
ar
X

iv
:1

20
4.

38
30

v4
 [

cs
.R

O
]

17
 J

an
 2

01
3

Planning Optimal Paths for Multiple Robots on Graphs

Jingjin Yu Steven M. LaValle

Abstract— In this paper, we study the problem of optimal
multi-robot path planning (MPP) on graphs. We propose two
multiflow based integer linear programming (ILP) models
that computes minimum last arrival time and minimum total
distance solutions for our MPP formulation, respectively.The
resulting algorithms from these ILP models are complete and
guaranteed to yield true optimal solutions. In addition, our
flexible framework can easily accommodate other variants of
the MPP problem. Focusing on the time optimal algorithm,
we evaluate its performance, both as a stand alone algorithm
and as a generic heuristic for quickly solving large problem
instances. Computational results confirm the effectiveness of
our method.

I. I NTRODUCTION

Planning collision-free paths for multiple robots, an easily
stated yet difficult problem, has been actively studied for
decades [4], [12], [13], [20], [22], [24], [25], [28], [29],[32].
The hardness of the problem mainly resides with the coupling
between the robots’ paths which leads to an enormous state
space and branching factor. As such, algorithms that are both
complete and (distance) optimal, such as the A∗ [8] algorithm
and its variants, do not perform well on tightly coupled
problems beyond very small ones. On the other hand, faster
algorithms for finding the paths generally do not provide
optimality guarantees: Sifting through all feasible path sets
for optimal ones greatly increases the search space, which
often makes these problems intractable.

In this paper, we investigate the problem of planning
optimal paths for multiple robots with individual goals. The
robots have identical but non-negligible sizes, are confined to
some arbitrary connected graph, and are capable of moving
from one vertex to an adjacent vertex in one time step.
Collision between robots is not allowed, which may occur
when two robots attempt to move of the same vertex or
move along the same edge in different directions. For this
general setting, we propose a network flow based integer
linear programming (ILP) model for finding robot paths that
are time optimal or distance optimal. Our time optimality
criterion seeks to minimize the number of time steps until
the last robot reaches its goal; distance optimality seeks to
minimize the total distance (each edge has unit distance)
traveled by the robots. Taking advantage of the state of the
art ILP solvers (Gurobi is used in this paper), our method can

Jingjin Yu is with the Department of Electrical and ComputerEngineer-
ing, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.
E-mail: jyu18@uiuc.edu. Steven M. LaValle is with the Department of
Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL
61801 USA. E-mail: lavalle@uiuc.edu. This work was supported in part by
NSF grants 0904501 (IIS Robotics) and 1035345 (Cyberphysical Systems),
DARPA SToMP grant HR0011-05-1-0008, and MURI/ONR grant N00014-
09-1-1052.

plan time optimal, collision-free paths for several dozensof
robots on graphs with hundreds of vertices within minutes.

As a universal subroutine, collision-free path planning for
multiple robots finds applications in tasks spanning assembly
[7], [15], evacuation [18], formation control [2], [16], [21],
[23], [27], localization [6], object transportation [14],[19],
search and rescue [9], and so on. Given its importance, path
planning for multi-robot systems has remained as a subject
of intense study for many decades. Given the vast size of the
available literature, we will only mention related research on
discrete MPP and refer the readers to [3], [10], [11] and the
references therein for a more comprehensive review of the
subject.

From an algorithmic perspective, discrete MPP is a natural
extension of the single robot path planning problem: One
may combine the state spaces of all robots and treat the prob-
lem as a planning problem for a single robot. A∗ algorithm
can then be used to compute distance optimal solutions to
these problems. However, since naive A∗ scales poorly due
to the curse of dimensionality, additional heuristic methods
were proposed to improve the computational performance.
One of the first such heuristics, Local Repair A∗ (LRA∗)
[32], plans robot paths simultaneously and performs local
repairs when conflicts arise. Focusing on fixing the (locality)
shortcomings of LRA∗, Windowed Hierarchical Cooperative
A∗ (WHCA∗) [22] proposed to use a space-time window
to allow more choices for resolving local conflicts while
limiting the search space size at the same time. For additional
heuristics exploring various specific local and global features,
see [13], [20], [25].

Formulations of MPP problems with optimality guarantee
have also been studied. The most general optimality crite-
rion is the total path length traveled by all robots, which
is consistent with the distance heuristic used by the A∗

algorithm. Since A∗ is the best possible among all such
algorithms for finding distance optimal solutions, one should
not expect complete and true optimal algorithms to exist that
perform much better than the basic A∗ algorithm in all cases.
Nevertheless, this does not prevent algorithms from quickly
solving certain instances optimally. One such algorithm that
is also complete, MGSx, is presented in [24] (note that the
grid world formulation in [24], which allows diagonal moves
in general, even in the presence of diagonal obstacles, does
not carry over to general graphs or geometric models in
robotics). For time optimality, for a version of the MPP
problem that resembles our formulation more closely, it was
shown that finding a time optimal solution is NP-hard [26],
implying that our formulation is also intractable [30]. Finally,
it was shown that finding the least number of moves for the

http://arxiv.org/abs/1204.3830v4

N×N-generalization of the 15-puzzle is NP-hard [17]. Here,
time optimality equals distance optimality, which is not the
case in general.

