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This paper investigates the conditions in the design paramected non-singular domain, calledpect Innocenti and
eter space for the existence and distribution of the cusp IBarenti-Castelli pointed out inl[1] that non-singular ches
cus for planar parallel manipulators. Cusp points make po®f assembly mode are possible, and McAree and Daniel
sible non-singular assembly-mode changing motion, whishowed in [[2] that such changes are possible when triple
increases the maximum singularity-free workspace. An awots of the Forward Kinematic Problem (FKP) exist. [Ih [3]
curate algorithm for the determination is proposed amendzein, Wenger and Chablat showed that for the case of R-RP
ing some imprecisions done by previous existing algorithmsanipulators a non-singular change of assembly mode can
This is combined with methods of Cylindric Algebraic Debe accomplished by encircling a cusp point, and Husty re-
composition, Gbobner bases and Discriminant Varieties incently proved in[[4] that the generic 3-RPparallel manipu-
order to partition the parameter space into cells with conkators without joint limits always have 2 aspects.

stant number of cusp points. These algorithms will allow us From the algebraic point of view, the locus of cusp

to classify a family of degenerate 3-Rianipulators. points can be described by means of symbolic equations. In
Keywords: kinematics, parallel manipulator, singulariyrger to avoid long symbolic-algebraic manipulationssthe
ties, cusp, discriminant variety, cylindric algebraic dee  equations are usually solved by numerical approximation at
position, degenerate 3-RPsymbolic computation. an early stage, which may lead to small deviations that can
be propagated along the process. However, there exist effi-
cient symbolic-algebraic techniques that may leave the use
1 Introduction of numerical methods to the last step. In particular, we will

In the past, singularities were believed to physically sefPP!y Grobner basegd] in order to adopt a more suitable
arate the different assembly modes, meaning that for fix€guivalent system defining the same solution points.
joint values one could not find a path going from one assem- Lazard and Rouillier introduced the mathematical no-
bly mode to another without crossing a singular configurdion of Discriminant Variety(DV) [6], which is a variety of
tion. So the interest relied on considering the widest conedimension 1 in the chosen parameter space whose com-
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plement satisfies the property that over each connected com-
ponent the given system has a constant number of solutions.
The complement of this DV will be partitioned into cells by a
Cylindric Algebraic DecompositiofY], also known as CAD.
This paper is intended to illustrate both the performance P1
of the new algorithm for the determination of the locus e P3
cusp points and its combination with the forementioned afs
gebraic techniques in the analysis of existence conditions

and distribution along a 2-dimensional parameter space. Al y

though the method can be applied to more general manip-

ulators (see[[8]), such performance will be exemplified on (@)
a family of degenerate 3-FPmanipulators, detailed in Sec- A1 X A

tion[2. The algorithm for the cusp point determination, whic
is one of the main contributions of the paper, is given in Sec-
tion[3, where it is compared to other previous algorithms.

Section[# outlines some.of the exploitgd algebraic objegts polynomial decreases are knownaslytic or degener-
such as the DV. In Sectidd 5 the previous procedures aig[12/13], because the Cramer system in Gosselin’s method
combined with the CAD to partition a 2-dimensional spacgegenerates. In this paper we will focus on a class of degen-
with regard to the associated numb_er of cusp points, whighate 3-RR manipulators whose base and moving platforms
leads us to analyze a complete family of degenerate B-RB e ongruent triangles, with the moving triangle being re-
manipulators that depend on one geometric parameter. Thisted with respect to the base one, as that of [Big. 1. This
section also illustrates some applications of the preseni§ass of manipulators was first studied by Wenger, Chablat
strategy to robot design. The paper concludes in Seiction &g zein in [14]. Their mathematical description requires
the addition to the initial Eqn[{1) of the following geomietr
constraints:

Fig. 1. Example of degenerate 3-RPR.

