
International Journal of Information and Communication Technology Research, ISSN 2223-4985, Volume 2 No. 2, February 2012

http://esjournals.org/journaloftechnology/archive/vol2no2/vol2no2_15.pdf

Service-Oriented Architecture for Weaponry and Battle

Command and Control Systems in Warfighting

Youssef Bassil
LACSC – Lebanese Association for Computational Sciences

Registered under No. 957, 2011, Beirut, Lebanon

youssef.bassil@lacsc.org

ABSTRACT

Military is one of many industries that is more computer-dependent than ever before, from soldiers with computerized

weapons, and tactical wireless devices, to commanders with advanced battle management, command and control systems.

Fundamentally, command and control is the process of planning, monitoring, and commanding military personnel,

weaponry equipment, and combating vehicles to execute military missions. In fact, command and control systems are

revolutionizing as war fighting is changing into cyber, technology, information, and unmanned warfare. As a result, a new

design model that supports scalability, reusability, maintainability, survivability, and interoperability is needed to allow

commanders, hundreds of miles away from the battlefield, to plan, monitor, evaluate, and control the war events in a

dynamic, robust, agile, and reliable manner. This paper proposes a service-oriented architecture for weaponry and battle

command and control systems, made out of loosely-coupled and distributed web services. The proposed architecture

consists of three elementary tiers: the client tier that corresponds to any computing military equipment; the server tier that

corresponds to the web services that deliver the basic functionalities for the client tier; and the middleware tier that

corresponds to an enterprise service bus that promotes interoperability between all the interconnected entities. A command

and control system was simulated and experimented and it successfully exhibited the desired features of SOA. Future

research can improve upon the proposed architecture so much so that it supports encryption for securing the exchange of

data between the various communicating entities of the system.

Keywords: Service-Oriented Architecture, Computational Military, Command & Control, Web Service

1. INTRODUCTION

Computing technologies are becoming more pervasive

day after day, offering new potentials for automating tasks

in many challenging applications. Military is one of these

applications that is evolving at a quickening pace. It

includes the use of computers to help support in decision

making, tactic forecasting, ballistic trajectory calculations,

direction transfer, navigation control, data and

communication encryption, and command and control [1].

In essence, command and control, abbreviated as C2, is a

battle management process by which military personnel,

weaponry devices, fighting vehicles, military equipment,

and communication and navigation facilities are

commanded to achieve military aims and objectives [2]. In

effect, many of military devices and weaponry equipment

are highly computing intensive systems that use complex

embedded software and algorithms to handle

computational and data-intensive tasks. These days, it is

no longer practical to develop military ad-hoc systems that

require a single person to wisely craft the entire software

for the military hardware equipment. In addition, it is no

more feasible to encapsulate all software components

within the actual equipment. Instead, a component-based

model or service-oriented architecture is often followed in

which software is developed as a set of services by

multiple persons working on a large code base in a

distributed team [3].

Inherently, a service is a software component that

contains a collection of related software functionalities

reusable for different purposes [4]. It delivers such

operations as data storage, data processing, mathematical

and scientific computations, and networking. It is

governed by a producer-consumer model in which a

service is delivered by a service provider known as the

producer which owns the facilities for hosting, running,

and maintaining the service, and the client known as the

consumer which connects and uses service functionalities

via remote method invocation mechanism. Predominantly,

services are implemented as Web Services (WS) which are

defined by the W3C as “software systems designed to

support interoperable machine-to-machine interaction over

a network” [5].

This paper proposes a service-oriented architecture for

weaponry and battle command and control systems in war

fighting based on heterogeneous multi-platform service

components. The proposed architecture is composed of

three basic tiers: The first tier is the client represented by

the military hardware equipment. The second tier is the

server which hosts and runs the different service

components that provide the advanced functionalities

necessary for the operation of the client equipment. The

third tier is the middleware represented by an Enterprise

Service Bus (ESB) which offers a standard interface and a

data-path for both the client and server tiers to interact,

send requests, and receive responses from each other.