The main contributions of this paper are twofold. First,
adapting the constructions from [31], we develop ILP models
for solving time optimal and distance optimal MPP problems.
The resulting algorithms are shown to be complete. Our
approach is quite general and easily accommodates other
formulations of the MPP problems, including that of [24].
Second, we provide thorough computational evaluations of
our models’ performance: With a state-of-the-art ILP solver,
our models are capable of solving large problem instances
with few dozens of robots fairly fast. Such a result is in some
sense the best we can hope for because the best possible
algorithm for such problems cannot run in polynomial time
unlessP= NP. As an added bonus, we also show that the
(time optimal) algorithm works well as a subroutine for
quickly solving MPP problems (non-optimally)1.

The rest of the paper is organized as follows. We provide
problem definitions in Section II, along with a motivating
example. Section III relates MPP to multiflow, establishing
the equivalence between the two problems. In Section IV,
ILP models are provided for obtaining time optimal and
distance optimal solutions, respectively. Section V is devoted
to briefly discussing basic properties of then2-puzzle, which
is an interesting benchmark problem on its own. We evaluate
the computational performance of our algorithm in Section
VI and conclude in Section VII.

II. M ULTI -ROBOT PATH PLANNING ON GRAPHS

A. Problem Formulation

Let G= (V,E) be a connected, undirected, simple graph
(i.e., no multi-edges), in whichV = {vi} is its vertex set and
E = {(vi ,v j)} is its edge set. LetR= {r1, . . . , rn} be a set
of robots that move with unit speeds along the edges ofG,
with initial and goal locations onG given by the injective
mapsxI ,xG : R→V, respectively. The setR is effectively an
index set. Apathor scheduled pathis a mappi :Z+ →V, in
which Z

+ := N∪{0}. Intuitively, the domains of the paths
are discrete time steps. A pathpi is feasiblefor a single robot
r i if it satisfies the following properties: 1.pi(0) = xI (r i);
2. For eachi, there exists a smallestkmin

i ∈ Z
+ such that

for all k ≥ kmin
i , pi(k) ≡ xG(r i); 3. For any 0≤ k < kmin

i ,
(pi(k), pi(k+1)) ∈ E or pi(k) = pi(k+1). We say that two
pathspi , p j are in collision if there existsk ∈ Z

+ such that
pi(k) = p j(k) (collision on a vertex, ormeet) or (pi(k), pi(k+
1)) = (p j(k+1), p j(k)) (collision on an edge, orhead-on). If
p(k) = p(k+1), then the robot stays at vertexp(k) between
the time stepsk andk+1.

Problem 1 (MPP on Graphs) Given (G,R,xI ,xG), find a
set of paths P= {p1, . . . , pn} such that pi ’s are feasible
paths for respective robots ri ’s and no two paths pi , p j are
in collision.

1The software (written in Java, including a programming interface),
as well as all examples used in our evaluation, are availableat
http://msl.cs.uiuc.edu/~jyu18/pe/mapp.html.

A natural criterion for measuring path set optimality is the
number of time steps until the last robot reaches its goal. This
is sometimes called themakespan, which can be computed
from {kmin

i } for a feasible path setP as

TP = max
1≤i≤n

kmin
i .

Another frequently used objective is distance optimality,
which counts the total number of edges traveled by the
robots. We point out that distance optimality and time
optimality cannot be satisfied at the same time in general: In
Fig. 1, let the dotted straight line have lengtht and the dotted
arc has length 1.5t from some large even numbert. The four
solid line segments are edges with unit length. Assuming that
robot 1, 2 are to move from the locations marked with solid
circles to the locations marked with gray dotted circles. Time
optimal paths take 1.5t+2 time steps with a total distance of
2.5t +4; distance optimal paths take 2t +3 time steps with
a total distance of 2t +4.

2 1

21

Fig. 1. Time optimality and distance optimality cannot be satisfied
simultaneously for this setup.

In this paper, we work with graphs on which the only
possible collisions are meet or head-on collisions. This
assumption is a mild one: For example, a 2D grid with
unit edge lengths is such a graph for robots with radii of
no more than

√
2/4. As a last note, our formulation allows

multiple robots to move at the same time step as long as no
collision occurs. On a graph, this allows robots on any cycle
to “rotate”.

B. A Motivating Example

9 14

8 32

6 57

1 32

4 65

7 98

(a) (b)

Fig. 2. a) A 9-puzzle problem. b) The desired goal state.

To better characterize what we solve in this paper, look
at the example in Fig. 2. We call this problem a 9-puzzle,
which is a variant of the 15-puzzle [17]; it is also related to
the “H” example in [12]. Given the robots as numbered in
Fig. 2(a), we want to get them into thestate(configuration
is also used in this paper to refer to the same, depending
on the context) given in Fig. 2(b) (such a configuration is
often referred to asrow major ordering). Coming up with
a feasible solution for such a highly constrained problem is
non-trivial, let alone solving it with an optimality guarantee.
The time optimal algorithm we present in this paper solves
this problem instance under 0.1 second. The solution is given
in Fig. 3. The time optimality of the solution is evident: It
takes at least four steps for robot 9 to reach its goal.

Fig. 3. A 4-step solution from our algorithm. The directed edges show the
moving direction of the robots at the tail of the edges.

