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Planning Optimal Paths for Multiple Robots on Graphs

Jingjin Yu Steven M. LaValle

Abstract—In this paper, we study the problem of optimal plan time optimal, collision-free paths for several dozefis
multi-robot path planning (MPP) on graphs. We propose two  robots on graphs with hundreds of vertices within minutes.
multifiow based integer linear programming (ILP) models As a universal subroutine, collision-free path planning fo

that computes minimum last arrival time and minimum total ltiol bots find licati in task . b
distance solutions for our MPP formulation, respectively. The multiple robots finds applications in tasks spanning asgem

resulting algorithms from these ILP models are complete and [7], [15], evacuation [18], formation control [2], [16], 12,

guaranteed to yield true optimal solutions. In addition, ou  [23], [27], localization [6], object transportation [14]1.9],

flexible framework can easily accommodate other variants of search and rescue [9], and so on. Given its importance, path

the MPP problem. Focusing on the time optimal algorithm, — 50ning for multi-robot systems has remained as a subject

we evaluate its performance, both as a stand alone algorithm . . .

and as a generic heuristic for quickly solving large problem of mtense_study for many decades. Qwen the vast size of the

instances. Computational results confirm the effectivenesof —available literature, we will only mention related reséaon

our method. discrete MPP and refer the readers to [3], [10], [11] and the

references therein for a more comprehensive review of the

I. INTRODUCTION subject.

Planning collision-free paths for multiple robots, an Basi  From an algorithmic perspective, discrete MPP is a natural
stated yet difficult problem, has been actively studied foextension of the single robot path planning problem: One
decades [4], [12], [13], [20], [22], [24], [25], [28], [29]32]. may combine the state spaces of all robots and treat the prob-
The hardness of the problem mainly resides with the couplidgm as a planning problem for a single robot. algorithm
between the robots’ paths which leads to an enormous stat@n then be used to compute distance optimal solutions to
space and branching factor. As such, algorithms that ate bahese problems. However, since naivé gcales poorly due
complete and (distance) optimal, such as thig¢8 algorithm to the curse of dimensionality, additional heuristic metho
and its variants, do not perform well on tightly coupledwere proposed to improve the computational performance.
problems beyond very small ones. On the other hand, fast®ne of the first such heuristics, Local Repait A RA*)
algorithms for finding the paths generally do not provid¢32], plans robot paths simultaneously and performs local
optimality guarantees: Sifting through all feasible pagitss repairs when conflicts arise. Focusing on fixing the (logglit
for optimal ones greatly increases the search space, whighortcomings of LRA, Windowed Hierarchical Cooperative
often makes these problems intractable. A* (WHCA*) [22] proposed to use a space-time window

In this paper, we investigate the problem of planningo allow more choices for resolving local conflicts while
optimal paths for multiple robots with individual goals. &h limiting the search space size at the same time. For addition
robots have identical but non-negligible sizes, are codftne heuristics exploring various specific local and global diees,
some arbitrary connected graph, and are capable of moviage [13], [20], [25].
from one vertex to an adjacent vertex in one time step. Formulations of MPP problems with optimality guarantee
Collision between robots is not allowed, which may occuhave also been studied. The most general optimality crite-
when two robots attempt to move of the same vertex dgion is the total path length traveled by all robots, which
move along the same edge in different directions. For this consistent with the distance heuristic used by the A
general setting, we propose a network flow based integaelgorithm. Since A is the best possible among all such
linear programming (ILP) model for finding robot paths thatlgorithms for finding distance optimal solutions, one dtiou
are time optimal or distance optimal. Our time optimalitynot expect complete and true optimal algorithms to exist tha
criterion seeks to minimize the number of time steps untperform much better than the basi¢ Algorithm in all cases.
the last robot reaches its goal; distance optimality seeks Nevertheless, this does not prevent algorithms from guickl
minimize the total distance (each edge has unit distancedlving certain instances optimally. One such algorithat th
traveled by the robots. Taking advantage of the state of thig also complete, MG§ is presented in [24] (note that the
art ILP solvers (Gurobi is used in this paper), our method cagrid world formulation in [24], which allows diagonal moves

i o _ _ in general, even in the presence of diagonal obstacles, does
e e e o age e not caty over 1o general graphs or geometrc models n
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N x N-generalization of the 15-puzzle is NP-hard [17]. Here, A natural criterion for measuring path set optimality is the

time optimality equals distance optimality, which is noeth number of time steps until the last robot reaches its goas Th

case in general. is sometimes called themakespanwhich can be computed
The main contributions of this paper are twofold. Firstfrom {k™"} for a feasible path seé® as

adapting the constructions from [31], we develop ILP models min

for solving time optimal and distance optimal MPP problems. Tp = 1’2@’;& :

