
International Journal of Science & Emerging Technologies (IJSET), E-ISSN: 2048-8688, Vol. 3, No. 2, February, 2012
http://ojs.excelingtech.co.uk/index.php/IJSET/article/download/426/239

Service-Oriented Architecture for

Space Exploration Robotic Rover Systems
Youssef Bassil

LACSC – Lebanese Association for Computational Sciences

Registered under No. 957, 2011, Beirut, Lebanon

youssef.bassil@lacsc.org

Abstract—Currently, industrial sectors are

transforming their business processes into e-services

and component-based architectures to build flexible,

robust, and scalable systems, and reduce integration-

related maintenance and development costs. Robotics is

yet another promising and fast-growing industry that

deals with the creation of machines that operate in an

autonomous fashion and serve for various applications

including space exploration, weaponry, laboratory

research, and manufacturing. It is in space exploration

that the most common type of robots is the planetary

rover which moves across the surface of a planet and

conducts a thorough geological study of the celestial

surface. This type of rover system is still ad-hoc in that

it incorporates its software into its core hardware

making the whole system cohesive, tightly-coupled,

more susceptible to shortcomings, less flexible, hard to

be scaled and maintained, and impossible to be adapted

to other purposes. This paper proposes a service-

oriented architecture for space exploration robotic

rover systems made out of loosely-coupled and

distributed web services. The proposed architecture

consists of three elementary tiers: the client tier that

corresponds to the actual rover; the server tier that

corresponds to the web services; and the middleware

tier that corresponds to an Enterprise Service Bus

which promotes interoperability between the

interconnected entities. The niche of this architecture is

that rover’s software components are decoupled and

isolated from the rover’s body and possibly deployed at

a distant location. A service-oriented architecture

promotes integrate-ability, scalability, reusability,

maintainability, and interoperability for client-to-server

communication. Future research can improve upon the

proposed architecture so much so that it supports

encryption standards so as to deliver data security as

well as message concealment for the various

communicating entities of the system.

Keywords—Service-oriented Architecture, Robotics, Web-

Service, Space Exploration, Planetary Rover

1. Introduction

Robotics technology is emerging at a rapid pace,

offering new possibilities for automating tasks in

many challenging applications, especially in space

explorations, military operations, underwater

missions, domestic services, and medical procedures.

Particularly, in space exploration, robotic devices are

formally known as planetary rovers or simply rovers

and they are aimed at conducting physical analysis of

planetary terrains and astronomical bodies, and

collecting data about air pressure, climate,

temperature, wind, and other atmospheric phenomena

surrounding the landing sites [1]. Basically, rovers

can be autonomous capable of operating with little or

no assistance from ground control or they can be

remotely controlled from earth ground stations called

RCC short for Remote Collaboration Center. In

practice, robotic rovers have very definite scientific

objectives [2]. They include but not limited to the

examining of territories at the microscopic level,

carrying out physical experimentations, investigating

the biological aspects of planetary surfaces, analyzing

the composition of minerals, rocks, and soils,

searching for geological clues such as finding liquid

water in minerals, and measuring the ambient

temperature, air pressure, and amount of dust in the

landing site [3]. As a result, rovers are highly

computing intensive systems that use complex

embedded software and algorithms to handle

computational and processing tasks. These days, it is

no longer practical to develop ad-hoc systems that

require a single person to wisely craft the entire

software for the rover. In addition, it is no more

feasible to encapsulate all software components

within the actual rover hardware. Instead, a

component-based model or service-oriented

architecture is often followed in which the rover’s

software is developed as a set of services by multiple

persons working on a large code base in a distributed

team [4].

Inherently, a service is a software component that

contains a collection of related software

functionalities reusable for different purposes [5]. It

delivers such operations as data storage, data

processing, mathematical and scientific

computations, and networking. It is governed by a

producer-consumer model in which a service is

International Journal of Science & Emerging Technologies (IJSET), E-ISSN: 2048-8688, Vol. 3, No. 2, February, 2012
http://ojs.excelingtech.co.uk/index.php/IJSET/article/download/426/239

delivered by a service provider known as the

producer which owns the equipment for hosting,

running, and maintaining the service, and the client

known as the consumer which connects and uses

service functionalities via remote method invocation

mechanism. Predominantly, services are implemented

as Web Services (WS) which are defined by the W3C

as ―a software system designed to support

interoperable machine-to-machine interaction over a

network‖ [6].

