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Abstract

We present a framework that allows an observer
to determine occluded portions of a structure
by finding the maximum-likelihood estimate of
those occluded portions consistent with visible
image evidence and a consistency model. Doing
this requires determining which portions of the
structure are occluded in the first place. Since
each process relies on the other, we determine
a solution to both problems in tandem. We ex-
tend our framework to determine confidence of
one’s assessment of which portions of an ob-
served structure are occluded, and the estimate of
that occluded structure, by determining the sensi-
tivity of one’s assessment to potential new obser-
vations. We further extend our framework to de-
termine a robotic action whose execution would
allow a new observation that would maximally
increase one’s confidence.

1 Introduction

[T]here are known knowns; there are things we
know we know. We also know there are known
unknowns; that is to say we know there are some
things we do not know. But there are also un-
known unknowns–the ones we don’t know we
don’t know.

Donald Rumsfeld (12 February 2002)

Additional images and videos as well as all code and
datasets are available at http://engineering.purdue.
edu/˜qobi/arxiv2012c.

People exhibit the uncanny ability to see the unseeable.
The colloquial exhortation You have eyes in the back of
your head! expresses the assessment that someone is mak-
ing correct judgements as if they could see what is be-
hind them, but obviously cannot. People regularly deter-
mine the properties of occluded portions of objects from
observations of visible portions of those objects using gen-
eral world knowledge about the consistency of object prop-
erties. Psychologists have demonstrated that the world
knowledge that can influence perception can be high level,
abstract, and symbolic, and not just related to low-level
image properties such as object class, shape, color, mo-
tion, and texture. For example, Freyd et al. (1988) showed
that physical forces, such as gravity, and whether such
forces are in equilibrium, due to support and attachment
relations, influences visual perception of object location in
adults. Baillargeon (1986, 1987) showed that knowledge
of substantiality, the fact that solid objects cannot interpen-
etrate, influences visual object perception in young infants.
Streri and Spelke (1988) showed that knowledge about ob-
ject rigidity influences both visual and haptic perception of
those objects in young infants. Moreover, such influence
is cross modal: observable haptic perception influences vi-
sual perception of unobservable properties and observable
visual perception influences haptic perception of unobserv-
able properties. Wynn (1998) showed that material prop-
erties of objects, such as whether they are countable or
mass substances, along with abstract properties, such as
the number of countable objects and the quantity of mass
substances, and how they are transferred between contain-
ers, influences visual perception in young infants. Similar
results exist for many physical properties such as relative
mass, momentum, etc. These results demonstrate that peo-
ple can easily integrate information from multiple sources
together with world knowledge to see the unseeable.
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People so regularly invoke the ability to see the unseeable
that we often don’t realize that we do so. If you observe
a person entering the front door of a house and later see
them appear from behind the house without seeing them
exit a door, you easily see the unseeable and conclude that
there must be an unseen door to the house. But if one later
opens the garage door or the curtain covering a large living-
room bay window in the front of the house so that you see
through the house and see the back door you no longer need
to invoke the ability to see the unseeable. A more subtle
question then arises: when must you invoke the ability to
see the unseeable? In other words how can you see unsee-
ability, the inability to see? This question becomes particu-
larly thorny since, as we will see, it can involve a chicken-
and-egg problem: seeing the unseen can require seeing the
unseeability of the unseen and seeing the unseeability of
the unseen can require seeing the unseen.

The ability to see unseeability and to see the unseeable can
further dramatically influence human behavior. We regu-
larly and unconsciously move our heads and use our hands
to open containers to render seeable what was previously
unseeable. To realize that we need to do so in the first
place, we must first see the unseeability of what we can’t
see. Then we must determine how to best use our collective
perceptual, motor, and reasoning affordances to remedy the
perceptual deficiency.

We present a general computational framework for seeing
unseeability to see the unseeable. We formulate and eval-
uate a particular instantiation of this general framework
in the context of a restricted domain, namely LINCOLN
LOGS, a children’s assembly toy where one constructs as-
semblies from a small inventory of component logs. The
two relevant aspects of this domain that facilitate its use
for investigating our general computational framework are
(a) that LINCOLN LOG assemblies suffer from massive oc-
clusion and (b) that a simple but rich expression of world
knowledge, in the form of constraints on valid assemblies,
can mitigate the effects of such occlusion.

While LINCOLN LOGS are a children’s toy, this domain
is far from a toy when it comes to computer vision. The
task of structure estimation, determining, from an image,
the correct combination of component logs used to con-
struct an assembly and how they are combined, is well be-
yond state-of-the-art methods in computer vision. We have
not found any general-purpose image segmentation meth-
ods that can determine the image boundaries of the visi-
ble component logs (see Fig. 1a). Moreover, the uniform
matte color and texture of the logs, together with the fact
that logs are placed in close proximity and the fact that
the majority of any structure is in self shadow means ev-
ery edge-detection method that we have tried fails to find
the boundaries between adjacent logs (see Fig. 1b). This
is even before one considers occlusion, which only makes
matters worse.

