.

Therefore:

Bnk−1
< Bnk ⇒ Bnk−1

< − KK1

log(β)
= − KK1

γt log(α)
w.p.1.

Or conversely,

Bnk−1
≥ − KK1

γt log(α)
w.p.1 ⇒ Bn−1 ≥ Bn w.p.1.

Arguing similarly to Step S1, we infer that for all k > K ′ ≥ K ≥ 1:

Bnk < ε%ς/(1−%ς) − KK1

γt log(α)
w.p.1.

Thus, for any ε > 0, we can find K ′ ≥ 1 such that for all k > K ′:

Ank ≤ εBnk + ε < ε
(
ε%ς/(1−%ς) − KK1

γt log(α)
+ 1
)

w.p.1.

We conclude that
lim
k→∞

A
(
{nj}kj=0

)
= 0. w.p.1.

�
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Returning to the main proof, we use the tilde notation to indicate asynchronous operations to
differentiate with our synchronous operations in Step S1. We will also assume that Ln = 1 for all
n to simplify the following notations. The proof for general Ln ≥ 1 is exactly the same. We define
the following (asynchronous) mappings T̃n : B(Sn) → B(Sn) as the restricted mappings of Tn on
Dn, a non-empty random subset of Sn, such that for all J ∈ B(Sn):

T̃nJ(z) = min
v∈U

{
Gn(z, v) + α∆tnEPn

[
J(y)|z, v

]}
, ∀z ∈ Dn ⊂ Sn, (25)

T̃nJ(z) = J(z), ∀z ∈ Sn\Dn. (26)

We require that

∩∞n=1 ∪∞k=n Dk = S. (27)

In other words, every state in S are sampled infinitely often. We can see that in Algorithm 1, if
the set Zupdate is assigned to Dn in every iteration (Line 13), the sequence {Dn}∞n=1 has the above
property, and |Dn| = Θ(|Sn|θ) < |Sn|.

Starting from any J̃0 ∈ B(S0), we perform the following asynchronous iteration

J̃n+1 = T̃n+1J̃n, ∀n ≥ 0. (28)

Consider the following sequence {mk}∞k=0 such that m0 = 0 and for all k ≥ 0, from mk to
mk+1 − 1, all states in Smk+1−1 are chosen to be updated at least once, and a subset of states
in Smk+1−1 is chosen to be updated exactly once. We observe that as the size of Sn increases
linearly with n, if we schedule states in Dn ⊂ Sn to be updated in a round-robin manner, we
have k ≤ Smk ≤ k1/θ. When Dn is chosen as shown in Algorithm 1, with high probability,
k ≤ Smk ≤ k1/θ. However, we will assume that the event k ≤ Smk ≤ k1/θ happens surely because
we can always schedule a fraction of Dn to be updated in a round-robin manner.

We define Wn as the set of increasing sub-sequences of the sequence {0, 1, ..., n} such that each
sub-sequence contains {mj}kj=0 where mk ≤ n < mk+1:

Wn =
{
{ij}Tj=0

∣∣ {mj}kj=0 ⊂ {ij}Tj=0 ⊂ {0, 1, ..., n} ∧ T ≥ 2 ∧mk ≤ n < mk+1

}
.

Clearly, if {ij}Tj=0 ∈Wn, we have i0 = 0. For each {ij}Tj=0 ∈Wn, we define

A
(
{ij}Tj=0

)
= α∆tiT +∆tiT−1

+...+∆ti1 ||J∗i1 − J̃0||∞ + α∆tiT +∆tiT−1
+...+∆ti2 ||J∗i2 − J

∗
i1 ||∞

+ ...+ α∆tiT ||J∗iT − J
∗
iT−1
||∞.

We will prove by induction that

∀z ∈ Dn ⇒ |J̃n(z)− J∗n(z)| ≤ max
{ij}Tj=0∈Wn

A
(
{ij}Tj=0

)
. (29)

When n = 1, the only sub-sequence is {ij}Tj=0 = {0, 1} ∈ W1. It is clear that for z ∈ D1, due to
the contraction property of T1:

|J∗1 (z)− J̃1(z)| ≤ max
{ij}Tj=0∈W1

A
(
{ij}Tj=0

)
= α∆t1 ||J∗1 − J̃0||∞.