III. M ULTI -ROBOT PATH PLANNING AND MULTIFLOW

A. Network Flow

In this subsection we provide a summary of the network
flow problem formulation pertinent to the introduction of
our algorithm. For surveys on network flow, see [1], [5].
A network N = (G,c1,c2,S) consists of a directed graph
G = (V,E) with c1,c2 : E → Z

+ as the maps defining the
capacities and costs on edges, respectively, andS⊂ V as
the set of sources and sinks. We letS= S+∪S−, with S+

denoting the set of sources andS− denoting the set of sink
vertices. For a vertexv∈V, let δ+(v) (resp.δ−(v)) denote
the set of edges ofG going to (resp. leaving)v. A feasible
(static)S+,S−-flow on this networkN is a mapf : E → Z

+

that satisfies edge capacity constraints,

∀e∈ E, f (e) ≤ c1(e), (1)

the flow conservation constraints at non terminal vertices,

∀v∈V\S,
∑

e∈δ+(v)

f (e) −
∑

e∈δ−(v)

f (e) = 0, (2)

and the flow conservation constraints at terminal vertices,

F(f) =
∑

v∈S+

(
∑

e∈δ−(v)

f (e) −
∑

e∈δ+(v)

f (e))

=
∑

v∈S−
(

∑

e∈δ+(v)

f (e) −
∑

e∈δ−(v)

f (e)).
(3)

The quantityF(f) is called thevalue of the flow f . The
classic (single-commodity)maximum flowproblem asks the
question: Given a networkN , what is the maximumF(f)
that can be pushed through the network? Theminimum cost
maximum flowproblem further requires the flow to have
minimum total cost among all maximum flows. That is, we
want to find a flow among all maximum flows that also
minimizes the quantity

∑

e∈E

c2(e) · f (e). (4)

The above formulation concerns a single commodity,
which corresponds to all robots being inter exchangeable.
For MPP, the robots are not inter exchangeable and must
be treated as different commodities.Multi-commodity flow
or multiflow captures the problem of flowing different types
of commodities through a network. Instead of having a
single flow function f , we have a flow functionfi for each
commodityi. The constraints (1), (2), and (3) become

∀i,∀e∈ E,
∑

i

fi(e)≤ c1(e), (5)

∀ i,∀v∈V\S,
∑

e∈δ+(v)

fi(e) −
∑

e∈δ−(v)

fi(e) = 0, (6)

∀i,
∑

v∈S+

(
∑

e∈δ−(v)

fi(e) −
∑

e∈δ+(v)

fi(e))

=
∑

v∈S−
(

∑

e∈δ+(v)

fi(e) −
∑

e∈δ−(v)

fi(e)).
(7)

Again, maximum flow and minimum cost flow problems can
be posed for a multiflow setup.

B. Equivalence between MPP and multiflow

Viewing robots as commodities, we may connect MPP
and multiflow. This relationship (Theorem 2) was stated
in [31] without full proof, which is provided here for
completeness. To make the presentation clear, we use as an
example the simple graphG in Fig. 4(a), with initial locations
{s+i }, i = 1,2 and goal locations{s−i }, i = 1,2. An instance of
Problem 1 is given by(G,{r1, r2},xI : r i 7→ s+i ,xG : r i 7→ s−i).
We now convert this problem to a network flow problem,
N ′ = (G′,c1,c2,S+∪S−). Given the graphG and a natural
number T, we create 2T+1 copies of vertices fromG, with

s 1

+

s 2

+

s 1

-

s 2

- u(t+1)u(t) 0

v(t+1)v(t) 0

(a) (b)

Fig. 4. a) A simpleG. b) A gadget for splitting an undirected edge through
time steps.

indices 0,1,1′, . . ., as shown in Fig. 5. For each vertexv∈G,
denote these copiesv(0) = v(0)′,v(1),v(1)′,v(2), . . . ,v(T)′.
For each edge(u,v) ∈ G and time stepst, t + 1, 0≤ t <
T, add the gadget shown in Fig. 4(b) betweenu(t)′,v(t)′

and u(t + 1),v(t + 1) (arrows from the gadget are omitted
from Fig. 5 since they are small). For the gadget, we
assign unit capacity to all edges, unit cost to the horizontal
middle edge, and zero cost to the other four edges. This
gadget ensures that two robots cannot travel in opposite
directions on an edge in the same time step. To finish the
construction of Fig. 5, for each vertexv ∈ G, we add one
edge between every two successive copies (i.e., we add
the edges(v(0),v(1)),(v(1),v(1)′), . . . ,(v(T),v(T)′)). These
correspond to the green and blue edges in Fig. 5. For all
green edges, we assign them unit capacity and cost; for all
blue edges, we assign them unit capacity and zero cost.

s 1

+

s 2

+

s 1

-

s 2

-

20 1
0

2
0

1

Fig. 5. The time-expanded network (T = 2).

Fig. 5 (with the exception of edgese1 ande2, which are not
relevant until Section IV), called atime-expanded network
[1], is the desiredG′. For the setS, we may simply letS+ =
{v(0) : v∈ {s+i }} andS− = {v(T)′ : v∈ {s−i }}. The network
N ′ = (G′,c1,c2,S+∪S−) is now complete; we have reduced
Problem 1 to an integer maximum multiflow problem onN ′

with each robot fromR as a single type of commodity.

Theorem 2 Given an instance of Problem 1 with input
parameters(G,R,xI ,xG), there is a bijection between its so-
lutions (with maximum number of time steps up to T) and the
integer maximum multiflow solutions of flow value n on the
time-expanded networkN ′ constructed from(G,R,xI ,xG)
with T time steps.