(a) (b)

Figure 1: (a) A state-of-the-art segmentation method, Nor-
malized Cut (Shi and Malik, 2000), does not segment out
the log parts. (b) A state-of-the-art edge detector, GPB
(Maire et al., 2008), does not reliably find edges separat-
ing adjacent logs or log ends.

Not only is the computer-vision problem for this domain
immensely difficult, the computational problem is rich as
well. We present methods for seeing the unseeable (in sec-
tion 2) and seeing unseeability (in section 3) based on pre-
cise computation of the maximum-likelihood structure es-
timate conditioned on world knowledge that marginalizes
over image evidence. We further present (in section 4) a
rational basis for determining confidence in one’s struc-
ture estimate despite unseeability based on precise com-
putation of the amount of evidence needed to override a
uniform prior on the unseeable. And we finally present (in
section 5) an active-vision decision-making process for de-
termining rational behavior in the presence of unseeabil-
ity based on precise computation of which of several avail-
able perception-enhancing actions one should take to max-
imally improve the confidence in one’s structure estimate.
We offer experimental evaluation of each of these methods
in section 7, compare against related work in section 8, and
conclude with a discussion of potential extensions in sec-
tion 9.

2 Structure Estimation

In previous work Siddharth et al. (2011) presented an ap-
proach for using a visual language model for improving
recognition accuracy on compositional visual structures in
a generative visual domain, over the raw recognition rate
of the part detectors—by analogy to the way speech rec-
ognizers use a human language model to improve recog-
nition accuracy on utterances in a generative linguistic do-
main, over the raw recognition rate of the phoneme detec-
tors. In this approach, a complex object is constructed out
of a collection of parts taken from a small part inventory.
A language model, in the form of a stochastic constraint-
satisfaction problem (CSP) (Lauriere, 1978), characterizes
the constrained way object parts can combine to yield a
whole object and significantly improves the recognition
rate of the whole structure over the infinitesimally small
recognition rate that would result from unconstrained appli-
cation of the unreliable part detectors. Unlike the speech-
recognition domain, where (except for coarticulation) there
is acoustic evidence for all phonemes, in the visual domain
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Figure 2: The random variables Z+
q and Z−q that corre-

spond to log ends for grid position q and the random vari-
ables Zu

q , Zv
q , and Zw

q that correspond to log segments.

there may be components with no image evidence due to
occlusion. A novel aspect of applying a language model in
the visual domain instead of the linguistic domain is that
the language model can additionally help in recovering oc-
cluded information.

This approach was demonstrated in the domain of LIN-
COLN LOGS, a children’s assembly toy with a small part in-
ventory, namely, 1-notch, 2-notch, and 3-notch logs, whose
CAD models are provided to the system. In this domain,
a grammatical LINCOLN LOG structure contains logs that
are parallel to the work surface and organized on alternat-
ing layers oriented in orthogonal directions. Logs on each
layer are mutually parallel with even spacing, thereby im-
posing a symbolic grid on the LINCOLN LOG assembly.
The symbolic grid positions q = (i, j, k) refer to points
along log medial axes at notch centers. One can determine
the camera-relative pose of this symbolic grid without any
knowledge of the assembly structure by fitting the pose to
the two predominant directions of image edges that result
from the projection of the logs to the image plane.

Each grid position may be either unoccupied, denoted by ∅,
or occupied with the nth notch, counting from zero, of a
log with m notches, denoted by (m,n). Estimating the
structure of an assembly reduces to determining the oc-
cupancy at each grid position, one of the seven possibili-
ties: ∅, (1, 0), (2, 0), (2, 1), (3, 0), (3, 1), and (3, 2). This
is done by constructing a discrete random variable Zq for
each grid position q that ranges over these seven possibili-
ties, mutually constraining these random variables together
with other random variables that characterize the image ev-
idence for the component logs using the language model,
and finding a maximum-likelihood consistent estimate to
the random variables Zq .

Several forms of image evidence are considered for the
component logs. LINCOLN LOGS, being cylindrical parts,
generate two predominant image (log) features: ellipses
that result from the perspective projection of circular log
ends and line segments that result from the perspective pro-
jection of cylindrical walls. The former are referred to as
log ends and the latter as log segments. Log ends can po-

tentially appear only at a fixed distance on either side of a
grid position. Boolean random variables Z+

q and Z−q are
constructed to encode the presence or absence of a log end
at such positions. There are two kinds of log segments:
those corresponding to the portion of a log between two
notches and those corresponding to the portions of a log
end that extend in front of or behind the two most extreme
notches. Given this, three Boolean random variables Zu

q ,
Zv
q , and Zw

q are constructed for each grid position q that
encode the presence or absence of such log segments for
the bottoms of logs, i.e. log segments between a grid posi-
tion and the adjacent grid position below. Fig. 2 depicts the
log ends and log segments that correspond to a given grid
position as described above.