Assuming that Eq. 29 holds upto n = mk, we need to prove that the equation also holds for those
n ∈ (mk,mk+1) and n = mk+1. Indeed, let us assume that Eq. 29 holds for some n ∈ [mk,mk+1−1).
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Denote nz ≤ n as the index of the most recent update of z. For z ∈ Dn, we compute new values
for z in J̃n+1, and by the contraction property of Tn+1, it follows that

|J̃n+1(z)− J∗n+1(z)| ≤ α∆tn+1 ||J∗n+1 − J̃n||∞
= α∆tn+1 max

z∈Sn+1

|J∗n+1(z)− J̃n(z)|

= α∆tn+1 max
z∈Sn+1

|J∗n+1(z)− J̃nz(z)|

≤ α∆tn+1 max
z∈Sn+1

(
|J∗nz(z)− J̃nz(z)|+ ||J

∗
n+1 − J∗nz ||∞

)
≤ max

z∈Sn+1

(
α∆tn+1 max

{ij}Tj=0∈Wnz

A
(
{ij}Tj=0

)
+ α∆tn+1 ||J∗n+1 − J∗nz ||∞

)
= max
{ij}Tj=0∈Wn+1

A
(
{ij}Tj=0

)
.

The last equality is due to n+ 1 ≤ mk+1− 1, and {mj}kj=0 ⊂ {{ij}Tj=0, n+ 1} ⊂ {0, 1, ..., n+ 1} for

any {ij}Tj=0 ∈ Wnz . Therefore, Eq. 29 holds for all n ∈ (mk,mk+1 − 1]. When n = mk+1 − 1, we
also have the above relation for all z ∈ Dn+1:

|J̃n+1(z)− J∗n+1(z)| ≤ max
z∈Sn+1

(
α∆tn+1 max

{ij}Tj=0∈Wnz

A
(
{ij}Tj=0

)
+ α∆tn+1 ||J∗n+1 − J∗nz ||∞

)
= max
{ij}Tj=0∈Wn+1

A
(
{ij}Tj=0

)
.

The last equality is due to n+ 1 = mk+1 and thus {mj}k+1
j=0 ⊂ {{ij}Tj=0, n+ 1} ⊂ {0, 1, ..., n+ 1} for

any {ij}Tj=0 ∈Wnz . Therefore, Eq. 29 also holds for n = mk+1 and this completes the induction.

We see that all {ij}Tj=0 ∈Wn, we have j ≤ ij ≤ mj , and thus j ≤ Sij ≤ j1/θ. By Lemma 10,

lim
n→∞

A
(
{ij}Tj=0 ∈Wn

)
= 0 w.p.1.

Therefore,
lim
n→∞

sup
z∈Dn

|J̃n(z)− J∗n(z)| = 0 w.p.1.

Since all states are updated infinitely often, and J∗n converges uniformly to J∗ with probability one,
we conlude that: limn→∞ ||J̃n − J∗n||∞ = 0 w.p.1. and limn→∞ ||J̃n − J∗||∞ = 0 w.p.1.

In both Steps S1 and S2, we have limn→∞ ||Jn−J∗n||∞ = 0 w.p.1 5, therefore µn converges to µ∗n
pointwise w.p.1 as µn and µ∗n are induced from Bellman updates based on Jn and J∗n respectively.
Hence, the sequence of policies {µn}∞n=0 has each policy µn as an εn-optimal policy for the MDP
Mn such that limn→∞ εn = 0. By Theorem 2, we conclude that

lim
n→∞

|Jn,µn(z)− J∗(z)| = 0, ∀z ∈ Sn w.p.1.

�

E Proof of Theorem 8

We fix an initial starting state x(0) = z. In Theorem 7, starting from an initial state x(0) = z,
we construct a sequence of Markov chains {ξni ; i ∈ N}∞n=1 under minimizing control sequences

5The tilde notion is dropped at this point.
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{uni ; i ∈ N}∞n=1. By convention, we denote the associated interpolated continuous time trajectories
and control processes as {ξn(t); t ∈ R}∞n=1 and {un(t); t ∈ R}∞n=1 repsectively. By Theorem 1,
{ξn(t); t ∈ R}∞n=1 converges in distribution to an optimal trajectory {x∗(t); t ∈ R} under an optimal

control process {u∗(t); t ∈ R} with probability one. In other words, (ξn(·), un(·)) d→ (x∗(·), u∗(·))
w.p.1. We will show that this result can hold even when the Bellman equation is not solved exactly
at each iteration.