This paper proposes a service-oriented architecture

for autonomous space exploration robotic rover

systems based on heterogeneous multi-platform

service components. The proposed architecture is

composed of three basic tiers: The first tier is the

client represented by the actual robotic rover vehicle.

The second tier is the server which hosts and runs the

different service components that provide the

advanced functionalities necessary for the rover

operations. Services are decoupled and isolated from

the actual rover and possibly deployed at a distant

location. The third tier is the middleware represented

by an Enterprise Service Bus (ESB) which offers a

standard interface and a data-path for both the client

and server tiers to interact, send requests, and receive

responses from each other.

Being decentralized and decoupled from the

rover’s hardware core, the proposed service-oriented

architecture has five benefits [7][8][9]: Integrate-

ability which allows the seamless integration of new

software components in a less significant effort, time,

and budget; reusability which is given by the nature

of SOA ―build once, use many times‖ that allows

multiple rovers, possibly located in different sites, to

use and share the same set of services simultaneously

and with high availability; scalability which is given

by the ability to add, update, and delete rover’s

functionalities remotely with no or minimal service

interruption and while the system is online;

maintainability which is given by that a failure in a

service would only require replacing the faulty

service and not the entire rover system; and

interoperability which is given by the Enterprise

Service Bus middleware which provides a

standardized and a unified platform for the various

interconnected entities, possibly incompatible, to

send and receive data among each other.

2. Space Exploration Rovers

In essence, a rover is a space exploration robotic

vehicle used particularly in exploring the land of a

planet. It has the capability to travel across the

surface of a landscape and other cosmic bodies. A

rover has many features: It can generate power from

solar panels; capture high-resolution images; move in

360 degrees with the help of a navigation camera

(Navcam); walk across obstacles such as bumps and

rocks; conduct deep analysis and record

measurements using multiple types of spectrometers;

find properties of materials to identify their types and

their composition; search for geological clues such as

water to detect any presence of life on the landing

environment; and inspect the mineralogy and texture

of the local terrain using panoramic cameras

(Pancam) [10][11].

There exist two types of rover vehicles: The first

type is the human-controlled rovers which are

remotely manipulated from earth and usually guided

to perform a particular operation. Communication

between the rover and the earth control occurs

through the Deep Space Network (DSN), which is an

international network of large antennas with

communication facilities that supports interplanetary

spacecraft missions. Currently, DSN comprises three

deep-space communications facilities located in

Mojave Desert in California, west of Madrid in

Spain, and south of Canberra in Australia. The

second type is the autonomous rovers which can

complete desired tasks without constant human

direction. Space exploration rovers are distinguished

by a high degree of autonomy as they can cope with

their changing environment, automatically gain

information about the landing sites, survive a disaster

or a failure, operate for prolonged periods of time,

and execute predefined operations without human

assistance. Financially, robotic rovers can cost to

build, test, and deploy hundreds of millions of dollars

sometimes billions of dollars [12]. Historically,

Lunokhod and Marsokhod were two space rovers

designed and launched by the soviet in the 70s [13];

while, Spirit and Opportunity were two US rovers

produced by NASA, the space agency of the United

States, between year 2004 and 2010 as part of

NASA's ongoing Mars Exploration Rover Mission

(MER).

From a design point of view, the brain of the rover

is contained in what so called WEB short for Warm

Electronic Box [14]. Traditional rover architectures

use the WEB to house two basic entities: a high-end

digital computer able to perform computations at

very high speed and a software which controls the

rover’s hardware and provides all its required

functionalities. On the other hand, a service-oriented

architecture would decouple the software from the

International Journal of Science & Emerging Technologies (IJSET), E-ISSN: 2048-8688, Vol. 3, No. 2, February, 2012
http://ojs.excelingtech.co.uk/index.php/IJSET/article/download/426/239

WEB of the rover and place it into a server possibly

located on earth or in space station operated in low

earth orbit that can communicate with the rover

remotely to deliver its necessary functionalities.

Additionally, using a service-oriented architecture,

the rover is no more a monocoque system made out

of one single unit but of loosely-coupled distributed

components that are separated from its physical

hardware and hosted in a remote location.

