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Pebble Motion on Graphs with Rotations:
Efficient Feasibility Tests and Planning

Algorithms

Jingjin Yu, Daniela Rus

Abstract

We study the problem of planning paths fprdistinguishable pebbles (robots) residing on the
vertices of am-vertex connected graph with < n. A pebble may move from a vertex to an adjacent
one in a time step provided that it does not collide with otbebbles. Wherp = n, the only collision
free moves are synchronous rotations of pebbles on disficles of the graph. We show that the
feasibility of such problems is intrinsically determineg thhe diameter of a (unique) permutation group
induced by the underlying graph. Roughly speaking, the dtemof a grougs is the minimum length
of the generator product required to reach an arbitrary eftrof G from the identity element. Through
bounding the diameter of this associated permutation gnebjch assumes a maximum value®@fn?),
we establish a linear time algorithm for deciding the fe#igjtof such problems and a@®(n®) algorithm

for planning complete paths.

. INTRODUCTION
In Sam Loyd’s 15-puzzle Loyd (1959), a player arranges sghkcks labeled 1-15, scrambled

on a 4x 4 board, to achieve a shuffled row major ordering of the blagiag one empty swap
cell (see.e.qg, Fig.[1). Generalizing the grid-based board to an arbitcamynected graph over
vertices, the 15-puzzle becomes the problemeiible motion on graph®MG). Here, up tan—1
uniquely labeled pebbles on the vertices of the graph mustdyed to some desired goal config-

uration, using unoccupied (empty) vertices as swap S[@aﬁiﬂzce the initial work by Kornhauser
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et al.|Kornhauser et al. (1984), PMG and its optimal varidvas received significant attention
in robotics Solovey and Halperin (2012); van den Berg et28100); Wagner and Choset (2011)
and artificial intelligence Krontiris et al. (2013); Staedland Korf (2011), among others. The
connection between PMG and multi-robot path planning is @diately clear, with poten-

tial applications towards micro-fluidics Griffith and Akell{2005), multi-robot path planning
Solovey and Halperin (2012), and modular robot reconfigomaReif and Sleel (2006), to name
a few.

As early as 1879, Story Story (1879) observed that the pafigy 15-puzzle instance decides
whether it is solvable. Wilson Wilson (1974) formalizedsttobservation by showing that the
reachable configurations of a 15-puzzle form an alternagiogip on 15 letters. An associated
planning algorithm was also provided. Kornhauser et al.nKauser et al. (1934) improved the
potentially exponential time algorithm from Wilsan (1973 giving an algorithm for PMG that
runs inO(n3) time for graphs witm vertices and up ta— 1 pebbles. Auletta et al. Auletta et al.
(1999) showed that for trees, deciding whether an instafdbeo pebble motion problem is
feasible can be done in linear time. Recently, the lineasibélity result was extended to general
graphs for PMG_Goraly and Hassin (2010); Yu (2013). Althoagh a focus of this paper, we
note that computing optimal plans for such problems is galyeP-complete Goldreich (1984);
Ratner and Warmuth (1990); Surynek (2010); Yu and LaVal@l 8.

(b)

Fig. 1. Two 15-puzzle instances. a) An unsolved instancéhémext step, one of the blocks 5, 6, 14 may move to the vacant

cell, leaving behind it another vacant cell for the next mdweThe solved instance.

As evident from the techniques used.in Kornhauser et al.4}t 98ilson (1974), PMG and
related problems are closely related to structuregesfutation groupsFixing a graph and the
number of pebbles, and viewing the pebble moving operati@tenerators all configurations
reachable from an initial configuration form a group thatgemorphic to a subgroup @&,,
the symmetric group om letters. Deciding whether a problem instance is feasibl¢hén

equivalent to deciding whether the final configuration ischedole from the initial configuration



via generator products. Another interesting problem is ttomain is the study of théiameter
of such groups, which is the length of the longest minimalegator product required to reach
a group element. Driscoll and Furst Driscoll and Furst (198387) showed that any group
represented by generators that are cycles of bounded degsea diameter o®(n?) and such
a generator sequence is efficiently computable. For georeraf unbounded size, Babai et al.
Babai et al.|(2004) proved that if one of the generators fixésast 67% of the domain, then the
resulting group has a polynomial diameter. In contrastugsowith super polynomial diameters
exist Driscoll and Furst (1983).

a b
Fig. 2. Two configurations that(ca)n be turned into each other single synchronize(d r?”nove.