PROOF. (Injectivity) Assume thatP = {p1, . . . , pn} is a
solution to an instance of Problem 1. For eachpi and every
time stept = 0, . . . ,T, we mark the copy ofpi(t) and pi(t)′

(recall thatpi(t) corresponds to a vertex ofG) at time step
t in the time-expanded graphG′. Connecting these vertices
of G′ sequentially (there is only one way to do this) yields
one unit of flow fi on N ′ (after connecting to appropriate
source and sink vertices inS+,S−, which is trivial). It is
straightforward to see that if two pathspi , p j are not in
collision, then the corresponding flowsfi , f j on N ′ are
vertex disjoint paths and therefore do not violate any flow
constraint. Since any two paths inP are not in collision,
the corresponding set of flows{ f1, . . . , fn} is feasible and
maximal onN ′.

(Surjectivity) Assume that{ f1, . . . , fn} is a integer
maximum multiflow on the networkN ′ with | fi | = 1.
First we establish that any pair of flowsfi , f j are vertex
disjoint. To see this, we note thatfi , f j (both are unit flows)
cannot share the same source or sink vertices due to the
unit capacity structure ofN ′ enforced by the blue edges.
If fi , f j share some non-sink vertexv at time stept > 0,
both flows then must pass through the same blue edge (see
Fig. 4(b)) with v being either the head or tail vertex, which
is not possible. Thus,fi , f j are vertex disjoint onN ′. We
can readily convert each flowfi to a corresponding pathpi

(after deleting extra source vertex, sink vertices, vertices in
the middle of the gadgets, and tail vertices of blue edges)
with the guarantee that nopi , p j will collide due to a
meet collision. By construction ofN ′, the gadget we used
ensures that a head-on collision is also impossible. The set
{p1, . . . , pn} is then a solution to Problem 1. �

C. Accommodating other formulations

Our network flow based approach for encoding the MPP
problem is fairly general; we illustrate this using two ex-
amples. The first is the grid world formulation from [24],
which allows (single) diagonal crossings. That is, for vertices
v1, . . . ,v4 on the four corners of a square cell withv1,v3 and
v2,v4 diagonal to each other, respectively, it is possible for a
robot to move fromv1 to v3 provided thatv3 is unoccupied
and thev2-v4 diagonal is not used in the same time step. To

include this constraint in the ILP model, we may simply add
the gadget structure in Fig. 6 to the time-expanded network
construction. The inclusion of the gadget will allow a single
diagonal crossing; the extra paths do not create an issue since
no two robots can go through a single vertex at the same time
step (enforced by the blue dotted edges in Fig. 5).

v (t)
1

v (t)
3

v (t)
4

v (t)
2

v (t +1)
1

v (t+1)
3

v (t +1)
4

v (t +1)
2

0

0

0

0

Fig. 6. A gadget for allowing diagonal crossings.

For a second example, in some MPP formulations, head-on
collisions may be allowed. For instance, two adjacent CPUs
may exchange two units of data in parallel but no single CPU
may hold multiple units of data. To allow this, we simply do
not use the gadget from Fig. 4(b) when the time-expanded
network is constructed.

IV. A LGORITHMIC SOLUTIONS FOROPTIMAL

MULTI -ROBOT PATH PLANNING

Given the time-expanded networkN ′ = (G′,c1,c2,S+ ∪
S−), it is straightforward to create an integer linear program-
ming (ILP) model with different optimality objectives. We
investigate two objectives in this section: Time optimality or
makespan (the time when the last robot reaches its goal) and
distance optimality (the total distance traveled by all robots).

A. Time optimality

Time optimal solutions to Problem 1 can be obtained
using a maximum multiflow formulation. As a first step, we
introduce a set ofn loopbackedges toG′ by connecting each
pair of corresponding goal and start vertices inS, from the
goal to the start. For convenience, denote these loopback
edges as{e1, . . . ,en} (e.g., edgese1,e2 in Fig. 5). These
edges have unit capacity and zero cost. Next. for each edge
ej ∈ G′, createn binary variablesx1, j , . . . ,xn, j corresponding
to the flow through that edge, one for each robot.xi, j = 1 if
and only if robotr i passes throughej in G′. The variables
xi, j ’s must satisfy two edge capacity constraints and one flow
conservation constraint,

∀ej ∈ G′,
n∑

i=1

xi, j ≤ 1

∀1≤ i, j ≤ n, i 6= j, xi, j = 0,

(8)

∀v∈ G′ and 1≤ i ≤ n,
∑

ej∈δ+(v)

xi, j =
∑

ej∈δ−(v)

xi, j . (9)

The objective function is

max
∑

1≤i≤n

xi,i . (10)

For each fixedT, the solution to the above ILP problem
equalingn means that a feasible solution to Problem 1 is

found. We are to find the minimalT that yields such a
feasible solution. To do this, we start withT being the
maximum over all robots the shortest possible path length
for each robot, ignoring all other robots. We then build the
ILP model for this T and test for a feasible solution. If
the model is not feasible, we increaseT and try again. The
first feasibleT is the optimalT. The robots’ paths can be
extracted based on the proof of Theorem 2. The algorithm is
complete: Since the problem is discrete, there is only a finite
number of possible states. Therefore, for some sufficiently
large T, there must either be a feasible solution or we can
pronounce that none can exist. Calling this algorithm TOMPP

(time optimal MPP), we have shown the following.

Proposition 3 Algorithm TOMPP is complete and returns a
solution with minimum makespan to Problem 1 if one exists.