3. Service-Oriented Architecture

Service-Oriented Architecture or SOA for short is a

model for system development based on loosely-

integrated suite of services that can be used within

multiple business domains [15]. SOA is also an

approach and practice for building IT software

systems using interoperable services. These services

are loosely-coupled software components that

encapsulate functionalities and are available to be

remotely accessed by client applications over a

network or Internet [16]. The backbone of SOA

consists of web services and an Enterprise Service

Bus (ESB).

3.1 Web Services

As defined by W3C, a web service is a software

component designed to support interoperable

machine-to-machine interaction over a network [6]. It

uses the SOAP, an XML-based protocol to

communicate over HTTP. Characteristically, web

services have three key elements: Web Service

Description Language (WSDL) which is an XML-

based description of the operations and functionalities

offered by the web service. It dictates the protocol

bindings and the message formats required to connect

to and interact with a given web service; Universal

Description, Discovery and Integration (UDDI)

which is a registry for storing web services’ WSDLs

and a mechanism to register and locate web services

on the Internet; and the SOAP communication

protocol which defines the structure and format of the

messages being exchanged between the service

requester represented by the client and the service

provider represented by the actual web service. In

fact, the service requester is a client application

requesting a particular functionality from the service

provider, and the service provider is usually a server

that hosts and runs the actual web service. Figure 1

illustrates the operation mode of a generic SOAP-

based web service.

Other types or styles exist for web services. They

include REST, RPC, RMI, .NET Remoting, CORBA,

and Network Socket [17].

REST (Representational State Transfer) web

services do not use the SOAP protocol to

communicate; rather, they use the plain HTTP

protocol and Query String information to exchange

messages. Their advantages over SOAP-based web

services are that they are easier to build, manage, and

reuse.

RPC (Remote Procedure Call) is an inter-process

communication that allows a computer program to

invoke or call remotely a function or procedure to

execute on another computer over a shared network.

RMI (Remote Method Invocation) is the Java

implementation for RPC, while .NET Remoting is the

.NET implementation for RPC.

Network Socket is an inter-process communication

between two or more computer programs over a

network. A server socket uses a socket address which

is a combination of an IP address and a port number

to listen for incoming connections. Clients connect to

the server socket and then start exchanging data

packets. Network sockets can be implemented using

either TCP or UDP protocols.

Figure 1. Typical SOAP-Based Web Service

3.2 Enterprise Service Bus - ESB

In order to promote interoperability among its

components, SOA often employs an Enterprise

Service Bus or ESB. Fundamentally, an ESB is a

piece of software that lies between the different

components of an SOA, mainly between the service

requester and the service provider to enable a

transparent and seamless communication among

them [18]. It, in fact, acts as a middleware and a

message broker between the different communicating

parties in SOA architecture. The primary task of ESB

is to support message routing and ensure a better

orchestration and interoperability between the various

interconnected web services possibly built using

International Journal of Science & Emerging Technologies (IJSET), E-ISSN: 2048-8688, Vol. 3, No. 2, February, 2012
http://ojs.excelingtech.co.uk/index.php/IJSET/article/download/426/239

different technologies, platforms, standards, and

programming languages.

4. Related Work

There are a large variety of different architectures,

models, and frameworks already developed for

robotic systems. Several of them are examined in this

section:

One of the earliest models is the 3T robotic design

[19] which is composed of three independent

communicating layers: The first layer is the reactive

skills layer which consists of a set of reactive

behaviors handled by a skill manager which is

responsible for starting and stopping particular skills

based on several input sensors. The second layer is

the sequencing layer which is responsible for

generating a set of skill requirements for the reactive

skills layer. The third layer is the deliberative layer

which is responsible for generating plans based on

mission requirements. The 3T software architecture

was designed to effectively control autonomous

systems in a flexible and robust manner.

Player [20] is a distributed robotic control protocol

description that uses socket communications to

convey its purpose. It uses POSIX network socket

building blocks to deliver a transparent

communication between the robot system and its

various sensors. Player is universal as it relies on

standard sockets; and thus can be implemented by

any programming environment.

JAUS [21] is yet another architecture for robotic

systems designed by the U.S. Department of Defense

to support all its autonomous systems. In effect,

JAUS is a component-based messaging system made

out of modular programming units whose task is to

control the flow of data in and out of the system.

JAUS uses a strict messaging format which limits the

integration of new components that are not JAUS-

compatible.