The result!ng a_Igorlthms are showr_l to be complete. Ol5&n0ther frequently used objective is distance optimality,
approach is quite general and easily accommodates Otr\‘/@ﬁich counts the total number of edges traveled by the

formulations of the MPP problems, including that of [24].r bots. We point out that distance optimality and time

Second, WE,} provide thorough computational evaluations g timality cannot be satisfied at the same time in general: In
our models’ performance: With a state-of-the-art ILP solve Fig.[, let the dotted straight line have lengtand the dotted
our models are capable of solving large problem instances. | 55 length 5t from some large even numberThe four
with few dozens of robots fairly fast. Such a result is in som lid line segments are edges with unit length. Assuming tha
sense the best we can hope for becau_se the bes_t POSS Ct5"ot 1, 2 are to move from the locations marked with solid
algorithm for such problems cannot run in polynomial UM&ircles to the locations marked with gray dotted circlesndi
unlessP = NP. As an added bonus, we also show that th%ptimal paths take.Bt + 2 time steps with a total distance of

(time optim_al) algorithm works well as a subroutine for2.5t+4; distance optimal paths take 23 time steps with
quickly solving MPP problems (non-optlmalﬂ/) a total distance of 2+ 4
The rest of the paper is organized as follows. We provide '

problem definitions in Sectionlll, along with a motivating
example. Sectiof Il relates MPP to multiflow, establishing
the equivalence between the two problems. In Sedfidn IV,
ILP models are provided for obtaining time optimal and
distance optimal solutions, respectively. Seclion V isaded ) o ) o o
to briefly discussing basic properties of thfepuzzle, which ;'r?]'ultléneog'sq;em?pttr']?;aslg'usnd distance optimality cannot beised
is an interesting benchmark problem on its own. We evaluate

the computational performance of our algorithm in Section |n this paper, we work with graphs on which the only

[VTland conclude in Section MlI.

Il. MULTI-ROBOT PATH PLANNING ON GRAPHS
A. Problem Formulation

possible collisions are meet or head-on collisions. This
assumption is a mild one: For example, a 2D grid with
unit edge lengths is such a graph for robots with radii of
no more thany/2/4. As a last note, our formulation allows

Let G= (V,E) be a connected, undirected, simple grapmultiple robots to move at the same time step as long as no
(i.e., no multi-edges), in whickl = {vi} is its vertex set and collision occurs. On a graph, this allows robots on any cycle

E = {(vi,vj)} is its edge set. LeR={ry,...,rn} be a set

of robots that move with unit speeds along the edge&,of

with initial and goal locations oG given by the injective
mapsx, X : R—V, respectively. The s is effectively an
index set. Apathor scheduled patis a mapp; : Z+ —V, in

which Z* := NU{0}. Intuitively, the domains of the paths

are discrete time steps. A paphis feasiblefor a single robot
ri if it satisfies the following properties: 1p;(0) = X (rj);
2. For eachi, there exists a smalle{"" € Z* such that
for all k> k™", pi(k) = xg(ri); 3. For any 0< k < kMn,
(pi(k), pi(k+1)) € E or pij(k) = pi(k+1). We say that two
pathspi, pj are incollision if there existsk € Z* such that
pi (k) = p; (k) (collision on a vertex, omeej or (p;(k), pi(k+
1)) = (pj(k+1), pj(k)) (collision on an edge, dread-on. If
p(k) = p(k+ 1), then the robot stays at vertgxk) between
the time stepk andk+ 1.

Problem 1 (MPP on Graphs) Given (G,R,x,xg), find a
set of paths P= {p1,...,pn} such that gs are feasible
paths for respective robots’s and no two paths jpp; are
in collision.

1The software (written in Java, including a programming riiaee),
as well as all examples used in our evaluation, are availadtle
http://msl.cs. uiuc. edu/ ~j yul8/ pe/ mapp. htm .

to “rotate”.
B. A Motivating Example
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>4 >4
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Fig. 2. a) A 9-puzzle problem. b) The desired goal state.