2 A classof degenerate 3-RPR
Let us describe the family of manipulators on which the

strategies presented along the paper will be exemplified. A oh = Aoy
general 3-RR manipulator is a 3-degrees-of-freedom pla- C(.)S(B) = Aa/ds 2
nar parallel mechanism that has two platforms connected by SiN(B) = —Agy/ds.
three RIR rods, with the prismatic joints being actuated and
the revolute ones being passive. Without loss of generalifjherefore, the system of equations defining this family ef de
we can assume the absolute reference frame to be such gresterate 3-RR manipulators, formed by Eqngl (1) ard (2),
the base points of the leg rods ag= (0,0), A, = (Ax,0) will be denoted as
with Agx > 0, andAz = (Asx, Agy). If By, B2 andBs are the
corresponding points on the moving platform, then the geo- F(p.x) = 0.
metric parameters associated to this manipulator are the va ’
uesAoy, Asx, Agy, the lengthsl; = ||B1By||, d3 = ||B1Bs]|, and
the anglep = Bﬁs_l\Bg. The input-space is then formed
p = (p1.P2,p3) € R3, wherep; > 0 are the leg rod lengths,
and the output-space is formed by the poses of the movi
platformx = (x,y,a), whereB; = (x,y) anda is the angle
of vector B, — B; relative toAy — A;. We define(sy,Cq),

,Cg) and(sy.3,Cq4p) to denote the sines and cosines o I
ExS,BB, Ba)nd(O( EL BJSB resJ;)Be)ctiver. Then the forward kinematic Cusp locus determination

; ; : In this section we describe the cuspidal locus and an-
of a general 3-RR manipulator is defined by the system of . o
g - P y y alyze the usual methods for their determination. After that

byGenericaIIy, we will refer to this system Wdy. Whenever
concrete values for the geometric parameters are condidere
Hbese will be specified. Finally, the notatigp ) will stand

for the evaluation on real valuép, x).

equations .
we propose a more accurate approach and compare it to the
previous ones in a simple example.
X +y?—pf=0 Let us assume that a specific manipulator, whose geo-
(X+d1ca —Apx)?+ (Y+d1sa)2—p5 =0 (1) metric parameters have been set iRitdias been designated.
(X+d3Coyp — Asx)? + (Y + daSy g — Asy)®> — p5 = 0. Then, we denote the associatahfiguration spacey
For these manipulators, Hunt showed that the FKP ad- C(F)={(p,x) € RE : Flipx) =0}

mits at most 6 assembly modés [9], and several authars [10,
11] proved independently that the system associated to the . . . .
FKP can be reduced to a polynomial of degree 6. The 3. e Jacobian matrix of with respect to the output vari-

RPR manipulators for which the degree of this characteri@bles is denoted ak(F) = (%TF( %_5 S_E)- The configura-



tions where its determinant is zero are calbedallel singu-
lar configurationsor type 2 singularitiesOn these configu-
rations the manipulator shows a loss of control. Phaeallel
singular locusof our manipulator is a 2-dimensional space
that can be described (séel[15]) as

ST
T(pi) = W

Fig. 2. Cusp point K as a triple root of the FKP and non-singular
path linking upper and lower solutions of the FKP.

Z(F) ={(p,x) € C(F) : Ix(F)|(px) is rank deficient.

For simplicity, we will refer to this set as trengular locus
With this setting we now define theuspidal locusas

Algorithm 2 by McAree and Daniel]2]
1. Series expansion &f

OF = SE0x-+ Lo+ 3axT (%5 ) ax+xT (25 ) Ao+

K(F)={(p,x) € C(F) : p root of exact multiplicity 3 of~},

i.e. the triple roots of the FKP. Observe thdf) c Z(F),
since the Jacobiak(F) is rank deficient on the roots of mul-
tiplicity three of F. It is known that in the proximity of cusp
points a non-singular change of assembly mode can be mad
Figure[2 shows a cusp poirtand a non-singular path con-

0p?
&- Compute configurations where 1st and 2nd order con-
straints are rank deficient, i.e. solve

%ApT (OZF)Ap—i—...

. . aZF . . . .
necting two different assembly modes @nd ps). We shall v (Um) v =0, wherev is a unit vector in right kernel
note, however, that both the singular and the cusp locus are o _ )
quite difficult to visualize in the 6-dimensiong, x)-space. of 5x» andu is a unit vector that spans left kernel.