Joint Technical Architecture [22] was developed by

the U.S. Department of Defense to provide

interoperable platform for robotic systems. JTA

primarily focused on military machinery such as

aerial systems, firing ground systems, and war

fighting machinery.

Mobile and Autonomous Robotic Integration

Environment or MARIE for short [23] was designed

with the purpose of quickening and facilitating the

integration of robotic systems. MARIE is based on

software integration of loosely coupled distributed

software components and provides a central mediator

to control the integration of new components

regardless of their underlying architectures and

communication protocols.

Controlling Robots with CORBA also known as

CoRoBa [24] is a development platform designed to

permit the integration of distributed robotic control,

sensor, and computational components. It is

fundamentally based on CORBA (Common Object

Request Broker Architecture) which provides a

standard middleware for connecting object-oriented

components together with little regards to their inner

technologies.

Mobility Integration Architecture [25] is yet

another CORBA-based software architecture for

building and integrating distributed object systems

built using different languages.

ROS which stands for Robot Operating System

[26] is an open source architecture that supports

modular and distributed software components for

robotic software. The ROS architecture features

interaction between entities, message passing, and

services concept. The ROS design does not however

feature a central middleware to coordinate among the

different nodes of the system.

[27] proposed a service-oriented architecture for

distributed multi-robot systems based on web

services for realizing remote controlling and on

manufacturing message specification (MMS) to

exchange data among the different modules of the

system. Its purpose is to monitor and control software

design using Unified Modeling Language (UML) and

MMS concepts and to enable such processes as e-

manufacturing, e-diagnostics, and e-maintenance.

5. Proposed Architecture

This paper proposes a Service-Oriented Architecture

(SOA) for building space exploration robotic rover

machines using web service software components. It

is a distributed model made out of loosely-coupled

interoperable web services and a central Enterprise

Service Bus (ESB) not located inside the actual rover

but in an isolated location, possibly earth control

center or space station in low earth orbit. The

communication between the rover and the web

services is bi-directional and is done in a remote

fashion using the HTTP protocol with the help of the

ESB acting as a middleware. The employed

communication style is method invocation in which

the rover remotely calls or invokes the different

procedures of the web services to execute on the

hosting system and return results to the rover. These

procedures also known as methods or functions

International Journal of Science & Emerging Technologies (IJSET), E-ISSN: 2048-8688, Vol. 3, No. 2, February, 2012
http://ojs.excelingtech.co.uk/index.php/IJSET/article/download/426/239

contain the logic and the programming instructions

that deliver the rover’s basic functionalities.

Essentially, the proposed architecture is composed

of three basic tiers: The first tier is the client

represented by the rover vehicle which invokes

methods of web services to perform operations such

as examining minerals, analyzing geological

environment, studying and assessing the composition

of rocks, and capturing and processing images for a

variety of applications. The second tier is the server

represented by the web services which are decoupled

from the rover hardware and hosted and executed on

server machines located on earth or in a nearby space

station. The web services provide the actual code

base and logic for the rover. They contain the

algorithm, implementation, and programming

instructions necessary to provide the rover its basic

operations and functionalities. The third and final tier

is the middleware represented by the Enterprise

Service Bus which offers a standard interface and a

unified data-path for both the client and the server

tiers to interoperate efficiently and exchange data

regardless of their incompatible platforms and

implementation technologies, for instance,

technologies such as SOAP, REST, RPC or others.

Figure 2 illustrates the proposed SOA architecture

and its different tiers.

Figure 2. Tiers of the proposed SOA architecture

5.1 Advantages & Motivations

A service-oriented architecture for robotic rover

systems would decouple and detach the rover’s

software from the core of the rover, making it

independent and not physically bound to the actual

rover’s hardware. As a result, the rover is no more a

single block housing both hardware and software;

rather, only hardware is embedded within the rover,

while the software consists of loosely-coupled

distributed web services encapsulating the rover’s

basic functionalities and executed remotely outside

the rover. The rover only sends requests to and gets

results from web services. Such design has many

advantages which can be listed below:

Integrate-ability: Integration of new software

components can take less significant effort, time, and

budget. For instance, new services providing new

functionalities can be easily deployed on the server

tier without the need to access the out of reach client

rover. Likewise, changes to the existing web services

can be easily made by only changing the service

description on the server side.