To better characterize what we solve in this paper, look
at the example in Fid.J2. We call this problem a 9-puzzle,
which is a variant of the 15-puzzle [17]; it is also related to
the “H” example in [12]. Given the robots as numbered in
Fig.[2(a), we want to get them into thetate (configuration
is also used in this paper to refer to the same, depending
on the context) given in Fid.]2(b) (such a configuration is
often referred to asow major ordering). Coming up with
a feasible solution for such a highly constrained problem is
non-trivial, let alone solving it with an optimality guartee.
The time optimal algorithm we present in this paper solves
this problem instance under 0.1 second. The solution is\give
in Fig.[3. The time optimality of the solution is evident: It
takes at least four steps for robot 9 to reach its goal.
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Fig. 3. A 4-step solution from our algorithm. The directedjesl show the
moving direction of the robots at the tail of the edges. Again, maximum flow and minimum cost flow problems can
be posed for a multiflow setup.

IIl. M ULTI-ROBOT PATH PLANNING AND MULTIFLOW B. Equivalence between MPP and multiflow

A. Network Flow Viewing robots as commodities, we may connect MPP
In this subsection we provide a summary of the networlind multiflow. This relationship (Theorefd 2) was stated

flow problem formulation pertinent to the introduction ofin [31] without full proof, which is provided here for

our algorithm. For surveys on network flow, see [1], [5].completeness. To make the presentation clear, we use as an

A network 4" = (G,cy,¢2,S) consists of a directed graph example the simple graghin Fig.[4(a), with initial locations

G = (V,E) with ¢1,¢; : E — Z* as the maps defining the {s*} i=1,2 and goal locationgs},i = 1,2. An instance of

capacities and costs on edges, respectively, &adV as Problenﬂ is given byG, {ry,r2},% 11 =S, Xg 1§ ).

the set of sources and sinks. We &t St US", with S We now convert this problem to a network flow problem,

denoting the set of sources agd denoting the set of sink 4" = (G, ¢y,c,StUS). Given the graptG and a natural

vertices. For a vertex €V, let 5*(v) (resp.6~(v)) denote number T, we create Z + 1 copies of vertices frons, with

the set of edges dB going to (resp. leavingy. A feasible

(static)S*,S -flow on this network /" is a mapf : E — Z* P
that satisfies edge capacity constraints, . ugt)' U(t:rl)
VecE, f(e)<c(e), 1) — \ /
the flow conservation constraints at non terminal vertices, e o /. _“\
wev\s ) f(e Z f(e 2 51 e o)’ o1 $1)
ecd*(v) eco- () (b)

and the flow conservation constraints at terminal vertices, _ ) » )
Fig. 4. a) A simpleG. b) A gadget for splitting an undirected edge through

Z Z f(e Z f(e time steps.

vesSt ecd” et (v (3) indices 01,1',..., as shown in Fid.I5. For each vertex G,
= Z Z f(e Z f(e denote these copieg0) = v(0),v(1),v(1),v(2),...,v(T)".
ves™ ecdt(v ecd™ For each edgdu,v) € G and time stepg,t+1, 0<t <

The quantityF (f) is called thevalue of the flow f. The T, add the gadget shown in Figl 4(b) betwes(t)’, v(t)
classic (single-commodityaximum flowproblem asks the @nd u(t+1),v(t +1) (arrows from the gadget are omitted
question: Given a network?’, what is the maximuni(f) ~ from Fig. [ since they are small). For the gadget, we
that can be pushed through the network? Tirimum cost aSSign unit capacity to all edges, unit cost to the horidonta
maximum flowproblem further requires the flow to havemiddle edge, and zero cost to the other four edges. This
minimum total cost among all maximum flows. That is, wedadget ensures that two robots cannot travel in opposite
want to find a flow among all maximum flows that a|sod|rect|ons on an edge in the same time step. To finish the

minimizes the quantity construction of Fig[, for each vertexc G, we add one
edge between every two successive copies (i.e., we add
> cae)-f(e). (4)  the edgeqv(0),v(1)), (v(1),v(1)),...,(W(T),v(T)"). These
ecE

correspond to the green and blue edges in Eig. 5. For all

The above formulation concerns a single commoditygreen edges, we assign them unit capacity and cost; for all
which corresponds to all robots being inter exchangeablblue edges, we assign them unit capacity and zero cost.
For MPP, the robots are not inter exchangeable and must
be treated as different commoditiddulti-commodity flow
or multiflow captures the problem of flowing different types
of commodities through a network. Instead of having a
single flow functionf, we have a flow functiorf; for each
commodityi. The constraintd {1)[12), andl(3) become

Vi,Ve€ E, Zf ) < ci(e), (5)

Vi,VveV\S Z fi(e Z fi(e (6) 0 1 1’ 2 2’

ecdt(v) eco—(v) Fig. 5. The time-expanded network & 2).




include this constraint in the ILP model, we may simply add
the gadget structure in Fif] 6 to the time-expanded network
construction. The inclusion of the gadget will allow a siag|
diagonal crossing; the extra paths do not create an issae sin
no two robots can go through a single vertex at the same time
step (enforced by the blue dotted edges in Eig. 5).