So for mechanisms with at most one inverse kinematics so-
lution, as is the case for the 3-RPwe will actually project

them onto the input-space instead. This second strategy reduces the problem to the resolu-

tion of some quadratic equations, but it also requires to find
3.1 Usual methods for the cusp computation the unit vectorsl andv, which may hinder the computation.
Let us revise the two main algorithms that have been These algorithms are commonly used in the cusp locus
more commonly used in the determination of the locus éfetermination. However, both have drawbacks related to the
cusp points for a given manipulator. The following method)on-cuspidality of some resulting points:
intrpduc.ed by Wenger and Chablat in [13], and anallytically § gince the polynomiag obtained by Algorithnill is the
derived in [16], has been used for the degenerate B-RB- result of several projections, some of the obtained points

nipulators. It was inspired on an approach developed by may correspond to the projection of complex (not real)
Hernandez et al in [17] for other robots. solutions. as we will see later on

e Step 3 usually needs to be removed from Algoritim 1 in
: order to avoid slow-processing.
Algorithm 1 by Wenger and Chablzi [13] e Algorithm[2 does not constrain the multiplicity of the
1. Reduceé (by successive resultants) to a single equation  solutions to be exactly 3, so it may obtain higher multi-
plicity ones. Regardless of that, [ [3] itis shown that ad-
g(t) =0, witht = tan(a/2) and coefficients ip. ditional spurious solutions may be produced for generic
2. Equations of triple rg)ots af 3-RFR manipulators.
G={g=0,% =023 =0}.
3. Equations of strictly triple roots af
3,
G=GU {28 #0}.
]flc;r(‘;eallivlgmgzts;from G and solve the remaining systema'2 | mprpved method |
= ' Despite the fact that the formulation of the cusp locus
5. SolveG. . e . X
is quite simple, the associated system of equations usually
contains many equations in many unknowns, whose resolu-
tion can take long computations and even lead to abnormal
This strategy reduces the problem to the computation wfrmination for not too complex examples. So the methods
the strictly triple roots of one single univariate polynaig. described previously were introduced as simple, though not
However, the constraint added in step 3 makes the comput@curate, alternatives to the symbolic resolution. Howeve
tion quite hard, and thus this step is often removed. we can now get over some of these difficulties with current
Another commonly used method, described by McAreggowerful symbolic algebra tools that fix the deficiencies of
and Daniel in[[2], makes use of the series expansidn.of the algorithms detailed above.

Therefore, both methods can only provide sufficient condi-
tions for the cuspidal locus but not always necessary ones.




The approach that we propose is an evolution [of] [18jmple case of degenerate 34Rkh order to contrast their
by Moroz et al., inspired on the results o6f [19]. The maimesults. However, let us clarify that both the formulation
difference of the proposed method compared to thdt df [18hd the proposed algorithm apply to other more general ma-
is the introduction of thesaturationoperator to remove the nipulators (se€ [8]). We set the geometric parameter values
qguadruple roots. Aoy =1,A3=0,A3y=1,=—-11/2,d1 =1, anddz = 1.
The characteristic polynomial for Algorithim 1 is

Algorithm 3 Proposed method o(t) = (P5—pD)t*+(p5— i~ A t*+ (P~ i~ 4)t+p3—pi
1. Equations of double roots &fw.r.t. p
Dr = FU{def{J«(F)) = 0}
2. Equations of triple roots ¢f w.r.t. p
Te = D U{detm) : m maximal minors oflx(Dg )} 4 4 2 2 2 2 2
3. Equations of quadruple roots Bfw.r.t. p P2+P3—2p2P3+6p1—3p;—3p3-12=0
Qr = Tr U{detm) : m maximal minors ofx(T¢)} 2pT+2p%— 4p2ps+4p3+3p5—7p5—16=0 (4)
4. Saturatdr by Qr 4, 2.2 2.2 (2.2 2 2 2_ o
+ - - +3pf+p5—4p53—6=0.
Cr — sa(Tr, Qr ) P3+P1P2 —P1P3 — P2P3+SP1+ P2 —4P3
5. SolveCk for real values ofp, x)