Somewhat surprisingly, a natural generalization of PMGuvailhg rotations of the pebbles
without empty swap vertices has not received much attenfiassibly due to its difficulty.
As an example, in Fig.l2(a), the pebbles labeled, 3and 5 are allowed to rotate clockwise
along the (only) triangle to achieve the configuration in.I2¢b). We call this generalization
the problem ofpebble motion with rotation$PMR), a formal definition of which will follow
shortly. Synchronous rotations are important to have in divrabot setting for at least two
reasons. First, with communication, robots are able to weesynchronous rotational moves
easily. Disabling such moves thus wastes robots’ capigsiliSecond, allowing rotational moves
could allow more problem instances to be solved and couldl significantly reduce the length
of plans (note that the length of a plan can never be increlagedlding more modes of motion).

In this paper, we employ a group theoretic approach to derlireear time algorithm for testing
the feasibility of a given PMR instance. The algorithm alswmlies a cubic time algorithm for
computing full plans when a PMR instance is feasible. Thus,establish that PMR induces
similar algorithmic complexity as PMG does in the sense thlahning and feasibility test
take O(n®) and linear time, respectively. Nevertheless, the algritHor solving PMG and
PMR have significant differences due to the introductionyafciironous pebble rotations. By

delivering these algorithms for PMR, we also bring forth dentribution of providing a now



fairly complete landscape over graph-based multi-robtit péanning problems.

We formally define PMG and PMR problems in Sectioh Il. In Saeflll] we look at the
groups generated by cyclic rotations of labeled pebblegyraphs fully occupied by pebbles. We
show that such groups ha®n?) diameters. With this intermediate result, we continue tagh
in Section[1V, that the feasibility test of the PMR problermdae performed irO(|V| + |E|)
time, which implies arD(n®) algorithm for computing a feasible solution (the set of muoeats).

We conclude the paper in Secti .

Il. PEBBLE MOTION PROBLEMS
Let G=(V,E) be a connected undirected graph wht = n. Let there be a sqi < n pebbles,

numbered 1..,p, residing on distinct vertices o&. A configurationof these pebbles is a
sequences= (sy,...,Sp), in which s denotes the vertex occupied by pebblé\ configuration
can also be viewed as a bijective m&p{1,...,p} — V(S) in which V(S) denotes the set of
occupied vertices by We allow two types ofmovesof pebbles. In asimple movea pebble
may move to an adjacent empty vertex. Imogation, pebbles occupying all vertices of a cycle
can rotate simultaneously (clockwise or counterclockjviech that each pebble moves to the
vertex previously occupied by its (clockwise or counteckleise) neighbor. Two configurations
SandS areconnectedf there exists a sequence of moves that ta&é&s S. Let SandD be two
pebble configurations on a given gra@h the problem ofpebble motion on graphis defined

as follows.

Problem 1 (Pebble Motion on Graphs (PMG)) Given (G,S,D), find a sequence of simple
moves that take S to D.

WhenG is a tree, PMG is also referred to psbble motion on treed*MT). In this case, an
instance is usually written as= (T,S D) with T being a tree. When both simple moves and

rotations are allowed, the resulting variant is the probtgnpebble motion with rotations

Problem 2 (Pebble Motion with Rotation (PMR)) Given(G, S D), find a sequence of simple

moves and rotations that takes S to D.

2Given the limited space, we focus on establishing the thieatefoundations behind the algorithms instead of the willgms

themselves. We believe such coverage offers more insigtastiie intrinsic structures of PMR problems.



If Gis a tree, then a PMR is simply a PMT. We note that it may be ptstd achieve
additional efficiency by allowing multiple simple moves armtations (along disjoint cycles)
to take place concurrently. For example, the configuratiorFig. [2(a) can be taken to the
configuration in Fig[2(b) in a single concurrent move. A filiscussion of such movesd,, the

optimality perspective) is beyond the scope of this paper.

[Il. GRAPH INDUCED GROUP AND THEUPPERBOUND ON ITS DIAMETER
A. Groups Generated by Cyclic Pebble Motions and their Dignse

A particularly important case of PMR is whgn= n; we restrict our discussion to this case
in this section. Wherp = n, only synchronous rotations are possible. Given two cordigons
SandS that are connected, they induce a permutation of the peblvlesh is computable via
0ss(i) =S 1(S(i)) for each pebblé; oss is the identity element. Given an initial configuration
S, let . denote the set of all configurations reachable fignlit can be verified, using basic
definitions of groups, that the permutatioag 5 over all § € . form a subgroup of5,, the

symmetric group om letters. Since this group is determined by the gr&ptwe denote itG.