Fig.[8 (with the exception of edges ande,, which are not
relevant until Section 1V), called &ime-expanded network
[1], is the desired5'. For the sef5, we may simply leiSt =
{v(0):ve{s"}} andS = {v(T) :ve {s }}. The network
A= (G,c1,¢2,STUS) is now complete; we have reduced
Problent to an integer maximum multiflow problem.or
with each robot fronR as a single type of commaodity.

v, (t)'e o v, (t+1)

Theorem 2 Given an instance of Problefnl 1 with input o.(t)'® \}\. /e, (t+1)

parameter§ G, R, X, Xg), there is a bijection between its so- > _
lutions (with maximum number of time steps up to T) and the vy(t)'e 4 e v (t+D)

integer maximum multiflow solutions of flow value n on the v,(t) ® ® v, (t+1)

time-expanded networks” constructed from(G, R, x|, Xg)

with T time steps. Fig. 6. A gadget for allowing diagonal crossings.

PROOF. (Injectivity) Assume thatP = {py,...,pn} is a For a second example, in some MPP formulations, head-on

solution to an instance of Prob|dﬂ'] 1. For eq];['and every collisions may be allowed. For instance, two adjacent CPUs
time stept =0,..., T, we mark the copy ofy(t) and p;(t) may exchange two units of data in parallel but no single CPU
(recall thatp;(t) corresponds to a vertex @) at time step May hold multiple units of data. To allow this, we simply do
t in the time-expanded grap®. Connecting these vertices Not use the gadget from Figl 4(b) when the time-expanded
of G’ sequentially (there is only one way to do this) yieldgetwork is constructed.
one unit of flow fi on 4" (after connecting to appropriate
source and sink vertices i8",S~, which is trivial). It is
straightforward to see that if two paths,p; are not in . . . )
collision, then the corresponding flows, f; on .#” are ~_ Given the time-expanded network” = (G',c1,¢5,S" U
vertex disjoint paths and therefore do not violate any flow )- it is straightforward to create an integer linear program-
constraint. Since any two paths R are not in collision, Ming (ILP) model with different optimality objectives. We
the corresponding set of flowsfy, ..., f} is feasible and investigate two objectives in this section: Time optimebr
maximal on.4". makespan (the time when the last robot reaches its goal) and
(Surjectivity) Assume that{fy,....f,} is a integer distance optimality (the total distance traveled by allats.
maximum multiflow on the network#” with |fi| = 1.
First we establish that any pair of flows, f; are vertex
disjoint. To see this, we note th&t f; (both are unit flows)
cannot share the same source or sink vertices due to

unit capacity structure of#” enforced by the blue edges." " ; X )
If f,,f; share some non-sink vertexat time stept > 0, pair of corresponding goal and start verticesSrfrom the

both flows then must pass through the same blue edge (s%@l to the start. For convenience, dgnotg these loopback
Fig.[@(b)) withv being either the head or tail vertex, which®d9€S as(eu.....en} (e.g., edgese,&; in Fig. [§). These
is not possible. Thusf;, ; are vertex disjoint on/”. We edges/have unit capacity and zero cost. Next. for each edge
can readily convert each flov to a corresponding paty; € € G, createn binary variablesq ..., j corresponding

(after deleting extra source vertex, sink vertices, vegim 1 the flow through that edge, one for each robpf.=1 if

the middle of the gadgets, and tail vertices of blue edgeé‘f‘fjl only if rqbotri passes thfo“ghi in G '!'he variables
with the guarantee that n@;,p; will colide due to a X.jSMust satisfy two edge capacity constraints and one flow

meet collision. By construction of¢”, the gadget we used CONservation constraint,
ensures that a head-on collision is also impossible. The set . n
{p1,....pn} is then a solution to Problef 1. O vej G, ;Xu <1 (®)