A stochastic CSP encodes the validity of an assembly. Im-
age evidence imposes priors on the random variables Z+

q ,
Z−q , Zu

q , Zv
q , and Zw

q and structure estimation is performed
by finding a maximum-likelihood solution to this stochastic
CSP. When formulating the constraints, the adjacent grid
position below q is referred to as b(q) and the adjacent grid
position further from the origin along the direction of the
grid lines for the layer of q is referred to as n(q). Ignoring
boundary conditions at the perimeter of the grid, the gram-
mar of LINCOLN LOGS can be formulated as the following
constraints:

a) 2-notch logs occupy two adjacent grid points
b) 3-notch logs occupy three adjacent grid points
c) 1- and 2-notch logs must be supported at all notches
d) 3-notch logs must be supported in at least 2 notches
e) log ends must be at the ends of logs
f) short log segments indicate occupancy above or below
g) long log segments indicate presence of a multi-notch

log above or below

Boundary conditions are handled by stipulating that the
grid positions beyond the perimeter are unoccupied, en-
forcing the support requirement (constraints c–d) only at
layers above the lowest layer, and enforcing log-segment
constraints (f–g) for the layer above the top of the struc-
ture. Structure estimation is performed by first establishing
priors over the random variables Z+

q , Z−q , Zu
q , Zv

q , and Zw
q

that correspond to log features using image evidence and
establishing a uniform prior over the random variables Zq

that correspond to the latent structure. This induces a
probability distribution over the joint support of these ran-
dom variables. The random variables that correspond to
log features are marginalized and the resulting marginal
distribution is conditioned on the language model Φ. Fi-
nally, the assignment to the collection, Z, of random vari-
ables Zq , that maximizes this conditional marginal proba-
bility is computed.

argmax
Z

∑
Z+,Z−,Zu,Zv,Zw

Φ[Z,Z+,Z−,Zu,Zv,Zw]

Pr
(
Z,Z+,Z−,Zu,Zv,Zw

)
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While, in principle, this method can determine the con-
ditional probability distribution over consistent structures
given image evidence, doing so is combinatorially in-
tractable. The conditional marginalization process is made
tractable by pruning assignments to the random variables
that violate the grammar Φ using arc consistency (Mack-
worth, 1977). The maximization process is made tractable
by using a branch-and-bound algorithm (Land and Doig,
1960) that maintains upper and lower bounds on the max-
imal conditional marginal probability. Thus instead of de-
termining the distribution over structures, this yields a sin-
gle most-likely consistent structure given the image evi-
dence, along with its probability.

3 Visibility Estimation

Image evidence for the presence or absence of each log
feature is obtained independently. Each log feature cor-
responds to a unique local image property when projected
to the image plane under the known camera-relative pose.
A prior over the random variable associated with a specific
log feature can be determined with a detector that is fo-
cused on the expected location and shape of that feature in
the image given the projection. This assumes that the spe-
cific log feature is visible in the image, and not occluded
by portions of the structure between the camera and that
log feature. When the log feature f , a member of the set
{+,−, u, v, w} of the five feature classes defined above, at
a position q, is not visible, the prior can be taken as uni-
form, allowing the constraints in the grammar to fill in un-
known information. We represent the visibility of a feature
by the boolean variable V f

q .

Pr(Z f
q = true) ∝ image evidence when V f

q = true
Pr(Z f

q = false) = 1
2 otherwise

In order to do so, it is necessary to know which log fea-
tures are visible and which are occluded so that image evi-
dence is only applied to construct a prior on visible log fea-
tures and a uniform prior is constructed for occluded log
features. Thus, in Rumsfeld’s terminology, one needs to
know the known unknowns in order to determine the un-
knowns. This creates a chicken-and-egg problem. To de-
termine whether a particular log feature is visible, one must
know the composition of the structure between that feature
and the camera and, to determine the structure composition,
one must know which log features are visible. While earlier
Siddharth et al. (2011) demonstrated successful automatic
determination of log occupancy at occluded log positions,
we could only do so given manual annotation of log-feature
visibility. In other words, while earlier we were able to au-
tomatically infer Zq , it required manual annotation of V f

q .
Further, determining V f

q required knowledge of Zq .

We extend this prior work to automatically determine vis-
ibility of log features in tandem with log occupancy. Our

novel contribution in this section is mutual automatic de-
termination of both Zq and V f

q . We solve the chicken-
and-egg problem inherent in doing so with an iterative
algorithm reminiscent of expectation maximization (EM)
(Baum, 1972; Baum et al., 1970; Dempster et al., 1977).
We start with an initial estimate of the visibility of each
log feature. We then apply the structure estimation proce-
dure developed in Siddharth et al. (2011) to estimate the
occupancy of each symbolic grid position. We then use
the estimated structure to recompute a new estimate of log-
feature visibility, and iterate this process until a fixpoint
is reached. There are two crucial components of this pro-
cess: determining the initial log-feature visibility estimate
and reestimating log-feature visibility from an estimate of
structure.