B. Distance optimality

Distance optimality objective can be encoded using min-
imum cost maximum multiflow. Constraints (8) and (9)
remain; to force a maximum flow, letxi,i = 1 for 1≤ i ≤ n.
The objective is given by

min
∑

ej∈G′, j>n,1≤i≤n

c2(ej) ·xi, j . (11)

The value given by (11), when feasible, is the total distance
of all robots’ paths. LetTt denote the optimalT produced by
TOMPP(if one exists), then a distance optimal solution exists
in a time-expanded network withT = nTt steps. Calling this
algorithm DOMPP (distance optimal MPP), we have

Proposition 4 AlgorithmDOMPP is complete and returns a
solution with minimum total path length to Problem 1 if one
exists.

Due to the large number of steps needed in the time-
expanded network, DOMPP, in its current form, is not very
fast in solving problems with many robots. Therefore, our
evaluation in this paper focuses on TOMPP which, on the
other hand, is fairly fast in solving some very difficult
problems. DOMPP, however, still proves useful in providing
time optimal and near distance optimal solutions using the
outputs of TOMPP, as shown in Subsection VI-C.

V. PROPERTIES OF THEn2-PUZZLE

The example problem from Fig. 2 easily extends to an
n×n grid; we call this class of problems then2-puzzle. Such
problems are highly coupled: No robot can move without at
least three other robots moving at the same time. At each
step, all robots that move must move synchronously in the
same direction (per cycle) on one or more disjoint cycles
(see e.g., Fig. 3). To put into perspective the computational
results onn2-puzzles that follow, we make a characterization
of the state structure of then2-puzzle forn≥ 3 (the case of
n= 2 is trivial).

Proposition 5 All states of the 9-puzzle are connected via
legal moves.

4

7

65

89

4

7 6

5

8

9 47

6

5

8 9

Fig. 7. A 3-step procedure for exchanging robots 8 and 9.

PROOF. We show that any state of a 9-puzzle can be moved
into the state shown in Fig. 2(b). From any state, robot 5
can be easily moved into the center of the grid. We are left
to show that we can exchange two robots on the border
without affecting other robots. This is possible due to the
procedure illustrated in Fig. 7. �

Larger puzzles can be solved recursively: We may first
solve the top and right side of the puzzle and then the left
over smaller square puzzle. For a 16-puzzle, Fig. 8 outlines
the procedure, consisting of six main steps:

1) Move robots 1 and 2 to their respective goal locations,
one robot at a time (first 1, then 2).

2) Move robots 3 and 4 (first 3, then 4) to the lower left
corner (top-middle figure in Fig. 8).

3) Move robots 3 and 4 to their goal location together via
counterclockwise rotation along the cycle indicated in
the top-middle figure in Fig. 8.

4) Move robot 8 to its goal location.
5) Move robots 12 and then 16 to the lower left corner.
6) Rotate robots 12 and 16 to their goal locations.

4

1

3

2 1 2 431 2

431 2

8

431 2

8

12

16

431 2

8

12

16

Fig. 8. A solution scheme for solving top/left sides of the 16-puzzle.

It is straightforward to see that larger puzzles can be
solved similarly. We have thus outlined the essential steps
for proving Proposition 6 below; a more generic proof can
be written using generators of permutation groups, which
we omit here due to its length. Proposition 6 implies that,
for n ≥ 3, all instances ofn2-puzzles are solvable. The
constructive proofs of Proposition 5 and 6 lead to recursive
algorithms for solving anyn2-puzzle (clearly, the solution is
not time/distance optimal in general).

Proposition 6 All states of an n2-puzzle, n≥ 3 are con-
nected via legal moves.

Corollary 7 All instances of the n2-puzzle, n≥ 3, are solv-
able.

By Proposition 6, since all states of an2-puzzle forn≥ 3
are connected via legal moves, the state space of searching an
n2-puzzle equalsn2 factorial. For 16-puzzle and 25-puzzle,

16!> 1013,25!> 1025. Large state space is one of the three
reasons that make finding a time optimal solution to the
n2-puzzle a difficult problem. The second difficulty comes
from the large branching factor at each step. For a 9-puzzle,
there are 13 unique cycles, yielding a branching factor of
26 (clockwise and counterclockwise rotations). For the 16-
puzzle, the branching factor is around 500. This number
balloons to over 104 for the 25-puzzle. This suggests that on
typical commodity personal computer hardware (assuming
a 1GHz processor), a baisc breadth first search algorithm
will not be able to go beyond depth of 3 for the 16-puzzle
and depth 2 for the 25-puzzle in reasonable amount of time.
Moreover, enumerating these cycles is a non-trivial task. The
third difficulty is the lack of obvious heuristics: Manhattan
distances of robots to their respective goals prove to be a
bad one. For example, given the initial configuration as that
in Fig. 2(a), the first step in the optimal plan from Fig. 3
gets robots 1, 3, 4, 6, 8, 9 closer to their respective goals
while moving robots 2, 7 farther. On the other hand, rotating
counterclockwise along the outer cycle takes robots 1, 3, 4,5,
6, 8, 9 closer and only moves robot 7 farther. However, if we
instead take this latter first step, the optimal plan afterwards
will take 5 more steps.

VI. SOLUTIONS AND EVALUATION

Our experimentation in this paper focuses on TOMPP with
the main goal being evaluating the comparative efficiency
of our approach rather than pushing for best computational
performance. As such, our implementation is Java based and
did not directly take advantage of multi-core technology. We
note that, Gurobi, the ILP solver used in our implementation,
can engage multiple cores automatically for hard problems.
We ran our code on an Intel Q6600 quad-core machine with
a 4GB JavaVM.