Vi<i,j<n,i#j, Xij =0,

VveG and 1<i<n, Z x| = Z Xij.  (9)

€ecot(v) geco(v)

IV. ALGORITHMIC SOLUTIONS FOROPTIMAL
MULTI-ROBOT PATH PLANNING

A. Time optimality

Time optimal solutions to Problef 1 can be obtained
Mg’ng a maximum multiflow formulation. As a first step, we
Introduce a set o loopbackedges tdG' by connecting each

C. Accommodating other formulations

Our network flow based approach for encoding the MPP
problem is fairly general; we illustrate this using two ex-
amples. The first is the grid world formulation from [24], The objective function is
which allows (single) diagonal crossings. That is, for ioexd
vi,...,V4 on the four corners of a square cell with v3 and max Z Xii-
V,V4 diagonal to each other, respectively, it is possible for a 1<izn
robot to move fromv; to vz provided thatvs is unoccupied For each fixedT, the solution to the above ILP problem
and thev,-v4 diagonal is not used in the same time step. Tequalingn means that a feasible solution to Problei 1 is

(10)



found. We are to find the minimal that yields such a 9'9'9 9‘9'9 0‘9'9
feasible solution. To do this, we start with being the @—©<® @<®—®) ®>©)>6)
maximum over all robots the shortest possible path length

for each robot, ignoring all other robots. We then build the Fig. 7. A 3-step procedure for exchanging robots 8 and 9.
ILP model for thisT and test for a feasible solution. If

the model is not feasible, we increafeand try again. The
yag PrROOF We show that any state of a 9-puzzle can be moved

first feasibleT is the optimalT. The robots’ paths can be . to the state sh in Fidl 2(b). F at bot 5
extracted based on the proof of Theolgm 2. The algorithm jgto e state snown In ig] 2(b). From any state, robo

complete: Since the problem is discrete, there is only aefinita" be easily moved into the center of the grid. We are left

number of possible states. Therefore, for some sufficient _tﬁhO}[N ';Patt_we iﬁn ex%hat\ngiht_wq robots_b?n Jhe tbo:ger
large T, there must either be a feasible solution or we ca 'thout aflecting other Toba's. ThiS 1S possible due fo he

pronounce that none can exist. Calling this algorithaMPP procedure illustrated in Figl 7. -

(time optimal MPP), we have shown the following. Larger puzzles can be solved recursively: We may first

Proposition 3 Algorithm ToMpPP is complete and returns a solve the top and right side of the puzzle and then the left
ver smaller square puzzle. For a 16-puzzle, Eig. 8 outlines

solution with minimum makespan to ProblEm 1 if one exists. o . .
the procedure, consisting of six main steps:

B. Distance optimality 1) Move robots 1 and 2 to their respective goal locations,

Distance optimality objective can be encoded using min- _ ©one robot at a time (first 1, then 2).
imum cost maximum multiflow. Constraint§](8) and (9) 2) Move robots 3 and 4 (first 3, then 4) to the lower left

remain; to force a maximum flow, le§; = 1 for 1<i <n. corner (top-middle figure in Fid.] 8).
The objective is given by ' 3) Move robots 3 and 4 to their goal location together via
counterclockwise rotation along the cycle indicated in

min > C2(€)) - Xi,j- (11) the top-middle figure in Fid.]8.
g€G,j>n, 1<i<n 4) Move robot 8 to its goal location.

The value given by{d1), when feasible, is the total distance 2) Move robots 12 and then 16 to the lower left corner.
of all robots’ paths. Lef; denote the optimal produced by 6) Rotate robots 12 and 16 to their goal locations.
TompP(if one exists), then a distance optimal solution exists

in a time-expanded network wifii = nT; steps. Calling this A @@ DA As
algorithm DompP (distance optimal MPP), we have g L
4 it
Proposition 4 Algorithm DomPP is complete and returns a O >
solution with minimum total path length to Problém 1 if one DNO)LG DG D GG
exists. é p -
Due to the large number of steps needed in the time- - i ©
12)——2= 16

expanded network, OMPP, in its current form, is not very
fast in solving problems with many robots. Therefore, our
evaluation in this paper focuses oroMpPP which, on the
other hand, is fairly fast in solving some very difficult It is straightforward to see that larger puzzles can be
problems. MPP, however, still proves useful in providing solved similarly. We have thus outlined the essential steps
time optimal and near distance optimal solutions using th@®r proving PropositioriJ6 below; a more generic proof can