After eliminatingt from G we geté = {P1,P,,Ps} as follows

Observe that these equations are not independent. Ingeed,
is a combination of the other two:

Given the system defining the mechanisnit computes (p% — p% +1)
iteratively the equation$= andQg of triple and quadruple P2 =
rootsp of F, respectively. Then, we use saturation. Given

two polynomial system§; ands,, sa(S,, ) is an algebraic  Aqgjtionally, there are solutions & that do not correspond
operator that returns a pqunomlal system whose solutidn $§ the real cusp locus. For instance, if we get= 1/3, the

is thﬁ closufrehof the so(Ijuuoni{ of thg first systt_]em alfte_r rmo¥ystenﬁ|p1:1/3 has two solutions with both, andps pos-
ing those of the second one () denotes the solution set;; e * gyt the FKP evaluated on these two solutions only

of §, itis satisfied that has complex solution&, y,a). So, forp; = 1/3 the c-space
C(F) has no cusp points, though Algorithm 1 obtained two
V(sa(S,S)) =V(S) \V(S). (3) mistaken candidates.
We now test Algorithni13 on the same example. The
In general, the saturation ensures that all rootS,ddire re- €quations of the cusp loc@s are:
moved. However, in specific cases, some points can remain
due to property of Eqn[13) for which we can only obtain

2_ A2

Ps.
3 3 3

V(S)\V(S) instead o (S1) \ V(S2), which can differ by a 6Ca+p5—p3=0
null-measure set that can easily be removed afterwards. Fur 25(2] +s-1=0
ther details on the saturation and its geometric interficeta 2
can be found in[5]. 20 —S%—1=0
Although we are only interested in real (feasible) solu- 2CqSy —Ca =0
tions, we shall note that t.hg polynomial system optainezfaﬂ 3cy + 35y + p% _ p%+ 1=0
saturating has real coefficients and thus its solution agitico ) )
contain some complex (not real) roots. For this reason we 3Ca+ 38+ +y —p5+1=0
need to solve the final cusp syst€m in the real field. This 2X% + 2y — 48 —X—y+2=0

is done by using th&ootFindingMaple package.

250P3—3Cq — 65y — 4Xy—X—y=0
With Algorithm[3 the previous drawbacks are amended: SaP3— SCa = BSa — AXYT XY

2XCy+2YS+Co—3q —2X+1=0 )
e When computing the saturation @ by Qg, the points e _
of multiplicity 4 or higher are removed, and so we can 2YCa t 2yt G~ S xry+1=0
guarantee that only the cusp locus is obtained. 4ysi—sa+2(Ca—1)p5+4y° —3y+x+1=0
e By solvingCe for (p,X), instead projecting onto thg- 25y (2y? —4y—1) —3cq — 4xy—2y°+ 3y
space, we avoid having biased points produced by the 5
projection of complex (not real) solutions. —X+p3-2=0
e Furthermore, solvin@r in the real field ensures that no 6%y (2y+1)+12¢q — 8y°x+ 8y>+ 12xy
other spurious complex solutions are considered. x—3y+ 2xp§ _ 6yp§ _ 6p§ +8-0

. 185y (18y — 1) + 36Cy + 32y* + 20y? + 44xy
3.3 Case study comparison

4 2 2
Let us now compare the performance of both Algo- +13x— 47y +4p3—8p3yX— 32y2p3
rithm [T without step 3 and the proposed Algorithin 3 on a —6xp§ — 6yp§— 32p§+40: 0.