Fig. 3. For the graph above, the collection of sets of cyde&a= {{vivovavavs}, {VeV7VaVovip}, {V1VaVaVaVs, VeV7VgVovio} -

Two cycles ofG aredisjoint if their vertex sets have empty intersection. Whe#s: n, each
synchronous move corresponds to the rotations of pebhbbeg @ set of of disjoint cycles. Let
% be the collection of all sets of disjoint cycles @& eachC € ¥ is a unique set of disjoint
cycles of G. Since the pebbles may rotate clockwise or countercloekaleng a cycle; € C,
each set of disjoint cycle8 can take a configuration td2 new configurations with one move.
That is, eaclC yields 2° generators ofs. Let the set of all generators obtained this way“he
As an example, the graph in F[d. 3 has two cycles, With= 3 and|¢| = 8 (note tha{¥| = 2/¢
does not hold in general). We make the simple observatianttiese definitions yield a natural
bijection between synchronous moves and element¥.oAAs such, when a configuratiod
is reachable from a configuratids) we say that the permutatiansg € G is reachable(from

the identity) using products of generators fréfncorresponding to the synchronous moves. We



frequently invoke this bijection between synchronous nsoaed generators without explicitly
stating so. Lastly, any elemert G can be expressed as generator produgs. .. gk in which
O1,---,0k € 4. Let kx be the minimunk such thatx = g10>...0k. The diameter of5, diam(G),

is defined as the maximuky over allx € G.

B. Upper Bound over Group Diameters
The main result to be established in this sectiordism(G) = O(n?). To show this,G is

divided into classes based on its connectivity. WiGrs connected (1-connected) but none of
its subgraphs are 2-connectdce( G has no cycles), it is a tree. In this case, no pebble can
move. Another simple case is whéhis a cycle, the simplest 2-connected graph. Then, it is

clear that all elements d& are generated by a single rotation.

Lemma 1 (Trees and Cycles) If G is a tree, thenG = {1}, the trivial group. If G is a cycle,
thenG = Z/n, the cyclic group of order n.

Fig. 4. Two cycles sharing one common vertex. The grapsefsarableat b.

WhenG is connected but the removal of some vertex fr@rfeaves two or more components,
it is separable An important case here is whéb is a set of cycles sharing vertices so that no
edge ofG is on more than one cycle. Such graphs form a subset of 2-@mlgeected graphs.
Fig.[4 gives an example with two cycles. Following convemis, denotes thalternating group
on n letters. For groupsi; > G, or G, < G; denotes thats, is a subgroup of51. For two
configurationsS and S' over the same set of pebbles on the same graph, we say thaarthey
cycle similarif the following property holds. For any pebbk let the sets of cycles (of the
underlying graphG) occupied bya in configurationsS andS be Cs andCg, respectively. Then
CsNCq # @.

A key result of this section is the following.

Theorem 2 (Cycles, Separable) If every edge of a separable graph G is on exactly one cycle,
thenG > A, and dian{G) = O(r?).



PROOF Given configuration§ and D, we claim:

1. In O(n?) moves,D can be taken to some configurati@ such thatS and D’ are cycle
similar. As an example, in Fid] 4, assuming the given conéitian is S, this step ensures that
in configurationD’, pebblesa;’s are all on the left cycle and pebblegs are all on the right
cycle. The pebbld may appear on either one of the two cycles.

2. In O(n?) moves fromD’, a configuratiorD” can be reached such that eitli@f = S or D”
and S differ by a transposition (group action). We require that thansposition is fixed for a
fixed S and involves two adjacent pebbles &fLet S be the result of letting this transposition
act onS

These claims are proved in lemmas that follow. By these daam arbitraryD can reach
either S or S. Therefore, all configurations (and consequently elemehtS,) are partitioned
into two equivalence classes based on mutual reachalflibce the only subgroup d¥, of
index 2 isAp, this implies thatG > A,,.