Fig. 8. A solution scheme for solving top/left sides of thepi&zle.

outputs of TOMPP, as shown in Subsectién VIIC. be written using generators of permutation groups, which
) we omit here due to its length. Propositioh 6 implies that,
V. PROPERTIES OF THEN"-PUZZLE for n > 3, all instances ofn?-puzzles are solvable. The

The example problem from Fidl 2 easily extends to amonstructive proofs of Propositidd 5 ahH 6 lead to recursive
nx n grid; we call this class of problems tmé-puzzle. Such algorithms for solving any?-puzzle (clearly, the solution is
problems are highly coupled: No robot can move without atot time/distance optimal in general).
least three other robots moving at the same time. At each
step, all robots that move must move synchronously in thieroposition 6 All states of an fpuzzle, n> 3 are con-
same direction (per cycle) on one or more disjoint cyclesected via legal moves.

(see e.g., Fid.13). To put into perspective the computakiona
results om?2-puzzles that follow, we make a characterizatiorCorollary 7 All instances of the fipuzzle, n> 3, are solv-
of the state structure of the-puzzle forn > 3 (the case of able.

n=2is trivial). By Propositior B, since all states ofn-puzzle forn> 3

Proposition 5 All states of the 9-puzzle are connected viare connected via legal moves, the state space of searahing a
legal moves. n?-puzzle equals? factorial. For 16-puzzle and 25-puzzle,



16! > 10%3,25! > 10?°. Large state space is one of the threesteps, it seems natural to also try bidirectional searcliciwh
reasons that make finding a time optimal solution to theuts down the total number states stored in memory. To
n?-puzzle a difficult problem. The second difficulty comescomplete such a search, one side of the bidirectional search
from the large branching factor at each step. For a 9-puzzigenerally must reach a depth of 3, which requires storing
there are 13 unique cycles, yielding a branching factor afbout 3x 10’ states, each taking 64 bits of memory. This
26 (clockwise and counterclockwise rotations). For the 1@urns out to be too much for a 4GB JavaVM: A bidirectional
puzzle, the branching factor is around 500. This numbesearch ran out of memory after about 10 minutes in general.
balloons to over 1Hfor the 25-puzzle. This suggests that oriTo be sure, we also coded part of the same search algorithm
typical commodity personal computer hardware (assumirig C++ with STL. Reaching a search depth 3 on one side
a 1GHz processor), a baisc breadth first search algorithimkes about a minute with a memory footprint of 1.5GB,
will not be able to go beyond depth of 3 for the 16-puzzlesuggesting a minimum running time of more than one
and depth 2 for the 25-puzzle in reasonable amount of timeinute.

Moreover, enumerating these cycles is a non-trivial tasie T
third difficulty is the lack of obvious heuristics: Manhatta
distances of robots to their respective goals prove to be a
bad one. For example, given the initial configuration as that
in Fig. [A(a), the first step in the optimal plan from Fig. 3
gets robots 1, 3, 4, 6, 8, 9 closer to their respective goals
while moving robots 2, 7 farther. On the other hand, rotating
counterclockwise along the outer cycle takes robots 1,3, 4,

6, 8, 9 closer and only moves robot 7 farther. However, if we For the 25-puzzle, without a good heuristic, bidirectional
instead take this latter first step, the optimal plan aftedsa search cannot explore a tiny fraction of the fully connected
will take 5 more steps. state space with about 30states. On the other handoWiPp
again consistently solves the 25-puzzle, with an average
computational time under 2 hours over 100 randomly created
Our experimentation in this paper focuses aPP with  problems. Fig[1® shows one of the solved instances with
the main goal being evaluating the comparative efficiency 7-step solution given in Fig_]l0. Note that 7 steps is

of our approach rather than pushing for best computationgbviously the least possible since it takes at least 7 steps
performance. As such, our implementation is Java based and

did not directly take advantage of multi-core technologg W
note that, Gurobi, the ILP solver used in our implementation
can engage multiple cores automatically for hard problems.
We ran our code on an Intel Q6600 quad-core machine with
a 4GB JavaVM.

Fig. 9. An instance of a 25-puzzle problem solved bymMPP.