We first compute a Grdbner basis of the ideal
(p1,--.,pm) for any ordering, which will help us detect if
the system has or has not finitely many complex solutions. If
yes, then compute a so called Rational Univariate Represen-
P3 tation (RUR) of(py,..., pm) (seell21]), which is an equiva-
lent system of the form

T n(T
(M =0x=%q . %= %),
where T is a new variable independent ofy,..., X,
5 v ; ™ 3 7 equipped with a so callegeparating elemen(injective on
P2 the solutions of the system)e Q[Xy, ..., X,] and such that :
Fig. 3. Singular curve for p1 = % on (P2,P3)

-1

V(ps,...,Pm) = V(f) = V(p1,....Pm)
H_ere if we try to solve_C,:|Pl:1/3, we get no real so_lutions. (X1,.. %) — B=U(X1, ... %) — (%1(_%3))’.“’9&([%))
Figure[3 shows a section in tlip2, p3)-plane of the singular
locus ofF for p; = 3. As can be observed, there is no cusp o
point in this plot. This phenomenon is not casual. Actuallfiefines a bijection between the (real) roots of the system and
the value %3 for p1 has not been randomly picked as we wilthe (real) roots of the univariate polynomial
see in next section. In fact, Algorithi 3 describes the cusp We then solvef = 0, computing so called isolating in-

locus more accurately than Algoritith 1, in general. tervals for its real roots, i.e. non-overlapping intervaith
rational bounds that contain a unique real root ¢gee[[22]).

Finally, interval arithmetic is used in order to get isahati

boxes of the real roots of the system (non-overlapping prod-

dicts of intervals with rational bounds containing a unique
| root of the system), by studying the RUR over the iso-

4 Discussion on thejoint space

We now extend our improved method to partition a p
rameter space with regard to the associated cusp locus. SG; '
we want to discuss the solutions of a parametric systefdling intervals off. _ o
Among the numerous possible ways of solving paramet- In practice, we use the functioRootFinding[lsolate]

fic systems, we focus on the use of Discriminant Varietid®™ Maple software, which performs exactly the compu-

(DV) [6] for two main reasons: it provides a formal decomt@tions described above.

position of the parameter space through an exactly known
algebraic variety (no approximation), and it has been sug2 Discriminant varieties
cessfully used in similar problens [20]. Consider now the constructible set
Let us consider a general parametric polynomial system
g P POl Y S={vel: pi(v)=0,...,pm(v) =0,

qu(v) #0,...,ai(v) # 0},

and let us assume that for almost all the parameter values
this S is a finite set of points. Then, a discriminant variety of
wherepy, ..., pm, 1, ..,q are polynomials with rational co- § with respect tqUy, . ..,Uq) is a variety? c CY such that
efficients depending om = (U,...,Uq,X1,...,Xy) with X;  over each connected open €ehot intersecting’ (UN7V =
being unknowns and; parameters. For instance, the systerfd), S defines an analytic covering. In particular, the number
describing the cuspidal configurations our manipul@ois of points ofS over any point ofi is constant.

parametric if some of the geometric parameters are injtiall  Discriminant varieties can be computed using basic and
left free inF. The DV associated to systefh is described well-known tools from computer algebra such as Grobner
by a polynomial equation. This DV partitions the parametdrases|[[5]. A full package is available in Maple software
space into several regions such that over each open regilorough theRootFinding[Parametricpackage, which pro-
delimited by the DV the number of real solutions #fis vides us with a polynomidV (s;Us,...,Uq) whose associ-
constant. Prior to defining the DV associatedftpwe need ated discriminant variety i$’.

to specify a solver of 0-dimensional systems that will beduse

as a black box.

F ={p1(v)=0,...,pm(V) =0,01(v) > O0,...,q(v) > 0},

4.3 Case study comparison
Let us consider again the degenerate 3RRMth the
4.1 Basic black-boxes same geometric parameter values as those specified in sec-
Let us describe the global solver for 0-dimensional sy§0n[3.3, i.e.Aox =1, Asx =0, Agy = 1, B = —T1/2,dy1 = 1,
tems that will be used as a black box in the general algorithamd d3 = 1, and consider the systen® (Egn.[4), andCr
We mainly use exact computations, namely formal elimingEqn.[5), obtained by Algorithin 1 without step 3 and by Al-
tion of variables (resultants, Grobner bases) and resolut gorithm[3, respectively. We will regard as a parameter one
of 0-dimensional systems, including univariate polyndmia of the leg lengthg; of the manipulator. The discriminant



2y/27-10 2 cusps r3=+/2, obtained after several reductions of the initial systenchea

r =

0.0 cuspsTl 2 | 3cusps  of which applying also a projection on tipespace. For this,

' there can be complex configurations of the manipulator that
DVz > . N
pG1 |0 cuspg 2 cusps | project onto real rootp of G. This is the case for the values
of p1 €]r1,raf.