We determine the initial log-feature visibility estimate (i.e.
V f
q ) by assuming that the structure is a rectangular prism

whose top face and two camera-facing front faces are com-
pletely visible. In this initial estimate, log features on
these three faces are visible and log features elsewhere
are not. We use the camera-relative pose of the symbolic
grid (which can be determined without any knowledge of
the structure) together with maximal extent of each of the
three symbolic grid axes (i.e., three small integers which
are currently specified manually) to determine the visible
faces. This is done as follows. We determine the image
positions for four corners of the base of this rectangular
prism: the origin (0, 0, 0) of the symbolic grid, the two
extreme points (imax, 0, 0) and (0, 0, kmax) of the two hor-
izontal axes in the symbolic grid, and the symbolic grid
point (imax, 0, kmax). We select the bottommost three such
image positions as they correspond to the endpoints of the
lower edges of the two frontal faces. It is possible, however,
that one of these faces is (nearly) parallel to the camera axis
and thus invisible. We determine that this is the case when
the angle subtended by the two lower edges previously de-
termined is less than 110◦ and discard the face whose lower
edge has minimal image width.

We update the log-feature visibility estimate from a struc-
ture estimate by rendering the structure in the context of the
known camera-relative pose of the symbolic grid. When
rendering the structure, we approximate each log as the
bounding cylinder of its CAD model. We characterize each
log feature with a fixed number of points, equally spaced
around circular log ends or along linear log segments and
trace a ray from each such point’s 3D position to the cam-
era center, asking whether that ray intersects some bound-
ing cylinder for a log in the estimated structure. We take
a log feature to be occluded when 60% or more of such
rays intersect logs in the estimated structure. Our method
is largely insensitive to the particular value of this thresh-
old. It only must be sufficiently low to label log features
as invisible when they actually are invisible. Structure es-
timation is not adversely affected by a moderate number of
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log features that are incorrectly labeled as invisible when
they are actually visible because it can use the grammar to
determine occupancy of grid positions that correspond to
such log features.

We can perform such rendering efficiently by rasterization.
For each log feature, we begin with an empty bitmap. We
iterate over each log feature and each occupied grid posi-
tion that lies between that log feature and the camera center
and render a projection of the bounding cylinder of the log
at that grid position on the bitmap. This renders all possible
occluders for each log feature allowing one to determine
visibility by counting the rendered pixels at points in the
bitmap that correspond to the projected rays.

The above process might not reach a fixpoint and instead
may enter a finite loop of pairs of visibility and structure
estimates. In practice, this process either reaches a fixpoint
within three to four iterations or enters a loop of length
two within three to four iterations, making loop detection
straightforward. When a loop is detected, we select the
structure in the loop with the highest probability estimate.

4 Structure-Estimation Confidence

While the structure estimation process presented by Sid-
dharth et al. (2011) can determine the occupancy of a small
number of grid positions when only a single set of occu-
pancy values is consistent with the grammar and the im-
age evidence, it is not clairvoyant; it cannot determine the
structure of an assembly when a large part of that assem-
bly is occluded and many different possible structures are
consistent with the image evidence. In this case, we again
have an issue of unknowns vs. known unknowns: how can
one determine one’s confidence in one’s structure estima-
tion. If we could determine the conditional distribution
over consistent structures given image evidence, P (Z|I),
we could take the entropy of this distribution, H(Z|I), as a
measure of confidence. However, as discussed previously,
it is intractable to compute this distribution and further in-
tractable to compute its entropy. Thus we adopt an alter-
nate means of measuring confidence in the result of the
structure-estimation process.

Given a visibility estimate, V f
q , a structure estimate, Z,

and the priors on the random variables associated with
log features computed with image evidence, Zf

q , one can
marginalize over the random variables associated with vis-
ible log features and compute the maximum-likelihood as-
signment to the random variables associated with occluded
log features, Ẑ f , that is consistent with a given structure
estimate.

Ẑ f = argmax
Z f

q

V f
q =false

∑
Z f

q

V f
q =true

Φ[Z,Z+,Z−,Zu,Zv,Zw]

Pr(Z,Z+,Z−,Zu,Zv,Zw)

One can then ask the following question: what is the max-
imal amount δ that one can shift the probability mass on
the random variables associated with occluded log features
away from the uniform prior, reassigning that shifted prob-
ability mass to the opposite element of the support of that
random variable from the above maximum-likelihood as-
signment, such that structure estimation yields the same
estimated structure. Or in simpler terms,

How much hypothetical evidence of occluded log
features is needed to cause me to change my mind
away from the estimate derived from a uniform
prior on such occluded features?