Being decentralized and decoupled from the military

equipment hardware core, the proposed service-oriented

architecture has six benefits [6][7][8]: Integrate-ability

which allows the seamless integration of new software

components in a less significant effort, time, and budget;

reusability which is given by the nature of SOA “build

once, use many times” that allows multiple military

equipment, possibly located in different sites, to use and

share the same set of services simultaneously and with

high availability; scalability which is given by the ability

to add, update, and delete military equipment’s

functionalities remotely with no or minimal service

International Journal of Information and Communication Technology Research, ISSN 2223-4985, Volume 2 No. 2, February 2012

http://esjournals.org/journaloftechnology/archive/vol2no2/vol2no2_15.pdf

interruption and while the system is online; maintainability

which is given by that a failure in a service would only

require replacing the faulty service and not the entire battle

command system; survivability which is given by that

service components in SOA are decentralized and thereby

they can be replicated across military data centers

allowing military systems to withstand a hit and remain

mission-capable during the war time; and interoperability

which is given by the Enterprise Service Bus middleware

which provides a standardized and a unified platform for

the various interconnected entities, possibly incompatible,

to send and receive data among each other.

2. BATTLE COMMAND & CONTROL

Fundamentally, battle command (BC) also known as

command and control (C2), is the science and practice of

commanding, controlling, describing, directing, and

leading military forces and combatting machineries during

war fighting [9]. It involves military decisions and

processes that are initiated by commanders through

computing and communication facilities and executed by

soldiers located in remote areas in the war zone with the

purpose of accomplishing a desired military objective or

mission. Generally, battle command is managed through a

command and control center or command post often

located in a secure building operated by governmental or

military agencies. In modern warfare, C2 is extended to

support in addition to command and control, other features

and functionalities such as reconnaissance, intelligence,

surveillance, communications, computers, information

systems, and target acquisition. These improved versions

of C2 are denoted by a number of abbreviations in the

format C(x) followed by supplementary letters indicating

the supported features. For instance the C5ISTAR system

stands for command, control, communications, computers,

combat systems, intelligence, surveillance, target

acquisition, and reconnaissance [10]. By definition,

command is the use of authority to achieve a particular

objective. Control is the process of guiding, validating,

and refining actions based on the objective to be

accomplished. Communication is the process of conveying

the command and control to the destination unit. Computer

is the use of computing facilities to perform data

processing to support commanders’ decision-making.

Combat systems designate the process of operating and

managing military equipment, devices, and machineries in

the battlefield. Intelligence is the process of collecting,

analyzing, and assessing facts, data, and information.

Surveillance is the process of monitoring the behavior and

activities of certain subjects. Target acquisition is the

process of detecting, identifying, and locating military

targets. Reconnaissance is the process of exploring enemy

forces to gain information about their environments and

assets [11].

Practically, communication between the battle

command centers and the fighting units is done through

communications satellites or COMSATs which are

artificial satellite positioned in space in geostationary

orbits, low earth orbits, and other elliptical orbits for the

purpose of conveyance of information by armed forces in

a reliable, fast, secure, and jam-resistant manner.

Traditional battle control architectures are platform-

centric [12], in that, military equipment supporting digital

computation such as artillery controllers, missiles,

warheads, warships, submarines, combat vehicles,

aircrafts, traffic control radars, surveillance sensors, and

GPS systems incorporate their software into their core

hardware. In this type of model, every hardware has its

own software on-chip which provides all its required

functionalities; and thus, is referred to as ad-hoc because it

is made out of cohesive and tightly-coupled modules that

are hard to be adapted for other purposes. On the other

hand, a service-oriented architecture would decouple the

software from the hardware and expose it in form of web

service components through a server possibly located in

battle control centers, operation rooms, or in space stations

operated in low earth orbit. Military equipment, devices,

and vehicles supporting computational combat operations

can then remotely communicate with existing services to

acquire their necessary functionalities. Additionally, using

a service-oriented architecture, military equipment are no

more monocoque systems composed of one single unit but

of loosely-coupled distributed components that are

separated from their physical hardware and hosted in a

remote location.

3. SERVICE-ORIENTED

ARCHITECTURE

Service-Oriented Architecture or SOA for short is a

model for system development based on loosely-integrated

suite of services that can be used within multiple business

domains [13]. SOA is also an approach and practice for

building IT software systems using interoperable services.