Scalability: SOA is an open architecture in that it

supports plug-and-play operations. For instance, new

services can be deployed at runtime with no or

minimal amount of system interruption. Similarly,

they can be pulled out of the system at any time

without experiencing degradation in performance or

shortcomings in system operation. On the other hand,

existing services can be reconfigured and updated at

minimal cost. As SOA is governed by the publish-

discover process [28], delivering new services and

consuming them is usually done in an automated

manner.

Maintainability: Since services are no more part of

the rover and thus located at a great distance away

from the landing sites, it is less tedious and less

costly to isolate system defects and troubleshoot,

diagnose, and repair broken services. Consequently,

this promotes an agile and robust system that can

cope with an unpredictable and always changing

environment without affecting the system in

operation.

Reusability: Services can be reused to add or

extend new functionalities or build new rover

systems from already existing components. This

practice can reduce design, development,

implementation, testing, and deployment time.

Decentralization: Being modular, SOA components

can be dispersed over multiple hosting environments

providing computing power over distributed and

inexpensive machines of massive computing arrays.

Interoperability: As SOA features an ESB which

emulates a middleware that sits between the rover

and the web services, it provides a standardized and

cross-network platform over which the rover can

interoperate transparently with the different

heterogeneous web services built using different

standards, programming languages, technologies, and

platforms.

International Journal of Science & Emerging Technologies (IJSET), E-ISSN: 2048-8688, Vol. 3, No. 2, February, 2012
http://ojs.excelingtech.co.uk/index.php/IJSET/article/download/426/239

5.2 Design Specifications

As discussed earlier, the proposed architecture

comprises three tiers: The client, the middleware, and

the server tier.

5.2.1 The Client Tier – The Rover Vehicle

Actually, the client is the robotic rover vehicle. It

contains an onboard computer able to discover the

different remote web services through the ESB

interface which describes the different functions

encapsulated within the connected web services. In

order to communicate, the rover has to bind to the

ESB interface. This binding authenticates the rover

(requester) and allows it to send requests to the ESB

(provider) using remote procedure invocation

approach. The ESB then forwards the rover’s request

to the intended web service. The results that are

returned by the web service are first received by the

ESB then forwarded to the rover. All execution is

done on the provider’s side and only results are

returned to the requester. Communication between

requester and provider is done solely using the HTTP

protocol through the Deep Space Network (DSN) that

relays transmission between the earth where the

provider is located and the outer space where the

rover is located. Figure 3 illustrates the sequence of

interactions between the rover client and the rest of

the entities.

Figure 3. The Rover’s Sequence of Interactions

5.2.2 The Middleware Tier – The ESB

The ESB or Enterprise Service Bus provides a data-

path for data to travel between the rover unit and the

different web services. It constitutes a data

transmission medium, emulating a messaging

middleware that links between the rover from one

side and the different distributed services from the

other side to allow them to send and receive data

back and forth to each other. Additionally, it

automates the in and out communications between all

involved parties and coordinates the interaction

between them, and allows the storage, routing, and

transformation of messages during inter-system

interactions.

The proposed ESB is cross-platform and cross-

network which allows the rover to interoperate with

various types of web services, possibly incompatible,

built using different platforms, different standards,

different technologies, and different programming

languages to send requests, and receive responses

from each other. Figure 4 depicts the architecture of

the proposed ESB together with its inner-workings.

Figure 4. The Architecture of the proposed ESB

In effect, the ESB has two public interfaces: The

first interface is from the rover’s side which provides

a unified single SOAP-based end-point for the rover

to communicate with the ESB. The second interface

is from the web services’ side which provides a set of

adapters as end-point connectors for the different web

services to connect. There exists an adapter for every

web service protocol, for instance, SOAP, REST,

http://en.wikipedia.org/wiki/Message

International Journal of Science & Emerging Technologies (IJSET), E-ISSN: 2048-8688, Vol. 3, No. 2, February, 2012
http://ojs.excelingtech.co.uk/index.php/IJSET/article/download/426/239

RPC, Network Socket, and others. The role of these

adapters is to bridge the rover’s request to its

destination web service irrespective of its protocol

type and version. In order to achieve this, the ESB is

able to identify the type of the request received from

the rover and to route it accordingly to the

corresponding adapter which, successively, passes it

to the corresponding web service. All in all, the ESB

delivers a transparent communication between the

different components of the SOA allowing them to

interoperate despite their underlying incompatible

technologies and platforms. The ESB communication

process can be described as below:

Step 1: The rover invokes a function called

feature_detection() located in a REST-based web

service. The request is always in SOAP protocol and

encapsulates metadata describing the request message,

including the source client, the destination service, the

function to call, and a set of parameters.