V1. SOLUTIONS AND EVALUATION

A. Time optimal solution to%puzzles

The first experiment we performed was evaluating the
efficiency of the algorithm ®mpp for finding time optimal
solutions to then?-puzzle forn = 3,4,5, and 6. We ran
Algorithm TompP on 100 randomly generateaf-puzzle

instances fom = 3,4,5. For the 9-puzzle, computation onts move robot 10 to its desired goal. We also briefly tested
all instances completed successfully with an average comtovpp on the 36-puzzle. While we had some success
putation time of 1.36 seconds per instance. To compafRre, Tompp generally does not seem to solve a randomly
the computational result, we implemented a (optimal) BFgenerated instance of the 36-puzzle within 24 hours, which

algorithm. The BFS algorithm is heavily optimized: Forpas 37 x 10%! states and a branching factor of well ovef10
example, cycles of the grid are precomputed and hard coded

to save computation time. Since the state space of the B- Time optimal solutions for grid graphs
puzzle is small, the BFS algorithm is capable of optimally For problems in which not all graph vertices are occupied
solving the same set of 9-puzzle instances with an averagg robots, OMPP can handle much larger instances. In a
computation time of about 0.89 seconds per instance.  first set of tests on this subject, a grid size of205 is used
Once we move to the 16-puzzle, the power of general ILRith varying percentage of obstacles (simulated by removed
solvers becomes evidentompPP solved all 100 randomly vertices) and robots for evaluating the effect of theseofact
generated 16-puzzle instances with an average computatiirtypical set up is illustrated in Fig. 11. The computation
time of 18.9 seconds. On the other hand, the BFS algorithtime (in seconds) and the average number of optimal time
with a priority queue that worked for the 9-puzzle ran ousteps (in parenthesis) are listed in Table I. The numbers
of memory after a few minutes. As our result shows that aare averages over 10 randomly created instances. For each
optimal solution for the 16-puzzle generally requires 6etimrun, a maximum of 1000 seconds is allowed (such limits,

Fig. 10. An optimal 7-step solution (from left to right, thésp to bottom)
to the 25-puzzle problem from Fifi] 9, byompPP in about 30 minutes.
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but much simpler than that with 30% obstacles.

C. Distance optimality of time optimal solutions

Although DomPP is not yet practical for computing dis-
tance optimal solutions alone, it can be used for computing
distance optimal solutions for a fixed time expansion length
T. That is, we first find a time optimal solution, which
gives us the smallest time-expanded network containing
feasible solutions. We then rundmppP on this network.
For evaluation, we used the same>205 instances with 5-
25% obstacles and 10-30 robotsd®pPpP could not finish
most instances with 30% obstacles or 40+ robots in 200
seconds, the cutoff time). We used the first 5 of every

Fig. 11. A 20x 15 grid with 20% verices removed (modeling obstacles)lo instances for each obstacle/robot combination. For each

and 30 start/goal pairs. The start locations are markedstithgs beginning  fixed number of obstacles, instances of different numbers
with “S” and the goal locations are marked with strings baegig with “G”.

of robots are combined. The result is listed in Tablé Il
We allow DompPP to run for at most 200 seconds per

Lﬁa—;: ST Tobots instance. Note that unlikedvprp, even when @DMPP does
% 0bs — 20 30 20 50 not find the optimal solution, it generally produces feasibl
5 25(22) 73(24) 16.7/(27) 23.6(26)  70.7(27)  splution which sometimes is a near optimal solution. These
ig éggég Zs:ggg ig:éggg gg:gg% iz;.és((zzg)) are included in the result. T|me entire§ are average time,
20 2.4(24) 7.7(27) 21.9(28) 39.3(26) 173(27) seconds, used by @vpp. “Disjoint” entries are the average
25 2.7(27)  8.1(28) 24.8(30) 68.0(28) 288 path lengths for all robots if we were to plan each shortest
30 3.0(31) 29(34)° 23444° 806(29° N/A path ingoring other robots. The distance optimal solutions

must produce a length no less than this. The next two
lines are average path lengths fronoMpPP and DomPP

somewhat arbitrary, were chosen to manage the expeciggorithms. As we can see OMPP alone yields path length
running time of the entire set of experiments; our coms0%, than optimal; @MPP, on the other hand, provided
plete algorithms should terminate eventually). Entrieghwi time Optima| solutions that are near distance Optmqa]]_%
superscript numbers suggest the 10 runs did not all finigfifference). For more than half of the instancespnPP
within the given time. The superscript numbers represefoduced true distance optimal solutions. In facoNPP

the successful runs on which the statistics were computgskoduced true distance optimal solutions for 42 out of the
“N/A" means no instance finished within the allowed time 45 instances with 5-15% obstacles.