These services are loosely-coupled software components

that encapsulate functionalities and are available to be

remotely accessed by client applications over a network or

Internet [14]. The backbone of SOA consists of web

services and an Enterprise Service Bus (ESB).

3.1 Web Services

As defined by W3C, a web service is a software

component designed to support interoperable machine-to-

machine interaction over a network [5]. It uses the SOAP,

an XML-based protocol to communicate over HTTP.

Characteristically, web services have three key elements:

Web Service Description Language (WSDL) which is an

XML-based description of the operations and

functionalities offered by the web service. It dictates the

protocol bindings and the message formats required to

connect to and interact with a given web service;

Universal Description, Discovery and Integration (UDDI)

which is a registry for storing web services’ WSDLs and a

mechanism to register and locate web services on the

Internet; and the SOAP communication protocol which

defines the structure and format of the messages being

exchanged between the service requester represented by

the client and the service provider represented by the

actual web service. In fact, the service requester is a client

application requesting a particular functionality from the

service provider, and the service provider is usually a

server that hosts and runs the actual web service. Other

types or styles exist for web services. They include REST,

RPC, RMI, .NET Remoting, CORBA, and Network

Socket [15].

International Journal of Information and Communication Technology Research, ISSN 2223-4985, Volume 2 No. 2, February 2012

http://esjournals.org/journaloftechnology/archive/vol2no2/vol2no2_15.pdf

REST (Representational State Transfer) web services

do not use the SOAP protocol to communicate; rather,

they use the plain HTTP protocol and Query String

information to exchange messages. Their advantages over

SOAP-based web services are that they are easier to build,

manage, and reuse.

RPC (Remote Procedure Call) is an inter-process

communication that allows a computer program to invoke

or call remotely a function or procedure to execute on

another computer over a shared network. RMI (Remote

Method Invocation) is the Java implementation for RPC,

while .NET Remoting is the .NET implementation for

RPC.

Network Socket is an inter-process communication

between two or more computer programs over a network.

A server socket uses a socket address which is a

combination of an IP address and a port number to listen

for incoming connections. Clients connect to the server

socket and then start exchanging data packets. Network

sockets can be implemented using either TCP or UDP

protocols.

Figure 1 illustrates the infrastructure of a generic web

service.

Figure 1: Infrastructure of a typical web service

3.2 Enterprise Service Bus - ESB

In order to promote interoperability among its

components, SOA often employs an Enterprise Service

Bus or ESB. Fundamentally, an ESB is a piece of software

that lies between the different components of an SOA,

mainly between the service requester and the service

provider to enable a transparent and seamless

communication among them [16]. It, in fact, acts as a

middleware and a message broker between the different

communicating parties in SOA architecture. The primary

task of ESB is to support message routing and ensure a

better orchestration and interoperability between the

various interconnected web services possibly built using

different technologies, platforms, standards, and

programming languages. Figure 2 shows an ESB

connecting incompatible consumers and producers built

using different technologies.

Figure 2: Architecture of an enterprise service bus

4. PROPOSED ARCHITECTURE

This paper proposes a Service-Oriented Architecture

(SOA) for building weaponry and battle command and

control systems using service software components. It is a

distributed model made out of loosely-coupled

interoperable web services and a central Enterprise Service

Bus (ESB) not located inside the actual military hardware

equipment but in an isolated location, possibly operation

control centers or space stations in low earth orbit. The

communication between the military equipment and the

web services is bi-directional and is done in a remote

fashion using the HTTP protocol with the help of the ESB

acting as a middleware. The employed communication

style is method invocation in which military equipment

can remotely call or invoke the different procedures of the

existing web services to execute on the hosting system and

return results to the equipment. These procedures also

known as methods or functions contain the logic and the

programming instructions that deliver the basic

functionalities for the military equipment. Essentially, the

proposed architecture is composed of three basic tiers:

The first tier is the client represented by the military

equipment or any weaponry system supporting

computation, which invokes the different exposed methods

of web services to perform a wide range of operations

such as telemetry & tracking, ballistics calculations,

launch control, aerospace traffic control, flight planning,

surveillance and monitoring, fires and effects, logistics and

mediation, intelligence and security, GPS and navigation,

data acquisition, processing, and analysis, image

processing, digital signal processing, data cryptography,

and biometrics.