WhenG 22 A, any element of5 is a product of generators frosf with a length ofO(n?),
proving diam(G) = O(n?). If G is not isomorphic toA,, since the only subgroups @&,
containingA,, are A, and S, itself, G = S,. This implies thatA, has at most two cosets
in G; denote the other coset &f, as A,°, which also have a diameter (ij(nz) (to see this,
note that any configuratio is reachable from one &, S in O(n?) moves). From the identity,
all elements ofA, are reachable using generator products of ler@th?). Since elements of
An¢ are now reachable from elements Af;, an element ofA,,¢ must be reachable from the
identity using a generator product of lengdin®) as well. Therefore, whe@ = S,, all elements

of G are reachable using generator products of lel@fti?), yielding diam(G) = O(n?). O

Before moving to the lemmas, we note that wh&ns separable and every edge Gfis on
exactly one cycle, the edges Gfcan be partitioned into equivalence classes based on thescyc
they belong to. Becaud® is separable, every cycle must border one or more cycles tatie a
same time, two cycles can share at most one vertex. Such b rapso called aactusgraph.
Moreover, there exists a cycle that only shares one verttxather cycles. We call such a cycle
al&?\];ecﬁf cée@gleeéargﬁlao ‘Etalslegf & 8‘8 iaigtigﬁgeirblfpcsif a vertex onC’ needs to travel

through at leastl. cycles to reaclC. A neighboring cycle ofC has distance 0 since they share



Fig. 5. The dual tree structure in a separable gr@phith every edge on exactly one cycle. The numbers reprekentyicle

distances of the cycles to the leaf cy€ewhich in fact is the root of the tree.

a common vertex. Le€ have a cycle distance 6f1 by definition. This induces a (dual) tree
structure on the cycles when viewing them as vertices joime@dges to neighbors (seeg,
Fig.[5). Computing such a tree takes tid¢|V|+ |E|) because obtaining maximal 2-connected
components takes linear time Tarjan (1972). The first clainthe proof of Theorerml2 can be

stated as follows.

Lemma 3 (Initial Arrangement) Given a separable G with each edge on exactly one cycle and
configurations S and D, in @?) moves, a configuration that is cycle similar to S is reachable

from D.

PROOF Note that a pebble may reside on multiple cycles; this lenomigt ensures that each
pebble gets moved to one of the cycles it belongs t&.ikirst we show that a single pebble
can be relocated to a cycle it belongs to $nin O(n) rotations, without affecting pebbles
that are previously arranged. Whéhis two cycles joined on a common vertes.q, Fig.[4),
without loss of generality, assume that we need to ma\feom the left cycle to the right cycle.

This implies that some pebblg (and possiblyb) does not belong to the right cycle B We

. . a a ... q b
note that the groui®s in this case has four generatotg,= O =
b a ... Y1 Y
it & ... G . . . .
, Which correspond to clockwise rotations along the left aightr
C C3 ... b ¢

cycles, respectively, and their inversge;;,l andg; L. One can verify that the generator product
g;igr_jgie exchanges; andc; between the two cycles without affecting the cycle membprsh

of other pebbles (see Figl 6). For the general case in whiatbalg needs to go through some
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Fig. 6. [lllustration of the vertex arrange algorithm for tadjacent cycles.

k cycles, denoting the generators @s..., g, it is easy to verify that a product of the form
g[ilggiz...g{(k...gizzgill achieves what we need, with+ ... +ix < n. There may be more than
these R basic generators, but we do not need the other generatotki$oproof. Therefore, at
most Zh moves are needed to move one pebble to the desired cycle.oi affecting pebbles
that are previously arranged, we may simply fix a leaf cy¢land start with cycles based on
their cycle distance t€ in decreasing order. At mosn2 moves are required to arrange all

pebbles to the desired cycles. O

Lemma 4 (Rearrangement) The pebbles arranged according to Lemila 3 can be rearranged
such that the resulting configuration is the same as S orrdiften S by a fixed transposition

of two neighboring pebbles in S. Rearrangement requir@® Omoves.

PROOF For a fixedG, let C be a leaf cycle and |6 border other cycle(s) via vertex In S
let a; be the pebble occupying counterclockwise neighboringexedf v on the cycleC, and
let a, be the counterclockwise neighbor af on C (again, see Fid.l5 for an illustration of this
setup). The fixed transposition will b@; ay).

We rearrange pebbles to match the configuratostarting from cycles with higher cycle
distances to the leaf cyclg, using the neighboring cycle with smaller cycle distanagclisa
cycle is unique). We show that the pebbles on the more distar¢ can always be rearranged
to occupy the vertex specified I Moreover, this can be achieved using moves that only affect
the ordering of two pebbles on the neighboring cycle. Withlogs of generality, we use the
two cycle example from Fid.]14 and let the right cycle be the endistant one. The generators
gg,ggl, or, andg; ! from previous lemma remain the same. To exchange two pelobligse

right cycle, for example;,cj, we may use the following generator product

0,%0'9:9 "9, 0 T geg; g (1)
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It is straightforward to verify that {1) works. To make it ate Fig.[7 illustrates the application

of (I)) for exchanginge, andcs usingas,ap. Every such exchange requires at mostn2oves.