We compute this δ using a modified structure estimation
step

argmax
Z

∑
Z+,Z−,Zu,Zv,Zw

Φ[Z,Z+,Z−,Zu,Zv,Zw]

Pr(Z,Z+,Z−,Zu,Zv Zw) = Z

when, for all q f where V f
q = false

Pr(Z f
q = ¬Ẑ f

q ) = 1
2 + δ

Pr(Z f
q = Ẑ f

q ) = 1
2 − δ

We call such a δ the estimation tolerance. Then, for any es-
timated structure, one can make a confidence judgment by
comparing the estimation tolerance to an overall tolerance
threshold δ∗. One wishes to select a value for δ∗ that appro-
priately trades off false positives and false negatives in such
confidence judgements: we want to minimize the cases that
result in a positive confidence assessment for an incorrect
structure estimate and also minimize the cases that result
in a negative confidence assessment for a correct structure
estimate. Because the methods we present in the next sec-
tion can gather additional evidence in light of negative con-
fidence assessment in structure estimation, the former are
more hazardous than the latter because the former preclude
gathering such additional evidence and lead to an ultimate
incorrect structure estimate while the latter simply incur the
cost of such additional evidence gathering. Because of this
asymmetry, our method is largely insensitive to the partic-
ular value of δ∗ so long as it is sufficiently high to not yield
excessive false positives. We have determined empirically
that setting δ∗ = 0.2 yields a good tradeoff: only 3/105
false positives and 7/105 false negatives on our corpus.

One can determine the estimation tolerance by binary
search for the smallest value of δ ∈ (0, 0.5) that results
in a different estimated structure. However, this process is
time consuming. But we don’t actually need the value of δ;
we only need to determine whether δ < δ∗. One can do
this by simply asking whether the estimated structure, Z,
changes when the probabilities are shifted by δ∗

Pr(Z f
q = ¬Ẑ f

q ) = 1
2 + δ∗

Pr(Z f
q = Ẑ f

q ) = 1
2 − δ

∗
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Figure 3: Our novel robotic environment for performing
structure estimation. Note that the head can rotate 180◦

about the workspace, under computer control, to image the
assembly from different viewpoints, and the robot arm can
disassemble the structure on the workspace.

This involves only a single new structure estimation. One
can make this process even faster by initializing the branch-
and-bound structure-estimation algorithm with the proba-
bility of the original structure estimate given the modified
distributions for the random variables associated with oc-
cluded log features.

5 Gathering Additional Evidence to
Improve Structure Estimation

Structure estimation can be made more reliable by inte-
grating multiple sources of image evidence. We perform
structure estimation in a novel robotic environment, illus-
trated in Fig. 3, that facilities automatically gathering mul-
tiple sources of image evidence as needed. The structures
are assembled in the robot workspace. This workspace is
imaged by a camera mounted on a pendulum arm that can
rotate 180◦ about the workspace, under computer control,
to image the assembly from different viewpoints. This can
be used to view portions of the assembly that would oth-
erwise be occluded. Moreover, a robotic arm can disas-
semble a structure on the workspace. This can be used to
reveal the lower layers of a structure that would otherwise
be occluded by higher layers. These methods can further
be combined. Generally speaking, we seek a method for
constraining a single estimate of an initial structure with
multiple log features derived from different viewpoints and
different stages of disassembly.

We can do this as follows. Let Z be a collection of random
variables Zq associated with log occupancy for a given ini-
tial structure. Given multiple views i = 1, . . . , n with col-
lections Zi of random variables Z+

q , Z−q , Zu
q , Zv

q , and Zw
q

associated with the image evidence for log features from
those views, we can compute

argmax
Z

∑
Z1...Zn

Φ[Z,Z1]∧...∧[Z,Zn]

Pr (Z,Z1, . . . ,Zn)

Only two issues arise in doing this. First, we do not know
the relative camera angles of the different views. Even
though one can estimate the camera-relative pose of the
structure independently for each view, this does not yield
the registration between these views. There are only four
possible symbolic orientations of the structure in each view
so for n views we need only consider 4n−1 possible com-
binations of such symbolic orientations. We can search for
the combination that yields the maximum-likelihood struc-
ture estimate. We do this search greedily, incrementally
adding views to the structure-estimation process and reg-
istering each added view by searching for the best among
the four possible registrations. Second, in the case of par-
tial disassembly, we need to handle the fact that the par-
tially disassembled structure is a proper subset of the initial
structure. We do this simply by omitting random variables
associated with log features for logs that are known to have
been removed in the disassembly process and not instan-
tiating constraints that mention such omitted random vari-
ables.