A. Time optimal solution to n2-puzzles

The first experiment we performed was evaluating the
efficiency of the algorithm TOMPP for finding time optimal
solutions to then2-puzzle for n = 3,4,5, and 6. We ran
Algorithm TOMPP on 100 randomly generatedn2-puzzle
instances forn = 3,4,5. For the 9-puzzle, computation on
all instances completed successfully with an average com-
putation time of 1.36 seconds per instance. To compare
the computational result, we implemented a (optimal) BFS
algorithm. The BFS algorithm is heavily optimized: For
example, cycles of the grid are precomputed and hard coded
to save computation time. Since the state space of the 9-
puzzle is small, the BFS algorithm is capable of optimally
solving the same set of 9-puzzle instances with an average
computation time of about 0.89 seconds per instance.

Once we move to the 16-puzzle, the power of general ILP
solvers becomes evident. TOMPP solved all 100 randomly
generated 16-puzzle instances with an average computation
time of 18.9 seconds. On the other hand, the BFS algorithm
with a priority queue that worked for the 9-puzzle ran out
of memory after a few minutes. As our result shows that an
optimal solution for the 16-puzzle generally requires 6 time

steps, it seems natural to also try bidirectional search, which
cuts down the total number states stored in memory. To
complete such a search, one side of the bidirectional search
generally must reach a depth of 3, which requires storing
about 3× 107 states, each taking 64 bits of memory. This
turns out to be too much for a 4GB JavaVM: A bidirectional
search ran out of memory after about 10 minutes in general.
To be sure, we also coded part of the same search algorithm
in C++ with STL. Reaching a search depth 3 on one side
takes about a minute with a memory footprint of 1.5GB,
suggesting a minimum running time of more than one
minute.

13 417

1 922

11 1516

2314

712

218

25 624

10 53

2019

182

Fig. 9. An instance of a 25-puzzle problem solved by TOMPP.

For the 25-puzzle, without a good heuristic, bidirectional
search cannot explore a tiny fraction of the fully connected
state space with about 1025 states. On the other hand, TOMPP

again consistently solves the 25-puzzle, with an average
computational time under 2 hours over 100 randomly created
problems. Fig. 9 shows one of the solved instances with
a 7-step solution given in Fig. 10. Note that 7 steps is
obviously the least possible since it takes at least 7 steps

Fig. 10. An optimal 7-step solution (from left to right, thentop to bottom)
to the 25-puzzle problem from Fig. 9, by TOMPP in about 30 minutes.

to move robot 10 to its desired goal. We also briefly tested
TOMPP on the 36-puzzle. While we had some success
here, TOMPP generally does not seem to solve a randomly
generated instance of the 36-puzzle within 24 hours, which
has 3.7×1041 states and a branching factor of well over 106.

B. Time optimal solutions for grid graphs

For problems in which not all graph vertices are occupied
by robots, TOMPP can handle much larger instances. In a
first set of tests on this subject, a grid size of 20×15 is used
with varying percentage of obstacles (simulated by removed
vertices) and robots for evaluating the effect of these factors.
A typical set up is illustrated in Fig. 11. The computation
time (in seconds) and the average number of optimal time
steps (in parenthesis) are listed in Table I. The numbers
are averages over 10 randomly created instances. For each
run, a maximum of 1000 seconds is allowed (such limits,

Fig. 11. A 20×15 grid with 20% verices removed (modeling obstacles)
and 30 start/goal pairs. The start locations are marked withstrings beginning
with “S” and the goal locations are marked with strings beginning with “G”.

TABLE I

% obs Number of robots
10 20 30 40 50

5 2.5(22) 7.3(24) 16.7(27) 23.6(26) 70.7(27)
10 2.1(21) 7.8(24) 13.1(26) 20.4(26) 48.6(26)
15 3.9(25) 6.2(24) 13.8(26) 32.8(27) 126(28)
20 2.4(24) 7.7(27) 21.9(28) 39.3(26) 173(27)
25 2.7(27) 8.1(28) 24.8(30) 68.0(28) 253(30)4

30 3.0(31) 29.9(34)9 234(44)5 80.6(29)3 N/A

somewhat arbitrary, were chosen to manage the expected
running time of the entire set of experiments; our com-
plete algorithms should terminate eventually). Entries with
superscript numbers suggest the 10 runs did not all finish
within the given time. The superscript numbers represent
the successful runs on which the statistics were computed.
“N/A” means no instance finished within the allowed time.
From the results, we observe that the percentage of randomly
placed obstacles does not affect the problem difficulty, as
measured by computational time, in a monotonic way. On
one hand, more obstacles remove more vertices from the
grid, making the problem size smaller, reducing the com-
putational difficulty. On the other hand, as more obstacles
are introduced, the reduced connectivity of the graph makes
the problem harder. In particular, the 20× 15 grid setting
suddenly becomes a hard problem with 30% obstacles. The
difficulty is also reflected by the average number of steps in
an optimal solution: Longer time means reduced availability
of alternative paths.

TABLE II

% obs Number of robots
10 20 30 40 50

20 14.4(41) 34.6(45) 43.7(44) 87.5(47) 402(49)9

In a second test on even larger problems, 32×32 grids
with 20% obstacles were tried. For between 10 and 50 robots
with an increment of 10, 10 random instances each were
created; each instance is allowed to run a maximum of half
an hour. The statistics, similarly composed as that in TableI,
is listed in Table II. We observe that the problem is similar
in difficulty to the 20×15 grid setting with 25% obstacles,

but much simpler than that with 30% obstacles.