From the results, we observe that the percentage of randomly

placed obstacles does not affect the problem difficulty, as TABLE 1l

measured by computational time, in a monotonic way. On = 10 %105bs =0 5

one hand, more obstacles remove more vertices from theime 263 733 2.7 570 316

grid, making the problem size smaller, reducing the com- Disjoint  12.20 11.75 12.03 12.80 12.84

putational difficulty. On the other hand, as more obstacles POMPP _ 12.20 11.75 12.05 12.85 12.92
MPP  16.47 16.60 17.59 18.83 19.33

are introduced, the reduced connectivity of the graph makes o

the problem harder. In particular, the Q5 grid setting

suddenly becomes a hard problem with 30% obstacles. Tle Using TOMPP as a generic heuristic

difficulty is also reflected by the average number of steps in |, the |ast experiment, we exploitoMPP as ageneric
an optimal solution: Longer time means reduced availilithe ristic for locally resolving path conflicts for large ptem

of alternative paths. instances. Bygeneric we mean that the heuristic is not coded
to any specific robot/grid setting. In our algorithm, paths

TABLE II
Number of robots are first planned for single robots (ignoring other robots).
% obs ;
10 20 30 40 50 Afterwards, the robots are moved along these paths until no
20  14.4(41) 34.6(45) 43.7(44) 875(47) 409° further progress can be made. We then detect on the graph

where progress are stalled and resolve the conflict locally
In a second test on even larger problemsx32 grids using TomPP. For every conflict, we apply dMPP to its

with 20% obstacles were tried. For between 10 and 50 robateighborhood of distance 2. The above steps are repeated
with an increment of 10, 10 random instances each weretil a solution is found. The process can be made into a
created; each instance is allowed to run a maximum of hadbmplete algorithm by allowing the local neighborhood to
an hour. The statistics, similarly composed as that in THble grow gradually. For evaluation, we ran the above algorithm
is listed in Tablel. We observe that the problem is similaon a 32« 32 grid with 20% obstacles. We allow each instance
in difficulty to the 20x 15 grid setting with 25% obstacles, to run a maximum of 30 seconds. The results, each as an



average over 100 runs for a certain number of robots, arg)
listed in Table[1Y (keep in mind that our implementation i

TABLE IV
Number of Robots [7]
25 50 75 100 125 150
Running time (s) 0.04 0.15 0.32 1.37 3.85 10.3
Fully solved 100 100 100 100 98 95 (8]
% goals reached 100.0 100.0 100.0 100.0 99.4 98.6

9]
is Java based, which should see a speedup if implemented

in C++). While we did not make side-by-side comparison
with the literature due to (seemingly small but) importanfll]
differences in problem formulation, the computation time a
completion rate of our algorithm appear comparable with thé2]
state of the art results from other authors.
VIlI. CONCLUSION AND OPEN PROBLEMS o3

In this paper, we introduced a multiflow based ILP algo[14]
rithm for planning optimal, collision-free paths for mylie
robots on graphs. We provided complete ILP algorithms for
solving time optimal and distance optimal MPP problemé.15
Our experiments confirmed thablpp is a feasible method [16)
for planning time optimal paths for tightly coupled problem
as well as for larger problems with more free space. Moreim
over, we showed that@vpPpP can serve as a good heuristic
for solving large problem instances efficiently. For dist@an [18]
optimality, DomPP, when combined with ©MPP, produces
time optimal solutions that are often near distance optimahg]

Many interesting open problems on optimal MPP remain;
we mention two here. First, the ILP algorithms have ample
room for performance improvements. On one hand, the IL
model can be make leaner. For example, it is clear that some
X,j’s will never be set to 1; these should be removed fror?1]
the model. On the other hand, our application of the Gurobi
solver is fairly rudimentary - we simply feed the model to thg,z)
solver as a mixed integer program (MIP) without specifying
any other optimization options. Therefore, it would not bé?3]
surprising that tuning the parameters of the solver greatly
improves its performance on MPP problems. Secondly, while
Tompp could solve hard MPP problems such as the 25241
puzzle, ILP solvers are nevertheless not tailored for such
problems. Thus, we expect that tailored methods, such gs)
heuristic based search, to solve problemsiikg@uzzles even
faster. Looking closely at how ILP solvers work on thes
problems should provide insights that help building these

heuristics.

[27]
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