Fig. 7. lllustration of the rearrangement algorithm (froeft to right, then top to bottom).

Performing such exchanges iteratively, within?2moves, all pebbles except those on the
leaf cycleC can be rearranged to occupy vertices specifiedSbiReversing the process, we
can arrange all pebbles @ to occupy vertices specified U, using a neighboring cycl€’,
affecting the ordering of at most two pebbles @h Repeating this process again withusing
C as the neighboring cycle arsd, a, as the swapping pebbles, all pebbles except posaibbp

occupy the vertices specified I8/ O

The above two lemmas complete the proof of Theorém 2. At thistpit is easy to see that
when G is separable with each edge on a single cy@es S, if and only if G contains an
even cycle, corresponding to the composition of an odd nurobéranspositions. Otherwise,

G 2 An. We are left with the case in whidB is 2-connected but not a (single) cycle.

Theorem 5 (2-connected, General) If G is 2-connected and not a cycl®8,~= S, with diam(G) =
o(r?).

PrROOF Our proof again starts by showing that the locations of twbljjes can be exchanged

without affecting the locations of other pebbles. Given aoBnected graplt that is not a
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cycle, it can always be decomposed into a cycle plus one oe gaxs (an ear is a simple path

P whose two end points lie on some cycle that does not contaier oertices ofP). Therefore,
any two pebbles o must lie on some common cycle with one attached ear. We may the
assume that the two pebbles to be exchanged lie somewhemoocadfacent cyclesi.€., they
are two arbitrary pebbles in Figl 8). Restricting to suchapfG’' of G, which has three cycles
(left, right, and outer), rotations along these cycles wit affect the rest of the pebbles not on
G'. We claim that moving withinG' is sufficient to exchange any two pebbles Ghand the

operation can be done wi®(n) moves.

Fig. 8. A simple 2-connected graph. There are six moves fsrabnfiguration: Rotating clockwise or counterclockwiseng

one of the three cycles.

Let G’ haven; +n, + ng vertices, withn, vertices belonging to the left cycle only vertices
belonging to the right cycle only anab vertices shared by the two cycles. Assuming the initial

pebble configuration is as illustrated in Hig. 8, we have thWing generators,

a a ... ang bn2 ... b
Q= ;
bl a ... dy-1 any .- bz
C]_ C2 e Cn3 an e b]_
gr = 9
C2 C3 e bn2 bn2_1 e C]_
b1 ¢ ... Cy bn, an .o
gO = 9

CL C ... bp, an, an—1 ... by
which are clockwise rotations along the left, right, and oer cycles ofG’, and their inverses,
g, 1,972, andgyt. Note that

_ by ¢
0rgdo - = = (bycy). (2)
C1 bl
That is, we may exchange (transpobghndc; using a generator product of length 3. Using this

length 3 productrg,dy ?, it is possible to exchange any two pebbles@mwithout affecting other
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pebbles. We elaborate two such cases, all other cases alarsima first case we exchange
andc;j. To do this, we first move; to c;’s location, followed by movingy to by’s location. We
can then switcly; andc; using the primitivegy 9,05 L. Reversing the earlier steps then switches
andc;j without affecting any other pebbles. The complete prodegusnce iggigﬁ gggglgf”lgig,
which requiresO(n) moves or generator actions. Similarly, if we want to switomsc;,c; that
are not adjacent, we can move them along the outer cycle amgilof them belongs to the left
cycle and the other to the right cycle. The case of exchanging then applies, after which
we reverse the earlier moves on the outer cycle to obtain ¢heffect of switchingei,cj. The
number of moves is agai®(n). This impliesG = S, anddiam(G) = O(n?). O
Combining Theorem&]2 anid 5 concludes the case for 2-edgeectad graphs that are not
single cycles; the case of general graph then follows. Siveavill mention “2-edge-connected
component” fairly frequently, we abbreviate it to “TECC”@pt in theorem statements. Also,

we call each component @ after deleting all TECCs aranch

Proposition 6 (2-edge-connected) If G is 2-edge-connected and not a single cyde> A,
with diamG) = O(n?).