C. Distance optimality of time optimal solutions

Although DOMPP is not yet practical for computing dis-
tance optimal solutions alone, it can be used for computing
distance optimal solutions for a fixed time expansion length
T. That is, we first find a time optimal solution, which
gives us the smallest time-expanded network containing
feasible solutions. We then run DOMPP on this network.
For evaluation, we used the same 20×15 instances with 5-
25% obstacles and 10-30 robots (DOMPP could not finish
most instances with 30% obstacles or 40+ robots in 200
seconds, the cutoff time). We used the first 5 of every
10 instances for each obstacle/robot combination. For each
fixed number of obstacles, instances of different numbers
of robots are combined. The result is listed in Table III.
We allow DOMPP to run for at most 200 seconds per
instance. Note that unlike TOMPP, even when DOMPP does
not find the optimal solution, it generally produces feasible
solution which sometimes is a near optimal solution. These
are included in the result. “Time” entires are average time,in
seconds, used by DOMPP. “Disjoint” entries are the average
path lengths for all robots if we were to plan each shortest
path ingoring other robots. The distance optimal solutions
must produce a length no less than this. The next two
lines are average path lengths from TOMPP and DOMPP

algorithms. As we can see, TOMPP alone yields path length
50% than optimal; DOMPP, on the other hand, provided
time optimal solutions that are near distance optimal (< 1%
difference). For more than half of the instances, DOMPP

produced true distance optimal solutions. In fact, DOMPP

produced true distance optimal solutions for 42 out of the
45 instances with 5-15% obstacles.

TABLE III

% obs
5 10 15 20 25

Time 26.3 23.3 42.7 57.2 81.6
Disjoint 12.20 11.75 12.03 12.80 12.84
DOMPP 12.20 11.75 12.05 12.85 12.92
TOMPP 16.47 16.60 17.59 18.83 19.33

D. Using TOMPP as a generic heuristic

In the last experiment, we exploit TOMPP as ageneric
heuristic for locally resolving path conflicts for large problem
instances. Bygeneric, we mean that the heuristic is not coded
to any specific robot/grid setting. In our algorithm, paths
are first planned for single robots (ignoring other robots).
Afterwards, the robots are moved along these paths until no
further progress can be made. We then detect on the graph
where progress are stalled and resolve the conflict locally
using TOMPP. For every conflict, we apply TOMPP to its
neighborhood of distance 2. The above steps are repeated
until a solution is found. The process can be made into a
complete algorithm by allowing the local neighborhood to
grow gradually. For evaluation, we ran the above algorithm
on a 32×32 grid with 20% obstacles. We allow each instance
to run a maximum of 30 seconds. The results, each as an

average over 100 runs for a certain number of robots, are
listed in Table IV (keep in mind that our implementation

TABLE IV

Number of Robots
25 50 75 100 125 150

Running time (s) 0.04 0.15 0.32 1.37 3.85 10.3
Fully solved 100 100 100 100 98 95

% goals reached 100.0 100.0 100.0 100.0 99.4 98.6

is Java based, which should see a speedup if implemented
in C++). While we did not make side-by-side comparisons
with the literature due to (seemingly small but) important
differences in problem formulation, the computation time and
completion rate of our algorithm appear comparable with the
state of the art results from other authors.

VII. C ONCLUSION AND OPEN PROBLEMS

In this paper, we introduced a multiflow based ILP algo-
rithm for planning optimal, collision-free paths for multiple
robots on graphs. We provided complete ILP algorithms for
solving time optimal and distance optimal MPP problems.
Our experiments confirmed that TOMPP is a feasible method
for planning time optimal paths for tightly coupled problems
as well as for larger problems with more free space. More-
over, we showed that TOMPP can serve as a good heuristic
for solving large problem instances efficiently. For distance
optimality, DOMPP, when combined with TOMPP, produces
time optimal solutions that are often near distance optimal.

Many interesting open problems on optimal MPP remain;
we mention two here. First, the ILP algorithms have ample
room for performance improvements. On one hand, the ILP
model can be make leaner. For example, it is clear that some
xi, j ’s will never be set to 1; these should be removed from
the model. On the other hand, our application of the Gurobi
solver is fairly rudimentary - we simply feed the model to the
solver as a mixed integer program (MIP) without specifying
any other optimization options. Therefore, it would not be
surprising that tuning the parameters of the solver greatly
improves its performance on MPP problems. Secondly, while
TOMPP could solve hard MPP problems such as the 25-
puzzle, ILP solvers are nevertheless not tailored for such
problems. Thus, we expect that tailored methods, such as
heuristic based search, to solve problems liken2-puzzles even
faster. Looking closely at how ILP solvers work on these
problems should provide insights that help building these
heuristics.

REFERENCES

[1] J. E. Aronson. A survey on dynamic network flows.Annals of
Operations Research, 20(1):1–66, 1989.

[2] T. Balch and R. C. Arkin. Behavior-based formation control for
multirobot teams. IEEE Transaction on Robotics and Automation,
14(6):926–939, 1998.

[3] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun.Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, Cambridge, MA, 2005.

[4] M. A. Erdmann and T. Lozano-Pérez. On multiple moving objects. In
Proceedings IEEE International Conference on Robotics & Automa-
tion, pages 1419–1424, 1986.