In this theorem, we solve the Bellman equation (Eq. 9) by sampling uniformly in U to form a
control set Un such that limn→∞ |Un| =∞. Let us denote the resulting Markov chains and control
sequences due to this modification as {ξni ; i ∈ N}∞n=1 and {uni ; i ∈ N}∞n=1 with associated continuous
time interpolations {ξn(t); t ∈ R}∞n=1 and {un(t); t ∈ R}∞n=1. In this case, randomness is due to
both state and control sampling. We will prove that there exists minimizing control sequences
{uni ; i ∈ N}∞n=1 and the induced sequence of Markov chains {ξni ; i ∈ N}∞n=1 in Theorem 7 such that

(ξ
n
(·)− ξn(·), un(·)− un(·)) p→ (0, 0), (30)

where (0, 0) denotes a pair of zero processes. To prove Eq. 30, we first prove the following lemmas.
In the following analysis, we assume that the Bellman update (Eq. 9) has minima in a neighborhood
of positive Lebesgue measure. We also assume additional continuity of cost functions for discrete
MDPs.

Lemma 11 Let us consider the sequence of approximating MDPs {Mn}∞n=0. For each n and a
state z ∈ Sn, let v∗n be an optimal control minimizing the Bellman update, which is refered to as an
optimal control from z:

v∗n ∈ V ∗n = argminv∈U{Gn(z, v) + α∆tn(z)EPn [Jn−1(y)|z, v]},
Jn(z, v∗n) = J∗n(z) = Gn(z, v∗n) + α∆tn(z)EPn [Jn−1(y)|z, v∗n] , ∀v∗n ∈ V ∗n .

Let vn be the best control in a sampled control set Un from z:

vn = argminv∈Un{Gn(z, v) + α∆tn(z)EPn [Jn−1(y)|z, v]},
Jn(z, vn) = Gn(z, vn) + α∆tn(z)EPn [Jn−1(y)|z, vn] .

Then, when limn→∞ |Un| =∞, we have |Jn(z, vn)−J∗n(z)| p→ 0 as n approaches∞, and there exists

a sequence {v∗n | v∗n ∈ V ∗n }∞n=0 such that ||vn − v∗n||2
p→ 0.

Proof We assume that for any ε > 0, the set Anε = {v ∈ U | |Jn(z, v) − J∗n(z)| ≤ ε} has positive
Lebesgue measure. That is, m(Anε ) > 0 for all ε > 0 where m is Lebesgue measure assigned to U .
For any ε > 0, we have:

P
(
{|Jn(z, vn)− J∗n(z)| ≥ ε}

)
=
(
1−m(Anε )/m(U)

)|Un|.
Since 1−m(Anε )/m(U) ∈ [0, 1) and limn→∞ |Un| =∞, we infer that:

lim
n→∞

P
(
{|Jn(z, vn)− J∗n(z)| ≥ ε}

)
= 0.

Hence, we conclude that |Jn(z, vn) − J∗n(z)| p→ 0 as n → ∞. Under the mild assumption that
Jn(z, v) is continuous on U for all z ∈ Sn, thus there exists a sequence {v∗n | v∗n ∈ V ∗n }∞n=0 such that

||vn − v∗n||2
p→ 0 as n approaches ∞. �
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Figure 6: An illustration for Lemma 12. We have ξ
n
0 converges in probability to ξn0 . From ξn0 , the

optimal control is v∗n that results in the next random state ξn1 . From ξ
n
0 , the optimal control and

the best sampled control are vn and vn respectively. The next random state from ξ
n
0 due to the

control vn is ξ
n
1 .