PROOF. A 2-edge-connected grafihcan be separated into 2-connected components via splitting
at articulating vertices. A (dual) tree structure, similarthat illustrated in Figl15, can be built
over these components. The two-step algorithm used in thaf pf Theoreni R, in combination
with Theoren b, can be applied to show ti@t> A, anddiam(G) = O(n?). O

After gathering all cases, we obtain the following main fegor this section.

Theorem 7 (General Graph) Given an arbitrary connected, undirected, simple graph i@ngG) =
o(r?).

PROOF. Pebbles on vertices @ that are not on any cycle are always immobile. Deleting those
vertices does not chande. After all such vertices are removed, we are left with the TSC
of G. Denoting the associated groups of these componaits, G is the direct product of the

Gy’s. Since allG;’s haveO(n?) diameter, so doe6. O
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IV. LINEAR TIME FEASIBILITY TEST OFPMR

We now describe a linear time algorithm for testing the fieitisy for PMR, using a proof strat-
egy similar to that from Auletta et al. (1999) on PMT. We firsstate a result form Auletta et al.
(1999).

Theorem 8 (Theorem 3 in Auletta et al. (1999)) Given an instancéT,S D) of PMT, in Qn)
steps, an instancé€T,S,D) of PMT can be computed such thdf B contain the same set of

vertices and(T,S S) is feasible.

The following corollary is also obvious.

Corollary 9 Given an instancéT,S D) of PMR, let(T,S,D) be the new instance obtained
according to Theore 8. The(T,S D) is feasible if and only i{T,S,D) is feasible.

By Theorem[ 8 and Corollary] 9, reconfiguration can be performoe a PMR instancé =
(G,S,D) to get an equivalent instandé = (G,S,D) so thatS,D have the same underlying
vertex setite., V(S) =V(D)). To do this, find a spanning trée of G. TheO(n) time algorithm
guaranteed by Theorem 8 can then compute a desired instan8eD) with S,D having the
same set of vertices. Since the moves takingS, S) is feasible,(G,S S) is feasible; therefore,
(G,S,D) is feasible if and only if G, S, D) is feasible. Given an instande= (G, S D) in which
S andD have the same underlying set, we call it fhebble permutation with rotatioproblem
or PPR. Given a PPR instance, we say that two pebbleg@ue/alentif they can exchange
locations with no net effect on the locations of other pebbke set of pebbles are equivalent if
every pair of pebbles from the set are equivalent.

In testing the feasibility of a PPR instante- (G, S, D), a simple but special case is whén
is a cycle. In this cases and D induce natural cyclic orderings of the pebbles. The folloyvi

is then clear.

Lemma 10 Let | = (G,S D) be an instance of PPR in which G is a cycle. Then | is feasible if

and only if $=dj;) mod p for some fixed natural number k.

When G is not a cycle, the feasibility test is partitioned into fanain cases, depending on
the number of pebbleg, with respect to the number of vertices Gf It is assumed thaG

contains at least one TECC since otherw@és a tree and the problem is a PMT problem.
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A. Feasibility test of PPR when=n

Whenp =n, all vertices are occupied by pebbles. Clearly, if a pebblen a vertex that does
not belong to any cycle.g., a branch vertex), the pebble cannot move. Therelore(G, S D)
is feasible only if for every branch vertexc V(G), S 1(v) = D~1(v). Furthermore, given any
TECCC of G, S }(C) = D~(C) must also hold, since pebbles cannot move out a TECC. If
these conditions hold, the feasibility bfis reduced to feasibilities of(Ci, S|s-1).Dlp-1c))}»
in whichCj’s are the TECCs 06 andSs1 ;) denotesSrestricted to the domalﬁ“l(C.) same

applies toD|p- 1(c;)- More formally,

Proposition 11 Let | = (G,S D) be an instance of PPR with  n. Let {C;} be the set of
2-edge-connected components of G. Then | is feasible if ahdifothe following holds: 1. for
all v eV(G\(UiCi)) S1(v)=D71(v), 2. for each G S1(C;) =D~1(C), and 3. for each C the

c):Plo-1(q)) is feasible. Moreover, the feasibility test can be perfatme

in linear time.