The second tier is the server represented by web

services which are decoupled from the hardware of

military equipment and hosted and executed on server

machines located in battle control centers. The web

services provide the actual code and logic for the different

military operations and functionalities. They contain the

algorithms, implementation, and programming instructions

necessary to provide the various military computing

machineries their basic maneuvers and functionalities.

The third tier is the middleware represented by the

Enterprise Service Bus which offers a standard interface

and a unified data-path for both the client and the server

tiers to interoperate efficiently and exchange data

regardless of their incompatible platforms and

International Journal of Information and Communication Technology Research, ISSN 2223-4985, Volume 2 No. 2, February 2012

http://esjournals.org/journaloftechnology/archive/vol2no2/vol2no2_15.pdf

implementation technologies, for instance, technologies

such as SOAP, REST, RPC or others. Figure 3 illustrates

the proposed SOA architecture and its different tiers.

Figure 3: Different tiers of the proposed SOA architecture

4.1 Advantages & Motivations

A service-oriented architecture for battle command and

control systems would decouple, isolate, and detach the

software from the core hardware of military equipment,

devices, and computing machines, making them

independent and not physically bound to each other. As a

result, military equipment are no more composed of a

single block housing both hardware and software; rather,

only hardware constitute the actual equipment; while,

software consist of loosely-coupled distributed web

services that encapsulate the basic military functionalities

and are executed remotely outside the military equipment

hardware. In other words, the military computing

equipment only send requests to and get results from the

various available web services. Basically, the proposed

SOA design has many advantages which can be listed

below:

Integrate-ability: Integration of new software

components can take less significant effort, time, and

budget. For instance, new services providing new

functionalities can be easily deployed on the server tier

without the need to access the out of reach military

machines and weaponry equipment. Likewise, changes to

the existing web services can be easily made by only

changing the service description on the server side.

Scalability: SOA is an open architecture in that it

supports plug-and-play operations. For instance, new

services can be deployed at runtime with no or minimal

amount of system interruption. Similarly, they can be

pulled out of the system at any time without experiencing

degradation in performance or shortcomings in system

operation. On the other hand, existing services can be

reconfigured and updated at minimal cost. As SOA is

governed by the publish-discover process [17], delivering

new services and consuming them is usually done in an

automated manner.

Maintainability: Since services are no more part of the

equipment hardware and thus located at a great distance

away from the fighting sites, it is less tedious and less

costly to isolate system defects and troubleshoot, diagnose,

and repair broken services. Consequently, this promotes

agile and robust systems that can cope with unpredictable

and always changing environments without affecting the

system in operation.

Reusability: Services can be reused to add or extend

new functionalities or build new military systems from

already existing components. This practice can reduce

design, development, implementation, testing, and

deployment time.

Decentralization: Being modular, SOA components

can be dispersed over multiple hosting environments

providing computing power over distributed and

inexpensive machines of massive computing arrays.

Survivability: In warfare, military systems are always

subject to numerous physical and electronic attacks. One

key feature of SOA is the self-organizing provider-

consumer peer-to-peer network model which allows web

services to be replicated across and migrated between

servers and deployed where they are needed at several

sites. This ensures the continuous operation of the

participating systems in spite of hostile attacks, hits, and

bombings.

Interoperability: As SOA features an ESB which

emulates a middleware that sits between the different

military equipment and web services, it provides a

standardized and cross-network platform over which

computing military machines can interoperate

transparently with numerous existing systems and with the

different heterogeneous web services that are built using

different standards, programming languages, technologies,

and platforms.