DV, | O cusps| 4 cusps | The same can be done for any other parameter and the

0,0 cusps | r*s — /2,  same phenomena can be observed.

r2= <7 2 cusps 5 cusps

Fig. 4. Comparison of both discussions on P1
5 Higher-dimensional discussion by meansof a CAD
By construction we know that over any connected open
variety will provide us with a polynomial ip1 whose roots region not intersecting the DV the system has a constant
will delimit some open intervals such that for whatever ealunumber of real roots, for whatever chosen parameters. But
of py within one interval, the number of cusp pointsfof,  if we want to discuss larger parameter spaces, then the open
will be the same. We compute the DV for each system wittegions will no longer be as simple as 1-dimensional inter-

respect tgs, and analyze the results. _ vals. So the goal of this section is to provide an accurate

In the first case, we get the polynomiaV(G;p1) = description of the regions with constant number of solgion
p1(p? — 2) (2p+ 10p2 — 1), whose roots describing the dis-For this we will use the Cylindric Algebraic Decomposition
criminant variety are (CAD) [I7,123].

rozo, I']_:#Llo and r3:\/§. . .. .
5.1 The complementary of a discriminant variety
Since the number of cusp points is kept constant betweentwo Let #y ¢ Q[Uy,...,Uq] be the set of polynomials de-
consecutive roots, we can compute the associated numbeg&fibing the DV. Then for eadh=d —1,...,0, we introduce
cusps by picking one single value pf inside each open a new set of polynomial® c Q[Us,...,Uq ;] defined by a

interval and solvéS|,, . In this case we obtain backward recursion:
e 0 cusp configurations fqr; €]0, rq], e Py = the polynomials defining the DV,
e 2 cusp configurations fgy €]rq,r3[, and e B ={DV(p;U;), LeadingCoefficierip,U;),
e 3forp; €]ra,ool. Resultantp,q,Ui), p.ac ?_, }

Substitutingp; = rj into G we obtain the number of cuspson  Each? has an associated algebraic variety of dimension
the borders of the intervals. at mosti — 1, U4 = V([peq P). The 4| are used to recur-
sively define a finite union of simply connected open subsets
Ug_; Ui x C R' of dimensiori such thaw N U = 0.

Before defining the setgl x, we introduce some nota-
tion: for a univariate polynomigb with n real roots,

e O cuspsormp; =0,
e 2 cusps ompi = rp, and
e 30N P1=Tr3.

In the second case, a similar analysis@prgives —wif| <0
root(p,l) = thelt" real root ofpif 1 <| <n,
DV (Cr;p1) = p1 (P —2) (807 — 1) (2p7+ 1007 — 1), Fooif I >n.
Moreover, if p is an-variate polynomial, ang is a (n— 1)-
which has one more root th@V (G; p1) tuple, thenp” denotes the univariate polynomial where the
firstn— 1 variables have been replacedwby
fo=0, = ﬂ), ry— @ and r3=/2. The recursive process defining tiagy is the following:

The intervals and the numbers of cusps @pr differ a bit d For! =1, letpr = Nper, P-
from those obtained fd&: Taking all ¢k =]root(p1,k);root(p,k+ 1) for k =
0,...,n, wheren is the number of real roots qd;, one

gets a partition oR that fits the above definition. More-
over, one can arbitrarily chose one rational paipg in
each open intervally y.

e Then, fori=2,...,d, letpi = [pea P-

The regionst; ¢ and the pointsy; i are of the form:

0 cusps fop €]0, r1],
0 cusps fop1 €]r1,rz],
4 cusps fopg €]rp,r3],
6 cusps fop1 €]rz, .