PROOF. Finding TECCs ofG can be done i©(|V|+|E|) timelTarjan [(1972). Checking whether
condition 1 holds takes linear time. For checking condifoffior eachC;, we first gatheS~1(C))
and for each pebble i8-1(C;), mark the pebble as belonging@ We can then check whether
the pebbles ifD~1(C;) also belong t&; in linear time. For condition 3, deciding the feasibility of
(Gi,Ss-1(c):Dlp-1(c;)) can be done using the results from Sectioh IlI. This checkpeaformed
as foIIows. 1. Check whethet; is a cycle, which is true if and only if no vertex & has
degree more than two. If this is the case, apply Observat®noltest the feasibility orC;;

2. Check whethe€; is a cactus with no even cycle. We can verify whetlelis a cactus as
follows: Using depth first search (DFS), detecting cycle€oflf C; is a cactus, then it should
assume a “tree” structure shown in Fig. 5; the first cycle thdbund must be a leaf cycle.
Deleting this cycle (without deleting the vertex that joiss cycle to the rest of;) from G
yields another cactus. Repeating the process tells us et@tis a cactus. As we are finding the
cycles, we can check whether there is an even cyclg. i indeed a cactus with no even cycle,
the possible configurations have two equivalence clasdes.slibproblem is only infeasible if
Ss 1(C D|D faII into different equivalence classes, which can be chdcky computing
the parlty of the permutatiodsp, restricted toC;, in linear time; 3. For all other types @,

the subproblem is feasible. O
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B. Feasibility test of PPR whenpn—-1

When p=n—1, nearly all PPR instances, in whi¢h are 2-edge-connected graphs, are

feasible.

Lemma 12 Let | = (G,S D) be an instance of PPR in which G is 2-edge-connected and not a

cycle. If p<n, then | is feasible.

PROOF By Theoremg 2 andl5; > An. That is, there are at most two equivalence classes of
configurations, with configurations from different clasdédter by a transposition of neighboring
pebbles. Since there is at least one empty vertex, viewiigvdrtex as a “virtual” pebble that can
be exchanged with a neighboring pebble in one move, it is thegr that the two configuration

classes collapse into a single class. O

Lemma 13 Let | = (G,S D) be an instance of PPR in which G, after deleting one (or more)

degreel vertex (vertices), is a 2-edge-connected graph. # p, then | is feasible.

PROOF Note that by degree 1 vertices, we mean that these vertees tlegree 1 irG. Let

H be the 2-edge-connected graph after deleting all degreeticas and letvy,...,v be the
degree 1 vertices. Let the neighborgfin G beV. € V(H). Sincev € vy,...,v has degree 1,
it is attached taH via a single edge. Lét; be the subgraph d& after deleting all vertices in
vi,...,Vk excepty;. Assume that is empty initially, we show next that all pebbles occupying

H1 are equivalent. That is, an arbitrary configuration of theskbles can be achieved.

R S A X

Fig. 9. With one empty vertex, pebbles on a triangle can banged to achieve any desired configuration. This genesgalize

to an arbitrary TECC.

If H is cycle, the subroutine illustrated in FHig 9 shows how anitaaty configuration of

pebbles can be achieved for a triangle which directly generalizes to an arbitrary sized cycle.
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This shows that all pebbles df; fall in the same equivalence class.Hf is not a cycle, we
can move an arbitrary pebblgfrom H to v;. Lemmal1P implies that all pebbles dh are
equivalent. Sincqg is arbitrary, all pebbles ohl; are equivalent.

Having shown that all pebbles dA; are equivalent, we move an arbitrary pebbléo v1
and empty vertex, (if there is awy). Following the same procedure, all pebbles lén are
equivalent. Sincg is arbitrary, all pebbles ok, vq,v, are equivalent. Inductively, all pebbles
on G are equivalent. Therefore, an arbitrary instahds feasible. O

When there is a single empty vertex @ it is clear that pebbles can be moved so that the
empty vertex is an arbitrary vertex &. In particular, for any TECQH of G, we can move the
pebbles so that a vertex &f is empty. By Lemma_13, all pebbles ¢t and its distance one
neighboring vertices fall in the same equivalence classn@e show that the feasibility of the

case ofp=n—1 can be decided in linear time.

Proposition 14 Let | = (G,S D) be an instance of PPR in which-pn—1 and G is not a
cycle. The feasibility of | can be decided in linear time.

PROOF We start with pebble configuratio and group the pebbles into equivalence classes.
Without loss of generality, assume thateaves a vertex of a TECC, say, unoccupied. By
Lemmal 13, all pebbles oH and its distance 1 neighbors belong to the same equivaléass, ¢
sayhg1. Now, check whether any pebble g1 is on some other TECE' # H. If that is the
case, all pebbles oA’ and its distance 1 neighbors are also equivalent and betoimgyt When
no more pebbles can be addedhtg; this way,hs1 is completely defined.