4.2 The Client Tier – The Military Equipment

Actually, the client is any computing military

equipment, device, machine, combat vehicle, aircraft,

naval ship, communication system, infrastructure,

computer, or smart phone used in the battlefield by both

soldiers and commanders. They contain an onboard

computer able to discover the different remote web

services through the ESB interface which describes the

different functions encapsulated within the connected web

services. In order to communicate, the client equipment

has to bind to the ESB interface. This binding

authenticates the military equipment (requester) and

allows it to send requests to the ESB (provider) using

remote procedure invocation approach. All execution is

done on the provider’s side and only results are returned to

the requester. Communication between requester and

provider is done solely using the HTTP protocol through

communications satellites that relay transmission between

the earth where the provider is located and the battlefield

where the requester is located. Figure 4 illustrates the

sequence of interactions between the military equipment

as client, the ESB as middleware, and the web services as

server.

International Journal of Information and Communication Technology Research, ISSN 2223-4985, Volume 2 No. 2, February 2012

http://esjournals.org/journaloftechnology/archive/vol2no2/vol2no2_15.pdf

Figure 4: Sequence of interactions between the SOA entities

4.3 The Middleware Tier – The ESB

The ESB or Enterprise Service Bus provides a data-

path for data to travel between the military equipment and

the web services. It constitutes a data transmission

medium, emulating a messaging middleware that links

between the different military equipment in the battlefield

from one side and the different distributed web services

from the other side to allow them to send and receive data

back and forth to each other. Additionally, it automates the

in and out communications between all involved systems

and coordinates the interaction between them, and allows

the storage, routing, and transformation of messages

during inter-system interactions. The proposed ESB is

cross-platform and cross-network which allows the military

equipment to interoperate with various types of web

services, possibly incompatible and built using different

platforms, different standards, different technologies, and

different programming languages to send requests, and

receive responses from each other. Figure 5 depicts the

architecture of the proposed ESB together with its inner-

workings.

Figure 5: The architecture of the proposed ESB

In effect, the ESB has two public interfaces: The first

interface is from the military equipment’s side which

provides a unified single SOAP-based end-point for the

equipment to communicate with the ESB. The second

interface is from the web services’ side which provides a

set of adapters as end-point connectors for the different

web services to connect. There exists an adapter for every

web service protocol, for instance, SOAP, REST, RPC,

Network Socket, and others. The role of these adapters is to

bridge the equipment’s requests with their destination web

services, irrespective of their protocol type and version. In

order to achieve this, the ESB is able to identify the type of

request received from the military equipment and to route it

accordingly to the corresponding adapter which,

successively, passes it to the corresponding web service.

All in all, the ESB delivers a transparent communication

between the different components of the SOA allowing

them to interoperate despite their underlying incompatible

technologies and platforms. The ESB communication

process can be described as below:
Step 1: A military equipment invokes a function called

motion_detection() located in a REST-based web service. The

request is always in SOAP protocol and encapsulates metadata

describing the request message, including the source client, the

destination service, the function to call, and a set of parameters.

Step 2: The ESB receives the request message in SOAP

format; it first validates the correctness of its XML structure and

then converts it from SOAP format into the protocol of

destination web service, in this case REST, using the protocol

translator. The ESB uses an internal registry to lookup the

technical details about the destination web service.

Step 3: The ESB routes the converted request to the adapter

that is compatible with the addressed web service, in this case, the

REST adapter.

Step 4: The adapter then locates the corresponding web

service and gets bound temporary to it and starts executing the

requested function, in this case motion_detection().

Step 6: Once processing is done, a response is sent back from

the destination web service to the military equipment that

originally initiated the request. It is first sent to the corresponding

adapter, in this case, the REST adapter, then to the ESB, then

translated to a SOAP format, and eventually routed to the military

equipment.

4.4 The Server Tier – The Web Services

The server tier is where the web services are hosted. It

mainly consists of several mainframe computer servers

often located in earth battle control centers. These servers

define the execution of the web services, process military

equipment’s requests, execute business logic, and perform

intensive calculations on behalf of the equipment. The web

services can be of any type, protocol, or version and they

interact with the ESB through its multi-platform end-point

adapters. Each time a new web service is integrated into

the system, it publishes its WSDL to the ESB which saves

it inside an internal registry along with other important

details. The ESB then exposes the WSDL to all military

equipment allowing them to call remotely all available

functions.