Step 2: The ESB receives the request message in SOAP

format; it first validates the correctness of its XML

structure and then converted from SOAP format into the

protocol of destination web service, in this case REST,

using the protocol translator. The ESB uses an internal

registry to lookup the technical details about the

destination web service.

Step 3: The ESB routes the converted request to the

adapter that is compatible with the addressed web

service, in this case, the REST adapter.

Step 4: The adapter then locates the corresponding web

service and gets bound temporary to it and starts

executing the requested function, in this case

feature_detection().

Step 6: Once processing is done, a response is sent back

from the destination web service to rover. It is first sent

to the corresponding adapter, in this case, the REST

adapter, then to the ESB, then translated to an SOAP

format, and eventually routed to the rover.

5.2.3 The Server Tier – The Web Services

The server tier is where the web services are hosted.

It mainly consists of several mainframe computer

servers located either in earth control centers or in a

space station in the low earth orbit. These servers

define the execution of the web services, process

rovers’ requests, execute business logic, and perform

intensive calculations on behalf of the rover. The web

services can be of any type, protocol, or version and

they interact with the ESB through its multi-platform

end-point adapters. Each time a new web service is

integrated into the system, it publishes its WSDL to

the ESB which save it inside an internal registry

along with other important details. The ESB then

exposes the WSDL to the rover vehicle allowing it to

call remotely all available functions.

Web services can provide any type of

functionalities including computer vision

functionalities to analyze captured images and

recognize objects within these images; navigation

functionalities to allow the rover to relocate and

move over the surface of the planet; sensing

functionalities to measure the atmospheric properties

surrounding the rover; microscopy functionalities to

analyze and inspect the nature of rocks and soils and

their structure; and scanning functionalities to detect

the presence of certain elements inside the planetary

terrain [29].

6. Experiments & Implementations

As a proof of concept, a robotic rover simulation

software was built capable of performing various

actions. Besides, it is capable of sending requests to

and reading results from the ESB using the SOAP

protocol. The software is a regular standalone

executable application built using C#.NET under the

.NET Framework 4.0 and the MS Visual Studio

2010. Figure 5 depicts the GUI interface of the rover

simulation software.

Figure 5. Rover’s GUI interface

Additionally, three web services were developed.

The first is a SOAP-based web service built using

C#.NET with an .asmx file extension and is

responsible for performing imaging functionalities

including capturing color pictures of the planet

landscape, and sending them to earth where scientists

will study and analyze them. The second is a REST-

based web service built using Java with a file

extension .jsp and is responsible for performing

International Journal of Science & Emerging Technologies (IJSET), E-ISSN: 2048-8688, Vol. 3, No. 2, February, 2012
http://ojs.excelingtech.co.uk/index.php/IJSET/article/download/426/239

spectrometer operations including mass spectrometer,

gas chromatograph and laser spectrometer. Its

purpose is to analyze rocks and soils in search for

carbon, hydrogen, oxygen, and nitrogen-containing

compounds. The third is a Socket-based web service

built using C++ with an .exe file extension and is

responsible for measuring atmospheric pressure,

humidity, wind speed and direction, air temperature,

ground temperature, and ultraviolet radiations. Figure

6 is a code snippet extracted from the source-code of

the SOAP-based web service whose aim is to

magnify any type of images that are captured by the

rover’s cameras.

Figure 6. Magnify image method

Finally, an ESB was built to act as a middleware

between the rover and the different web services. As

the ESB is the service broker, it is responsible for

exposing the different functionalities of the web

services to the rover. Figure 7 delineates the list of

functionalities exposed by the ESB and originally

implemented in the web services.

Figure 7. Various methods exposed by the ESB

A use case scenario [30] was created for evaluation

of the proposed model. Its purpose is to test the

validity and the interoperability of the rover-web

services communication through the ESB.

1. The rover simulation software needed to execute

function AnalyzeParticlesSpeed() located in the REST-

based web service, so it connected to the ESB in a

process to discover all public available functionalities.

2. Once function AnalyzeParticlesSpeed() was found, the

rover bound to the ESB and sent an authentication

message to the ESB

3. The ESB acknowledged the rover allowing it to start

remote function invocation.