By Lemma 11, we conclude that ||Jn−J∗n||∞ converges to 0 in probability. Thus, Jn returned from
the iMDP algorithm when the Bellman update is solved via sampling converges uniformly to J∗ in
probability. We, however, claim that Jn,µn still converges pointwise to J∗ almost surely in the next
discussion.

Lemma 12 With the notations in Lemma 11, consider two states ξn0 and ξ
n
0 such that ||ξn0−ξn0 ||2

p→
0 as n approaches ∞. Let ξ

n
1 be the next random state of ξ

n
0 under the best sampled control vn from

ξ
n
0 . Then, there exists a sequence of optimal controls v∗n from ξn0 such that ||vn − v∗n||2

p→ 0 and

||ξn1 − ξn1 ||2
p→ 0 as n approaches ∞, where ξn1 is the next random state of ξn0 under the optimal

control v∗n from ξn0 .

Proof We have vn as the best sampled control from ξ
n
0 . By Lemma 11, there exists a sequence of

optimal controls vn from ξ
n
0 such that ||vn − vn||2

p→ 0. We assume that the mapping from state
space Sn, which is endowed with the usual Euclidean metric, to optimal controls in U is continuous.
As ||ξn0−ξn0 ||2

p→ 0, there exists a sequence of optimal controls v∗n from ξn0 such that ||vn−v∗n||2
p→ 0.

Now, ||vn − vn||2
p→ 0 and ||vn − v∗n||2

p→ 0 lead to ||vn − v∗n||2
p→ 0 as n→∞. Figure 6 illustrates

how vn, vn, and v∗n relate ξ
n
1 and ξn1 .

Using the probability transition Pn of the MDPMn that is locally consistent with the original
continuous system, we have:

E[ξn1 | ξn0 , un0 = v∗n] = ξn0 + f(ξn0 , v
∗
n)∆tn(ξn0 ) + o(∆tn(ξn0 )),

E[ξ
n
1 | ξ

n
0 , u

n
0 = vn] = ξ

n
0 + f(ξ

n
0 , vn)∆tn(ξ

n
0 ) + o(∆tn(ξ

n
0 )),

Cov[ξn1 | ξn0 , un0 = v∗n] = F (ξn0 , v
∗
n)F (ξn0 , v

∗
n)T∆tn(ξn0 ) + o(∆tn(ξn0 )),

Cov[ξ
n
1 | ξ

n
0 , u

n
0 = vn] = F (ξ

n
0 ), vn)F (ξ

n
0 ), vn)T∆tn(ξ

n
0 )) + o(∆tn(ξ

n
0 ))),

where f(·, ·) is the nominal dynamics, and F (·, ·)F (·, ·)T is the diffusion of the original system
that are assumed to be continuous almost everywhere. We note that ∆tn(ξ

n
0 ) = ∆tn(ξn0 ) =

γt
(

log(|Sn|)/|Sn|
)θςρ/dx as ξ

n
0 and ξn0 are updated at the nth iteration in this context, and the hold-

ing times converge to 0 as n approaches infinity. Therefore, when ||ξn0 − ξn0 ||2
p→ 0, ||vn− v∗n||2

p→ 0,
we have:

E[ξ
n
1 − ξn1 | ξn0 , ξ

n
0 , u

n
0 = v∗n, u

n
0 = vn]

p→ 0, (31)

Cov(ξ
n
1 − ξn1 | ξn0 , ξ

n
0 , u

n
0 = v∗n, u

n
0 = vn)

p→ 0. (32)
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Since ξ
n
1 and ξn1 are bounded, the random vector E[ξ

n
1 − ξn1 | ξn0 , ξ

n
0 , u

n
0 = v∗n, u

n
0 = vn] and random

matrix Cov(ξ
n
1 − ξn1 | ξn0 , ξ

n
0 , u

n
0 = v∗n, u

n
0 = vn) are bounded. We recall that if Yn

p→ 0, and hence

Yn
d→ 0, when Yn is bounded for all n, limn→∞ E[Yn] = 0 and limn→∞Cov(Yn) = 0. Therefore,

Eqs. 31-32 imply:

lim
n→∞

E
[
E[ξ

n
1 − ξn1 | ξn0 , ξ

n
0 , u

n
0 = v∗n, u

n
0 = vn]