[5] L. R. Ford and D. R. Fulkerson.Flows in Networks. Princeton
University Press, New Jersey, 1962.

[6] D. Fox, W. Burgard, H. Kruppa, and S. Thrun. A probabilistic
approach to collaborative multi-robot localization.Autom. Robots,
8(3):325–344, June 2000.

[7] D. Halperin, J.-C. Latombe, and R. Wilson. A general framework
for assembly planning: The motion space approach.Algorithmica,
26(3-4):577–601, 2000.

[8] P. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths.IEEE Transactions on Systems
Science and Cybernetics, 4:100–107, 1968.

[9] J. S. Jennings, G. Whelan, and W. F. Evans. Cooperative search
and rescue with a team of mobile robots. InProceedings IEEE
International Conference on Robotics & Automation, 1997.

[10] J.-C. Latombe.Robot Motion Planning. Kluwer, Boston, MA, 1991.
[11] S. M. LaValle. Planning Algorithms. Cambridge University Press,

Cambridge, U.K., 2006. Also available at http://planning.cs.uiuc.edu/.
[12] S. M. LaValle and S. A. Hutchinson. Optimal motion planning for

multiple robots having independent goals.IEEE Trans. on Robotics
and Automation, 14(6):912–925, December 1998.

[13] R. Luna and K. E. Bekris. Push and swap: Fast cooperativepath-
finding with completeness guarantees. InTwenty-Second International
Joint Conference on Artificial Intelligence, pages 294–300, 2011.

[14] M. J. Matarić, M. Nilsson, and K. T. Simsarian. Cooperative multi-
robot box pushing. InProceedings IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 556–561, 1995.

[15] B. Nnaji. Theory of Automatic Robot Assembly and Programming.
Chapman & Hall, 1992.

[16] S. Poduri and G. S. Sukhatme. Constrained coverage for mobile sensor
networks. InProceedings IEEE International Conference on Robotics
& Automation, 2004.

[17] D. Ratner and M. Warmuth. The(n2−1)-puzzle and related relocation
problems.Journal of Symbolic Computation, 10:111–137, 1990.

[18] S. Rodriguez and N. M. Amato. Behavior-based evacuation planning.
In Proceedings IEEE International Conference on Robotics andAu-
tomation, pages 350–355, 2010.

[19] D. Rus, B. Donald, and J. Jennings. Moving furniture with teams of
autonomous robots. InProceedings IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pages 235–242, 1995.

[20] M. R. K. Ryan. Exploiting subgraph structure in multi-robot path
planning. Journal of Artificial Intelligence Research, 31:497–542,
2008.

[21] B. Shucker, T. Murphey, and J. K. Bennett. Switching rules for
decentralized control with simple control laws. InAmerican Control
Conference, July 2007.

[22] D. Silver. Cooperative pathfinding. InThe 1st Conference on Artificial
Intelligence and Interactive Digital Entertainment, pages 23–28, 2005.

[23] B. Smith, M. Egerstedt, and A. Howard. Automatic generation of
persistent formations for multi-agent networks under range constraints.
ACM/Springer Mobile Networks and Applications Journal, 14(3):322–
335, June 2009.

[24] T. Standley and R. Korf. Complete algorithms for cooperative pathfind-
ing problems. InTwenty-Second International Joint Conference on
Artificial Intelligence, pages 668–673, 2011.

[25] P. Surynek. A novel approach to path planning for multiple robots in
bi-connected graphs. InProceedings IEEE International Conference
on Robotics and Automation, pages 3613–3619, 2009.

[26] P. Surynek. An optimization variant of multi-robot path planning
is intractable. InThe Twenty-Fourth AAAI Conference on Artificial
Intelligence (AAAI-10), pages 1261–1263, 2010.

[27] H. Tanner, G. Pappas, and V. Kumar. Leader-to-formation stability.
IEEE Transactions on Robotics and Automation, 20(3):443–455, Jun
2004.

[28] J. van den Berg and M. Overmars. Prioritized motion planning for
multiple robots. InProceedings IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2005.

[29] J. van den Berg, J. Snoeyink, M. Lin, and D. Manocha. Centralized
path planning for multiple robots: Optimal decoupling intosequential
plans. InProceedings Robotics: Science and Systems, 2009.

[30] J. Yu. Diameters of permutation groups on graphs and linear time
feasibility test of pebble motion problems.arXiv:1205.5263, 2012.

[31] J. Yu and S. M. LaValle. Multi-agent path planning and network flow.
In The Tenth International Workshop on Algorithmic Foundations of
Robotics, 2012.

[32] A. Zelinsky. A mobile robot exploration algorithm.IEEE Transactions
on Robotics and Automation, 8(6):707–717, 1992.

	I Introduction
	II Multi-robot Path Planning on Graphs
	II-A Problem Formulation
	II-B A Motivating Example

	III Multi-robot Path Planning and Multiflow
	III-A Network Flow
	III-B Equivalence between MPP and multiflow
	III-C Accommodating other formulations

	IV Algorithmic Solutions for Optimal Multi-robot Path Planning
	IV-A Time optimality
	IV-B Distance optimality

	V Properties of the n2-puzzle
	VI Solutions and Evaluation
	VI-A Time optimal solution to n2-puzzles
	VI-B Time optimal solutions for grid graphs
	VI-C Distance optimality of time optimal solutions
	VI-D Using Tompp as a generic heuristic

	VII Conclusion and Open Problems
	References