We can combine the techniques from section 4 with these
techniques to yield an active-vision (Bajcsy, 1988) ap-
proach to producing a confident and correct structure es-
timate. One can perform structure estimation on an initial
image and assess one’s confidence in that estimate. If one
is not confident, one can plan a new observation, entailing
either a new viewpoint, a partial-disassembly operation, or
a combination of the two and repeat this process until one is
sufficiently confident in the estimated structure. Only one
issue arises in doing this. One must plan the new observa-
tion. We do so by asking the following question:

Which of the available actions maximally in-
creases confidence?

Like before, if we could determine the conditional distri-
bution over consistent structures given image evidence, we
could compute the decrease in entropy that each available
action would yield and select the action that maximally de-
creases entropy. But again, it is intractable to compute this
distribution and further intractable to compute its entropy.
Thus we adopt an alternate means of measuring increase in
confidence.

Given visibility estimates V f
iq for view i of the n current

views along with a structure estimate Z constructed from
those views, and priors on the random variables associated
with log features computed with image evidence for each
of these views Zf

iq , one can marginalize over the random
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variables associated with visible log features, V f
iq = true,

and compute the maximum-likelihood assignment Ẑ f to
the random variables associated with occluded log features
that is consistent with a given structure estimate:

Ẑ f = argmax
Z f

iq

V f
iq =false

∑
Z f

iq

V f
iq =true

Φ[Z,Z1]∧...∧Φ[Z,Zn]

Pr(Z,Z1, . . . ,Zn)

We can further determine those log features that are invis-
ible in all current views but visible in a new view j that
would result from a hypothetical action under considera-
tion. One can then ask the following question: what is the
maximal amount δ′ that one can shift the probability mass
on these random variables away from the uniform prior,
reassigning that shifted probability mass to the opposite
element of the support of that random variable from the
above maximum-likelihood assignment, such that structure
estimation when adding the new view yields the same esti-
mated structure. Or in simpler terms,

For a given hypothetical action, how much hy-
pothetical evidence of log features that are oc-
cluded in all current views is needed in an imag-
ined view resulting from that action where those
log features are visible to cause me to change my
mind away from the estimate derived from a uni-
form prior on such features?

For an action that yields a new view, j, we compute δ′ as
follows

argmax
Z

∑
Z1...Zn Zj

Φ[Z,Z1]∧...∧Φ[Z,Zn]∧Φ[Z,Zj ]

Pr(Z,Z1, . . . ,Zn,Zj) = Z

when:
Pr(Z f

iq = ¬Ẑ f
iq) = 1

2 + δ

Pr(Z f
iq = Ẑ f

iq) = 1
2 − δ

for all q f where V f
jq = true ∧ (∀i)V f

iq = false. Be-
cause we wish to select the action with the smallest δ′, we
need its actual value. Thus we perform binary search to
find δ′ for each hypothetical action and select the one with
the lowest δ′. This nominally requires sufficiently deep bi-
nary search to compute δ′ to arbitrary precision. One can
make this process even faster by performing binary search
on all hypothetical actions simultaneously and terminating
when there is only one hypothetical action lower than the
branch point. This requires that binary search be only suffi-
ciently deep to discriminate between the available actions.

6 Natural language

An interesting feature of our framework is that it allows
for elegant inclusion of information from other modalities.

Natural language, for example, can be integrated into our
approach to draw additional evidence for structure estima-
tion from utterances describing the structure in question. A
sentence, or set of sentences, describing a structure need
not specify the structure unambiguously. Much like addi-
tional images from novel viewpoints can provide supple-
mentary but partial evidence for structure estimation, sen-
tences providing incomplete descriptions of structural fea-
tures also can provide supplementary but partial evidence
for structure estimation.

We have investigated this possibility via a small domain-
specific language for describing some common features
present in assembly toys. This language has: two nouns
(window and door), four spatial relations (left of, right of,
perpendicular to, and coplanar to), and one conjunction
(and). Sentences constructed from these words can easily
be parsed into logical formulas.

Analogous to how a CSP encodes the validity of an as-
sembly through a set of constraints, such logical formulas
derived from sentential descriptions can also constrain the
structures to be considered. The words in our vocabulary
impose the following constraints:

1. A door is composed of a rectangular vertical coplanar
set of grid points. All grid points inside the door must
be unoccupied. All grid points on the door posts must
be log ends facing away from the door. All grid points
on the mantel must be occupied by the same log. The
threshold must be unoccupied and at the bottom of the
structure.

2. A window is similar to a door whose threshold is oc-
cupied by the same log and is not constrained to be at
the bottom of the structure.

3. Perpendicular to constrains the grid points of two en-
tities to lie on perpendicular axes. Coplanar to is anal-
ogous.