4. The rover invoked function AnalyzeParticlesSpeed()

sending mass=5 and weight=10 as parameters to the ESB

using the SOAP protocol.

5. The ESB received the call and then looked-up for the

destination web service that encapsulates function

AnalyzeParticlesSpeed().

6. Once the corresponding REST-based web service was

found, the ESB converted the rover’s call message from

SOAP into REST and forwarded it to web service.

7. The REST-based web service received the call, it

directly processed it, and execute function

AnalyzeParticlesSpeed() on its hosting server.

8. Upon finishing processing, the web service returned

the result velocity=11.332 to the ESB in REST format.

9. The ESB converted the REST message into a SOAP

message readable by the rover, and forwarded it to it.

10. The rover received the results and displayed it on the

screen.

Furthermore, other use cases were executed at

runtime while the system was running and in all

situations the rover succeeded to adapt itself

according to the new changes in the environment.

The different uses case scenarios are given below:

1. Integrating a new web service

2. Removing an existing web service

3. Updating web service functionalities

4. Failing an existing web service

5. Fixing a faulty web service

6. Deriving new web services from existing ones

7. Validation of the Proposed

Architecture

The SOA approach proved to be very effective in all

the different executed scenarios. The interoperability

of the system allows the collaboration between

various entities regardless of their underlying

technologies and implementation details. The

scalability of the system allows the support team to

easily and quickly alter and add functionalities to the

rover without having access to it. The maintainability

International Journal of Science & Emerging Technologies (IJSET), E-ISSN: 2048-8688, Vol. 3, No. 2, February, 2012
http://ojs.excelingtech.co.uk/index.php/IJSET/article/download/426/239

of the system allows fixing or replacing out of order

services while the system is running with no or

minimal operation interruption. The reusability of the

system allows building new web services or deriving

new web services from existing ones with the least

amount of development time and cost.

8. Conclusions & Future Work

This paper presented a novel architecture for building

space exploration robotic rover systems using

distributed software components called web services.

The proposed architecture consists of three tiers: the

client tier corresponding to the rover vehicle that

requires executing some functionalities; the server

tier corresponding to the web services that delivers

the rover’ functionalities; and the ESB acting as a

middleware that coordinates and shields the

complexity and heterogeneity of communication

among the different entities of the system.

Experiments conducted showed a robust, reliable,

scalable, interoperable, reusable, and a maintainable

architecture that can adapt itself to the unforeseen

circumstances and cope with the various obstacles

that might be encountered during real exploration

missions.

As future work, the proposed SOA architecture is

to be secured by adding to it an encryption layer

which would protect and conceal the exchange of

messages and data communication among the various

entities of the system.

Acknowledgments

This research was funded by the Lebanese

Association for Computational Sciences (LACSC),

Beirut, Lebanon under the ―Service Oriented

Architecture Robotics Research Project –

SOARRP2012‖.

References

[1] Amel Zerigui, Xiang WU, Zong-Quan Deng, ―A

Survey of Rover Control Systems‖, International

Journal of Computer Sciences and Engineering

Systems, Vol. 1, No. 4, pp. 105-109, 2007.

[2] Roland Siegwart, Illah Nourbakhsh, Davide

Scaramuzza, Introduction to Autonomous

Mobile Robots, 2
nd

 edition, The MIT Press,

2011.

[3] Anthony Young, Lunar and Planetary Rovers:

The Wheels of Apollo and the Quest for Mars,

Springer, 2006.

[4] Lorenzo Flueckiger, Vinh To, Hans Utz,

―Service Oriented Robotic Architecture

supporting a Lunar Analog Test‖, In

Proceedings of the 9th Symposium on Artificial

Intelligence, Robotics, and Automation in

Space, 2008.

[5] Hoque, F., e-Enterprise: Business Models,

Architecture, and Components, Cambridge

University Press, 2000.

[6] Web Services Glossary, W3C,

http://www.w3.org/TR/2004/NOTE-ws-gloss-

20040211/ , retrieved 2011-04-22.

[7] Zimmerli, B., Business Benefits of SOA,

University of Applied Science of Northwestern

Switzerland, School of Business, 2009.