0 cusps op1 =0,
0 cusps orp1 =71,
2 cusps orp1 =12,
5 cusps ompy =r3.

The results obtained in both cases are compared in
Fig.[4. We can observe that the first two intervals do not
exactly coincide, and that for the second system the oldaine U ={(V1,...,Vi—1, Vi) | Vi= (V1,....,Vi—1) € Ui—1,j,
numbers of cusps appear doubled for all intervals (compared vi €]root(py,1),root(pY,1 + 1)}
to those obtained for the first system). Both phenomenacan Uik = (B1,...,Bi—1,Bi), with
be explained as a consequence of the projection map used to By Bic1) = Ui—1,j
compute the syster®. Let us remind the reader th@t is {Bi €lroot(p, 1, 1),root(p;" 1 + 1)]



m 6 cusps

4 cusps
W 2 cusps
m 0 cusps

N

T T T T T T T
1 2 3 5 6 7 8

4
P1
Fig. 5. Plot of the DV of Cg with respect to (p1,d1)

wherej,| are fixed integers.

With this recursive procedure we get a full description
of the complementary of the DV for the system to be solve(a:
the cellsUy « and a test pointiy x € Ugk (wWith rational co- 038
ordinates). The number of solutions associated to each open N
cell Uy k is obtained by solving the given system restricted to
Ugk using a O-dimensional solver. Both the cell decomposi- 0 P1
tion and the test points can be obtained by the Maple function

RootFinding[Parametric][CellDecomposition] Flgh7t Zoom in of the cell decomposition for (p1,0d1). Line dp = 1
in white.

5.2 Open CAD for aclass of degenerate 3-RPR

Let us see the performance of this CAD on a 2-
dimensional discussion. We consider now a family of degesingle point ford; = 1. So we could claim that the case with
erate 3-RR manipulators withAx = 1, Agx = 0, Asy = 1, d; = 1 is a very special degenerate 3fRRmanipulator.
B=-1/2,andd; = 1, and regard as parameters bpttand
di1, constrained byl; > 0. Now, the systenCr describing
the cusp locus associated to this family of manipulators has )
18 polynomials, its DV is plot in FigZ5, and the polynomiaP-3 Study of the cusp points on the bor der s of the CAD
DV (Cr; p1,d1) factors as follows: At this point we can only certify the number of cusp
points in the open cells. This excludes the cell borders. The
union of all these borders consists of the DV plus the delim-

2 4n6 1004 2.2 2
dapa (dp + 1) (—~4pi— 1207 +27p1d; +15p7 — 4) itation of intersection points of the DV. However, by defini-

(4p3 + 12p7df — 15p7d{ +4dP — 27p]df) tion, changes in the number of solutions can only happen on
(256pf13 df + 81p§ d? _ 288!3‘11(111 + 256p‘15 _ 576p‘1‘df the DV. So, we just need to analyze the DV.
I 51p§ d4 — 16df . 288p‘1‘+ 51p§ df + 81p§). We could try executing a further iteration of the CAD on

the DV, but the system to be solved turns out to be too com-
plex and we cannot obtain any results after long computa-
The complement of this DV produces 90 cells with asjons. It is clear that not all points on the DV will corresjgbn
sociated numbers of cusps varying among 0, 2, 4 and 6,{8§he same number of solutions. But we can expect the num-
shown in Fig[®, where black vertical lines delimit intersegyer of solutions to be preserved along the DV between two
tion points of the DV. Let us notice that although all cellgonsecutive auto-intersection points of the DV. And altjiou
must be considered disconnected, it is apparent that ceflfas not yet been proven, many tests have been run on sev-

are naturally grouped with regard to their number of cuspgral examples with random points on the DV and all the re-
Additionally, cells with different number of cusps are axcl gyits confirm what the following conjecture infers.