4. Right of or left of constrain the relative coordinates of
the grid points of two entities

We compute a joint multiple-view and natural-language
structure estimate as follows. Let Z be a collection of ran-
dom variablesZq associated with log occupancy for a given
initial structure. Given a set of constraints Ψ derived from
natural language and multiple views i = 1, . . . , n with col-
lections Zi of random variables Z+

q , Z−q , Zu
q , Zv

q , and Zw
q

associated with the image evidence for log features from
those views, we compute

argmax
Z

∑
Z1...Zn

Φ[Z,Z1]∧...∧[Z,Zn]∧Ψ[Z]

Pr (Z,Z1, . . . ,Zn)

An example of how such an extension improves results is
shown in Fig. 7.
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Figure 4: Error histograms for manual visibility annotation
(in blue) and automatic visibility estimation (in red). 100%
of the structures estimated had 12 or fewer errors. Note that
the latter performs as well as the former.

7 Results

We gathered a corpus of 5 different images of each of 32
different structures, each from a different viewpoint, for a
total of 160 images. The structures were carefully designed
so that proper subset relations exist among various pairs of
the 32 distinct structures. Our video supplement demon-
strates additional examples of our method.

We first evaluated automatic visibility estimation. We per-
formed combined visibility and structure estimation on 105
of the 160 images and compared the maximum-likelihood
structure estimate to that produced by Siddharth et al.
(2011) using manual annotation of visibility. For each im-
age, we compare the maximum-likelihood structure esti-
mate to ground truth and compute the number of errors.
We do this as follows. Each 1-, 2-, or 3-notch log in ei-
ther the ground truth or estimated structure that is replaced
with a different, possibly empty, collection of logs in the
alternate structure counts as a single error (which may be a
deletion, addition, or substitution). Further, each collection
of r adjacent logs with the same medial axis in the ground
truth that is replaced with a different collection of s logs in
the estimated structure counts as min(r, s) errors. We then
compute an error histogram of the number of images with
fewer than t errors. Fig. 4 shows the error histograms for
manual visibility annotation and automatic visibility esti-
mation. Note that the latter performs as well as the former.
Thus our automatic visibility-estimation process appears to
be reliable.

We then evaluated structure-estimation confidence assess-
ment. We computed the false-positive rate and false-
negative rate of our confidence-assessment procedure over

Figure 5: Error histograms for the baseline structure esti-
mation (in dark blue) and each of the active-vision process
(partial disassembly in light blue, multiple views in yellow,
and the combination of these in red).

the entire corpus of 105 images, where a false positive oc-
curs with a positive confidence assessment for an incorrect
structure estimate and a false negative occurs with nega-
tive confidence assessment for a correct structure estimate.
This resulted in only 3 false positives and 7 false negatives
on our corpus.

We then evaluated the active-vision process for performing
actions to improve structure-estimation confidence on 90
images from our corpus. So as not to render this evaluation
dependent on the mechanical reliability of our robot which
is tangential to the current paper and focus the evaluation
on the computational method, we use the fact that our cor-
pus contains multiple views of each structure from differ-
ent viewpoints to simulate moving the robot head to gather
new views and the fact our corpus contains pairs of struc-
tures in a proper-subset relation to simulate using the robot
to perform partial disassembly. We first evaluated simu-
lated robot-head motion to gather new views. For each im-
age, we took the other images of the same structure from
different viewpoints as potential actions and perform our
active-vision process. We next evaluated simulated robotic
disassembly. For each image, we took images of proper-
subset structures taken from the same viewpoint as poten-
tial actions and perform our active-vision process. We fi-
nally evaluated simulated combined robot-head motion and
robotic disassembly. For each image, we took all images of
proper-subset structures taken from any viewpoint as po-
tential actions and perform our active-vision process. For
each of these, we computed the error histogram at the ter-
mination of the active-vision process. Fig. 5 shows the er-
ror histograms for each of the active-vision processes to-
gether with the error histogram for baseline structure es-
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timation from a single view on this subset of 90 images.
Fig. 6 shows a rendering of the final estimated structure
when performing each of the four processes from Fig. 5 on
the same initial image. Log color indicates correct (green)
or incorrect (red) estimation of log occupancies. Note that
our active-vision processes consistently reduce estimation
error.

We demonstrate natural-language integration in Fig. 7. In
Fig. 7(a), structure estimation is performed on a single
view, which due to occlusion, is unable to determine the
correct structure. A second view is acquired. Note that this
second view suffers from far more occlusion than the first
view and by itself produces a far worse structure (Fig. 7b)
than the first view alone. The information available in these
two views is integrated and jointly produces a better struc-
ture estimate than either view by itself (Fig. 7c). However,
this estimate is still imperfect. To demonstrate the utility
and power of integrating visual and linguistic information,
we intentionally discard the second view and construct a
structure estimate from just a single image together with a
single linguistic description, each of which is ambiguous
taken in isolation. The user provides the sentence window
left of and perpendicular to door. Note this this sentence
does not fully describe the assembly. It does not specify
the number of windows and doors, their absolute positions,
or the contents of the rest of the structure. Yet this sen-
tence together with the single image from the first view is
sufficient to correctly estimate the structure (Fig. 7d).