Web services can provide any type of functionalities

including GSM to receive and transmit telemetry data

between the different military units using SMS or other

communication technologies; navigation to monitor and

control the movement of combatting vehicles and

determine their positions using radars, sensors, and

http://en.wikipedia.org/wiki/Message

International Journal of Information and Communication Technology Research, ISSN 2223-4985, Volume 2 No. 2, February 2012

http://esjournals.org/journaloftechnology/archive/vol2no2/vol2no2_15.pdf

satellites; ballistics computations to calculate the

trajectories of projectiles, such as bullets, gravity bombs,

rockets, or the like; imaging and computer vision to

analyze captured images and recognize objects within

these images, often useful for military reconnaissance and

surveillance; and biometrics to authentic military units and

provide identity access management and access control

based on one or more inherent physical traits such as

fingerprint, face recognition, iris recognition, and palm

print [18].

5. EXPERIMENTS & IMPLEMENTATION

As a proof of concept, a client simulation software,

representing a military equipment, was built and is capable

of sending requests to and reading results from the ESB

using the SOAP protocol. The software is a regular

standalone executable application built using C#.NET

under the .NET Framework 4.0 and the MS Visual Studio

2010. Figure 6 depicts the GUI interface of the client

simulation software.

Figure 6: Simulated-client’s GUI interface

Additionally, three web services were developed. The

first is a SOAP-based web service built using C#.NET

with an .asmx file extension and is capable of performing

biometric operations. The second is a REST-based web

service built using Java with a file extension .jsp and is

capable of performing ballistics computations. The third is

a Socket-based web service built using C++ with an .exe

file extension and is capable of performing GPS

operations. Figure 7 is a source-code snippet for a method

extracted from the SOAP-based web service whose aim is

to convert a scanned fingerprint into a bitmap image so

that it can be digitally processed.

Figure 7: Fingerprint processing method

Finally, an ESB was built to act as a middleware

between the simulated client and the different web

services. Since the ESB acts as a service broker, it is

responsible for exposing the various web services

functionalities to the simulated client. Figure 8 delineates

the list of functionalities exposed by the ESB and

originally implemented in the web services.

Figure 8: Various methods exposed by the ESB

For verification purposes, a use case scenario [19] was

created. Its purpose is to test the validity and the

interoperability of the client-web-service communication

through the ESB.
1. The client simulation software needed to execute a

function called Compute_Trajectory() located in the REST-

based web service, so it connected to the ESB in a process to

discover all public available functionalities.

2. Once function Compute_Trajectory() was found, the client

bound to the ESB and sent an authentication message to the

ESB.

3. The ESB acknowledged the client allowing it to start

remote function invocation.

4. The client invoked function Compute_Trajectory() sending

gravity=9.8 and velocity=45 as parameters to the ESB using

the SOAP protocol.

5. The ESB received the call and then looked-up for the

destination web service that encapsulates function

Compute_Trajectory().

6. Once the corresponding REST-based web service was

found, the ESB converted the client’s call message from

SOAP into REST and forwarded it to the web service.

7. The REST-based web service received the call, directly

processed it, and executed function Compute_Trajectory() on

its hosting server.

8. Upon finishing processing, the web service returned the

result angle=14.12 to the ESB in REST format.

9. The ESB converted the REST message into a SOAP

message that is readable by the client, and forwarded it to the

client.

10. The client received the result and displayed it on the

screen.

Furthermore, other use cases were executed at runtime

while the system was running, and in all situations the

client succeeded to adapt itself according to the new

changes in the environment. The different uses case

scenarios that were tested are given below:

International Journal of Information and Communication Technology Research, ISSN 2223-4985, Volume 2 No. 2, February 2012

http://esjournals.org/journaloftechnology/archive/vol2no2/vol2no2_15.pdf

1. Integrating a new web service

2. Removing an existing web service

3. Updating web service functionalities

4. Failing an existing web service

5. Fixing a faulty web service

6. Deriving new web services from existing ones

6. VALIDATION OF THE PROPOSED

ARCHITECTURE

The SOA approach proved to be very effective in all

the different executed scenarios. The interoperability of

the system allows the collaboration between various

entities regardless of their underlying technologies and

implementation details. The scalability of the system

allows the military specialists to easily and quickly alter

and add functionalities to military equipment without

having access to them. The maintainability of the system

allows fixing and replacing out of order services while the

system is running with no or minimal operation

interruption. The reusability of the system allows building

and deriving new web services from existing ones with the

least amount of development time and cost.