]
= 0, (33)

lim
n→∞

Cov
(
E[ξ

n
1 − ξn1 | ξn0 , ξ

n
0 , u

n
0 = v∗n, u

n
0 = vn]

)
= 0, (34)

lim
n→∞

E
[
Cov(ξ

n
1 − ξn1 | ξn0 , ξ

n
0 , u

n
0 = v∗n, u

n
0 = vn)

]
= 0. (35)

The above outer expectations and covariance are with resepect to the randomness of states ξn0 , ξ
n
0

and sampled controls Un. Using the iterated expectation law for Eq. 33, we obtain:

lim
n→∞

E[ξ
n
1 − ξn1 ] = 0.

Using the law of total covariance for Eqs. 34-35, we have:

lim
n→∞

Cov[ξ
n
1 − ξn1 ] = 0.

Since
E[||ξn1 − ξn1 ||22] = E[(ξ

n
1 − ξn1 )T (ξ

n
1 − ξn1 )] = ||E[ξ

n
1 − ξn1 )]||22 + tr(Cov[ξ

n
1 − ξn1 ]),

the above limits together imply:
lim
n→∞

E[||ξn1 − ξn1 ||22] = 0.

In other words, ξ
n
1 converges in 2th-mean to ξn1 , which leads to ||ξn1 − ξn1 ||2

p→ 0 as n approaches ∞.
�

Returning to the proof of Eq. 30, we know that ξn0 = ξ
n
0 = z as the starting state. From any y ∈ Sn,

an optimal control from y is denoted as v∗(y), and the best sampled control from the same state y
is denoted as v(y).

By Lemma 12, as un0 = v(ξ
n
0 ), there exists un0 = v∗(ξn0 ) such that ||un0 − un0 ||2

p→ 0 and ||ξn1 −
ξn1 ||2

p→ 0. Let us assume that (||unk−1 − unk−1||2, ||ξ
n
k − ξnk ||2) converges in probability to (0, 0)

upto index k. We have unk = v(ξ
n
k). Using Lemma 12, there exists unk = v∗(ξnk ) such that (||unk −

unk ||2, ||ξ
n
k+1 − ξnk+1||2)

p→ (0, 0). Thus, for any i ≥ 1, we can construct a minimizing control uni
in Theorem 7 such that (||ξni − ξni ||2, ||uni − uni ||2)

p→ (0, 0) as n → ∞. Hence, Eq. 30 follows
immediately:

(ξ
n
(·)− ξn(·), un(·)− un(·)) p→ (0, 0).

We have (ξn(·), un(·)) d→ (x∗(·), u∗(·)) w.p.1. Thus, by hierarchical convergence of random variables
[30], we achieve

(ξ
n
(·), un(·)) d→ (x∗(·), u∗(·)) w.p.1.

Therefore, for all z ∈ Sn:
lim
n→∞

|Jn,µn(z)− J∗(z)| = 0 w.p.1.

�
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F Proof of Theorem 9

Fix n ∈ N, for all z ∈ S, and yn = argminz′∈Sn ||z
′ − z||2, we have

µn(z) = µn(yn).

We assume that optimal policies of the original continuous problem are obtainable. By Theorems 7-
8, we have:

lim
n→∞

|Jn,µn(yn)− J∗(yn))| = 0 w.p.1.

Thus, µn(yn) converges to µ∗(yn) almost surely where µ∗ is an optimal policy of the original
continuous problem. Thus, for all ε > 0, there exists N such that for all n > N :

||µn(yn)− µ∗(yn)||2 ≤
ε

2
w.p.1.

Under the assumption that µ∗ is continuous at z, and due to limn→∞ yn = z almost surely, we can
choose N large enough such that for all n > N :

||µ∗(yn)− µ∗(z)||2 ≤
ε

2
w.p.1.

From the above inequalities:

||µn(yn)− µ∗(z)||2 ≤ ||µn(yn)− µ∗(yn)||2 + ||µ∗(yn)− µ∗(z)||2 ≤ ε, ∀n > N w.p.1.

Therefore,
lim
n→∞

||µn(z)− µ∗(z)||2 = lim
n→∞

||µn(yn)− µ∗(z)||2 = 0 w.p.1.
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