8 Related work

Our work shares three overall objectives with prior work:
estimating 3D structure from 2D images, determining when
there is occlusion, and active vision. However, our work
explores each of these issues from a novel perspective.

Prior work on structure estimation (e.g. (Changsoo et al.,
2009; Gupta et al., 2010; Saxena et al., 2007)) focuses on
surface estimation, recovering a 3D surface from 2D im-
ages. In contrast, our work focuses on recovering the con-
stituent structure of an assembly: what parts are used to
make the assembly and how such parts are combined. Ex-
isting state-of-the-art surface reconstruction methods (e.g.
Make3D (Saxena et al., 2008)) are unable to determine sur-
face structure of the kinds of LINCOLN LOG assemblies
considered here. Ever if such surface estimates were suc-
cessful, such estimates alone are insufficient to determine
the constituent structure.

Prior work on occlusion determination (e.g. (Gupta et al.,
2010; Hoiem et al., 2011)) focuses on finding occlusion
boundaries: the 2D image boundaries of occluded regions.
In contrast, our work focuses on determining occluded
parts in the constituent structure. We see no easy way to
determine occluded parts from occlusion boundaries be-
cause such boundaries alone are insufficient to determine

even the number of occluded parts, let alone their types and
positions in a 3D structure.

Prior work on active vision (e.g. (Maver and Bajcsy, 1993))
focuses on integrating multiple views into surface estima-
tion and selecting new viewpoints to facilitate such in the
presence of occlusion. In contrast, our work focuses on de-
termining the confidence of constituent structure estimates
and choosing an action with maximal anticipated increase
in confidence. We consider not only viewpoint changes
but also robotic disassembly to view object interiors. Also
note that the confidence estimates used in our approach to
active vision are mediated by the visual language model.
We might not need to perform active vision to observe all
occluded structure as it might be possible to infer part of
the occluded structure. Prior work selects a new viewpoint
to render occluded structure visible. We instead select an
action to maximally increase confidence. Such an action
might actually not attempt to view an occluded portion of
the structure but rather increase confidence in a visible por-
tion of the structure in a way that when mediated by the
language model ultimately yields a maximal increase in the
confidence assessment of a portion of the structure that re-
mains occluded even with the action taken.

9 Conclusion

We have presented a general framework for (a) seeing
the unseeable, (b) seeing unseeability, (c) a rational basis
for determining confidence in what one sees, and (d) an
active-vision decision-making process for determining ra-
tional behavior in the presence of unseeability. We instanti-
ated and evaluated our general framework in the LINCOLN
LOG domain and found it to be effective. This framework
has many potential extensions. One can construct random
variables to represent uncertain evidence in other modal-
ities such as language and speech and one can augment
the stochastic CSP to mutually constraint these variables
together with the current random variables that represent
image evidence and latent structure so that a latent utter-
ance describes a latent structure. One can then use the
same maximum-likelihood estimation techniques to pro-
duce the maximum-likelihood utterance consistent with a
structure marginalizing over image evidence. This consti-
tutes producing an utterance that describes a visual obser-
vation. One can use the same maximum-likelihood esti-
mation techniques to produce the maximum-likelihood se-
quence of robotic actions consistent with building a struc-
ture marginalizing over utterance evidence or alternatively
image evidence. This would constitute building a struc-
ture by understanding a linguistic description of that struc-
ture or by copying a visually observed assembly. One
can combine evidence from an uncertain visual perception
of a structure with evidence from an uncertain linguistic
description of that structure to reduce the uncertainty of
structure estimation. This would constitute using vision
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(a) (b) (c) (d)

Figure 6: Rendered structure for the following four methods: (a) Baseline structure estimation. (b) Partial disassembly. (c) Multiple
views. (d) Combined partial disassembly and multiple views.

(a) (b) (c) (d)

Figure 7: An example of joint structure estimation from image evidence and natural language: (a) Baseline structure estimation from
one view. (b) Structure estimation from a second view alone. (c) Structure estimation using information from both view from the
viewpoint of the first view. (d) Structure estimation integrating the image evidence from the first view with the sentence window left of
and perpendicular to door.

and language to mutually disambiguate each other. One
could augment one’s collection of potential actions to in-
clude speech acts as well as robotic-manipulation actions
and search for the action that best improves confidence.
This would constitute choosing between asking someone
to provide you information and seeking that information
yourself. One could determine what another agent can see
from what that agent says. Likewise one could decide what
to say so that another agent can see what is unseeable to
that agent yet is seeable to you. Overall, this can lead to a
rational basis for cooperative agent behavior and a theory
of the perception-cognition-action loop which incorporates
mutual belief, goals, and desires where agents seek to assist
each other by seeing what their peers cannot, describing
such sight, and inferring what their peers can and cannot
see. We are currently beginning to investigate potential ex-
tensions to our general approach and hope to present them
in the future.
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