7. CONCLUSIONS & FUTURE WORK

This paper presented a novel service-oriented

architecture for building battle command and control

systems using distributed software components called web

services. The proposed architecture consists of three tiers:

the client tier corresponding to any sort of computing

military equipment that require executing some

functionalities; the server tier corresponding to the web

services that deliver the basic functionalities and

operations for the military equipment; and the ESB acting

as a middleware that coordinates and shields the

complexity and heterogeneity of communication among

the different entities of the system. Experiments conducted

showed a robust, reliable, scalable, interoperable, reusable,

and a maintainable architecture that can adapt itself to the

unforeseen circumstances and cope with the various

obstacles that might be encountered during war fighting

missions.

As future work, an encryption layer is to be added to

the proposed SOA architecture so as to protect and conceal

the exchange of messages and data communication

between the various entities of the system.

ACKNOWLEDGMENTS

This research was funded by the Lebanese Association

for Computational Sciences (LACSC), Beirut, Lebanon,

under the “Service-Oriented Architecture Robotics

Research Project – SOARRP2012”.

REFERENCES

[1] Phister, Paul W., and Igor G. Plonisch, Military

Applications of Information Technologies, Air and Space

Power Journal, pp. 77-90, 2004.

[2] Builder, C., Bankes, S., and Nordin, R., Command

Concepts: A Theory Derived from the Practice of Command

and Control, RAND Corporation, 1999.

[3] Information Technology Management: Global Command

and Control System, Joint Operation Planning and

Execution System, Department of Defense Inspector,

General Report, 2003.

[4] Hoque, F., e-Enterprise: Business Models, Architecture, and

Components, Cambridge University Press, 2000.

[5] Web Services Glossary, W3C, 2004, [online]

http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211

[6] Zimmerli, B., Business Benefits of SOA, University of

Applied Science of Northwestern Switzerland, School of

Business, 2009.

[7] Offermann, P., Hoffmann, M. , and Bub, U., Benefits of

SOA: Evaluation of an implemented scenario against

alternative architectures, Enterprise Distributed Object

Computing Conference Workshops, 2009.

[8] Ball, R., The Fundamentals of Aircraft Combat

Survivability Analysis and Design, 2nd ed, AIAA Education

Series, 2003.

[9] United States Army Functional Concept for Battle

Command, TRADOC Pamphlet 525-3-3, Ver. 1.0, 2007.

[10] Meilich, A., Capturing the Army Battle Command System

(ABCS) Architecture Using the C4ISR Architecture

Framework, Lockheed Martin, 2002.

[11] Department of Defense Dictionary of Military and

Associated Terms, Joint Publication 1-02, Department of

Defense, 2009, [online]

http://www.dtic.mil/doctrine/jel/new_pubs/jp1_02.pdf

[12] Mark Mandeles, The future of war, Potomac Books, Inc.,

2005.

[13] Erl, T, Service-Oriented Architecture: Concepts,

Technology, and Design, Prentice Hall, 2005.

[14] Josuttis, N., SOA in Practice, O’Reilly, 2007.

[15] Fielding, R., Taylor, R., Principled Design of the Modern

Web Architecture, ACM Transactions on Internet

Technology (TOIT), Vol. 2, No. 2, pp. 115–150, 2002.

[16] David Chappell, Enterprise Service Bus, O’Reilly, 2004.

[17] David Booth, Hugo Haas, and Francis McCabe, Web

Services Architecture, W3C Working Group, 2004, [online]

http://www.w3.org/TR/ws-arch/

[18] John Vacca, Biometric Technologies and Verification

Systems, Butterworth-Heinemann publishers, 2007.

[19] Alexander, Ian, and Beus-Dukic, Ljerka, Discovering

Requirements: How to Specify Products and Services,

Wiley, 2009.

http://en.wikipedia.org/wiki/World_Wide_Web_Consortium
http://www.google.com.lb/search?tbo=p&tbm=bks&q=inauthor:%22Mark+David+Mandeles%22