[8] Offermann, P., Hoffmann, M., Bub, U.,

―Benefits of SOA: Evaluation of an implemented

scenario against alternative architectures‖,

Enterprise Distributed Object Computing

Conference Workshops, EDOCW, 2009.

[9] Campbell, D., ―Delivering the business benefits

of SOA‖, Computer Sciences Corporation White

Paper, 2005.

[10] Mars Exploration Rover, NASA Facts, National

Aeronautics and Space Administration, Jet

Propulsion Laboratory, California Institute of

Technology Pasadena, 2004.

[11] Sarah Loff, ―NASA's Space Exploration Vehicle

(SEV)‖, NASA Official: Rocky Lind, 2011.

[12] Svitak, Amy, Cost of NASA's Next Mars Rover

Hits Nearly $2.5 Billion,

http://www.space.com/10762-nasa-mars-rover-

overbudget.html, retrieved 2011-02-03.

[13] Wesley T. Huntress JR., Mikhail Ya Marov,

Soviet Robots in the Solar System: Mission

Technologies and Discoveries, Springer, 2011.

[14] NASA Jet Propulsion Laboratory, Mars

Exploration Rovers,

http://marsrover.nasa.gov/home/index.html,

retrieved 2011-12-16.

[15] Erl, T, Service-Oriented Architecture:

Concepts, Technology, and Design, Prentice

Hall, 2005.

[16] Josuttis, N., SOA in Practice, O’Reilly, 2007.

[17] Fielding, Roy T.; Taylor, Richard N,

―Principled Design of the Modern Web

Architecture‖, ACM Transactions on Internet

Technology (TOIT), Vol. 2, No. 2, pp. 115–

150, 2002.

[18] David Chappell, ―Enterprise Service Bus‖,

O’Reilly, 2004.

[19] R. P. Bonasso, D. Kortenkamp, D. P. Miller,

and M. G. Slack, ―Experiences with an

Architecture for Intelligent Reactive Agents‖, In

Proceedings of the International Joint

Conference on Artificial Intelligence, 1995.

[20] B. Gerkey, R. Vaughan, K. Sty, A. Howard, G.

Sukhatme, and M. Mataric, ―Most valuable

player: A robot device server for distributed

control‖, In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots

and Systems (IROS), 2001.

http://en.wikipedia.org/wiki/World_Wide_Web_Consortium
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/

International Journal of Science & Emerging Technologies (IJSET), E-ISSN: 2048-8688, Vol. 3, No. 2, February, 2012
http://ojs.excelingtech.co.uk/index.php/IJSET/article/download/426/239

[21] Department of Defense, JAUS Strategic Plan,

version 1.5, 2005.

[22] JTADG, Joint Technical Architecture, Version

3.1, Technical report, Joint Technical

Architecture Development Group, 2003.

[23] C. Côté, D. Létourneau, F. Michaud, J.M.

Valin, Y. Brosseau, C. Raïevasky, M. Lemay,

and V. Tran, ―Code Reusability Tools for

Programming Mobile Robots‖, In Proceedings

IEEE/RJS International Conference on

Intelligent Robots and Systems, pp 1820-1825,

2004.

[24] E. Colon, H. Sahli, and Y. Baudoin, ―CoRoBa,

a multi mobile robot control and simulation

framework‖, International Journal of Advanced

Robotic Systems, Vol. 3, No. 1, pp. 073-078,

2006.

[25] iRobot, Mobility Integration Software User's

Guide, 2002.

[26] M. Quiqley, B. Gerkey, K. Conley, J. Faust, T.

Foote, J. Leibs, E. Berger, R. Wheeler, and A.

Ng., ―ROS: an open-source Robot Operating

System‖, In International Conference on

Robotics and Automation, Workshop on Open-

Source Robotics, 2009.

[27] Bin Wu, Bing-Hai Zhou, Li-Feng Xi, ―Remote

multi-robot monitoring and control system

based on MMS and web services‖, Industrial

Robot: An International Journal, Vol. 34, No. 3,

pp. 225-239, 2007.

[28] David Booth, Hugo Haas, Francis McCabe,

Web Services Architecture, W3C Working

Group, W3C, 2004, http://www.w3.org/TR/ws-

arch/

[29] Cherry S., ―Robots‖, IEEE Spectrum, 2007.

[30] Alexander, Ian, and Beus-Dukic, Ljerka,

Discovering Requirements: How to Specify

Products and Services, Wiley, 2009.