sively separated by curves of the discriminant variety.- Fu(r_: i Gi | il let 7V be th
thermore, this distribution is consistent with that obeaiior ~°nJecture 1. Given a polynomial syster®, let 7’ be the
di = 1 in Sectior 4B, as can be seen in Fi. 7. Howeve!?,v of F_w.r.t two_parameterdl,uz, and let4 be the se_t of
here the section is divided into many more smaller intervafS auto-intersection ﬁomt& Theg, the numbﬂe;}r c;f solutioh
whose borders we cannot apriori ensure to be associated tf> constant on each connected componeriqf-a.

a specific number of cusp points. In fact, let us also observe The following algorithm analyzes the to study the num-
that the cells with 2 cusp points (in blue) degenerate in® obers of solutions on the DV based on the previous conjecture.
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Fig. 9. Complete analysis of the cusp points for (p1,d1)

Fig. 8. Distribution of cusp points on DV (Cg;p1,d1) (a), and

zoom in view on [0, 1.5] x [0, 1.5] (b). uesp, andps. For example, in yellow regions we can have a
maximum of 4 cuspidal configurations, but depending on the
values ofp; or p3 there can even be none. In particular, for
the red regions there are 0 cusp points for all possible galue
p2 andps.

Some applications can be derived which may be inter-
esting from the designer’s point of view:

Algorithm 4 Number of solutions oF on the DV
V = variety of DV (F;U1,Uz)
A4 = {auto-intsersection points 6f }
for each connected componetitof 7\ 4 do
pi = random point ondj;

Compute the number of solutions @i as e It can be helpful in deciding the most suitable architec-

the number of solutions d¥ |, ture of the mechanism. Let us assume that we want to
end for design a 3-RR manipulator with some given geometric
for each poing € 4 do constraints such that for a specific task one of the legs

Compute the number of solutions Bfgq has to be blocked to a fixed length, but the job re-
end for quires a large singularity-free workspace. Therefore, we

may be interested in finding a rande; of parameter
values for which the manipulator is cuspidal.
e It can also be useful for deciding the most suitable
ranges of leg lenghts for each possible architecture,
given a specific task. For instance, let us assume that the
job is set for a non-cuspidal manipulator with parameter
valuesAoy =1,A3=0,A3y=1,p=—T/2,anddz =1,
but it requires the largest possible range of the leg length
p1. Then, the value@; can be optimized with this crite-
rion. Figurd 1D details both the optimal valagand the
largest possible rang¥p; for our problem.

5.4 Complete analysisand applications

From the results exposed in the previous subsections and
by joining all the different pieces together we obtain a com-
plete partition of the 2-dimensional parameter space.

The execution of Algorithni]4 o®V (Cg;p1,d1) pro-
vides the distribution of cusp points shown in Hig. 8. The
integral picture of the 2-dimensional distribution is givia
Fig.[@. It is interesting to notice that there is a continwity
the transitions between cells having the same number of cusp
points, since their common border inherits that same number Let us just notice that in both cases the obtained ranges
of cusp points. can be of varied topology (open, closed, semi-closed, open

Observe also that this distribution has been obtainedid closed, connected, or even a union of these types). This
thanks to the DV associated to the chosen paraméieasd is due to the combination of both the CAD and the study of
p1, which depends exclusively on these two parameters. time cusp locus on the DV.
particularDV (Cg; p1,d:1) does not depend g norps. This
tends to be erroneously interpreted as:

“if we pick a (p1,d1)-point with associated number of6 Conclusions

cusps k, then whatever the valups and p3 may take, This paper has introduced both an efficient method for
Cr(pyp2.p5,dr) Nas k solutions the computation of the cuspidal configurations of a mecha-
Instead, it should be read as follows: nism, and a reliable algorithm that partitions a given param

“if we pick a(p1,ds)-point with associated number of cuspster space into open regions with constant number of associ-
k and fix these values then, among the reachable configueded cusp points.

tions there are k cuspidal ones, i.e.r[g, 4,) has k solu- The first one is based on a symbolic-algebraic approach
tions’. However, the number of associated cusp points doable to describe the roots of exact multiplicity 3 and a cer-
establish a maximum of cuspidal configurations for any valified numerical algorithm that isolates among them the real
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