Let v be a vertex neighboring a vertex occupied by a pebble tigin(v itself is not occupied
by a pebble inhg1), if v is not a TECC vertex, the pebble currently encannot be move
to a TECC and therefore is not equivalent to any other pebidte. pebble then gets its own
equivalence class, sd». If v belongs to a TECC, sally, then all pebbles ok, and allH,’s
distance 1 neighbors that are not yet classified belonigsto hso is then expanded similarly
to hg1. At this point, the procedures given so far apply to pamitadl pebbles into equivalence
classes. It is not hard to see the algorithm takes linear ton@omplete using breadth first or
depth first search, treating each TECC as a whole. As thecstafigurationSis being classified,

the same is done tD. In particular, if a set of pebbles @& belongs to an equivalence class
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hsi, then the pebbles dd occupying the same set of vertices get assigned to the lalgsShe
instancel is feasible if and only ifhs; = hpj for all i (this can be done in linear time as we
have shown in checking the second condition in Propositiin 1 O

Fig.[10 provides an example of applying the above proceduee diven pebble configuration,

Fig. 10. An example of the cage=n— 1. The pebbles are put into 5 different equivalence clastisnguished by different

colors.

which partitions the pebbles into 5 equivalence classes.

C. Feasibility test of PPR when 9N(TECC9

We denote byN(TECCS the number of vertices of all TECCs @. An instance is almost
always feasible whemp < N(TECC3.

Theorem 15 Let | = (G,S D) be an instance of PPR in which G is not a cycle. Ikp
N(TECCs, then | is feasible.

PROOF. Since the number of pebbles are not enough to occupy all TE€Gces, we can
update configuratiors to a new oneS such that all pebbles are on TECC vertices. Repeating
the same moves over the configuratdrio getD’ (i.e. if we move a pebble from; to v; in the
initial pebble configuration, we move the correspondingbpeliromv; to v; in the final pebble
configuration). After this process is complete, the updatidt and final configurations again
occupy the same set of verticd§, S D) is feasible if and only if thgG,S,D’) is feasible. In

the rest of the proof we show thé&B, S,D’) is feasible.

Fig. 11. A graph with two TECCs.
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Since not all TECC vertices are occupied 3 at least one TECC, say;, has an empty
vertex. By Lamma_113, all pebbles @ are equivalent. Now leC;j be another TECC joined to
Ci via a single branch (see Fig.111 for an example). Since anpleadnC; can be moved to
vertexv; via a proper sequence of rotations, it is then possible thaxge any pair of pebbles
p1 on G and pz on Cj: move p, to vj, emptyvi, move p, to v;, rotate p; to vj, and move it
to vj. Via induction, any pair of pebbles d@ can be exchanged, without affecting the current
configuration of other pebbles. Given this procedure, we itamatively arrange each pebhie
starting from pebble 1, by exchanging pebbleith some other pebble occupying vertex in
D’. With up to p— 1 exchanges, all pebbles can be arranged to their desiréddinfigurations.

0]

D. Feasibility test of PPR when(WECC9 <p<n-1
For this last case, given a PPR instan@g,S D), we first move pebbles i§ andD so that

vertices of all TECCs are occupied. To perform this in lingare, a “fake” goal configuration
D¢ is created withp pebbles such that all TECCs are full occupied, in an arlyitcaider. This
is possible becausd(TECCg < p < n—1. Using a spanning tre€ of G and apply Theorem
to (T,S Dg),(T,D,D¢), we get two new instancedl,S,D¢), (T,D’,D;) with the property
thatS,D’, andD; all occupy the same set of vertices afidS, S), (T,D,D’) are both feasible.
Thus, we obtain a new PPR instan@®,S,D’), which is feasible if and only ifG,S D) is,
with the additional property that vertices of all TECCs apeupied. For convenience, we call
an instance(G,S D) of PPR in which all TECC vertices are occupiedearranged pebble
permutationproblem, or RPP. Note that this implige> N(T ECCs.

Fig. 12. The skeleton tree (on the right) after contractimg graph on the left (from Fig._10); the black dots are the cusitp
vertices.

Next, we contraciG to get askeleton tregTg, by collapsing each TECC into @omposite
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vertex other vertices and edges are left intact. For example, taphgfrom Fig.[ID have the
skeleton tree shown in Fig. 12. This procedure induces aalanap fr that takes any subgraph
H of G to fr(H) as a subgraph ofg (via mapping all vertices belonging to the same TECC
of G to a composite vertex ofg and non-composite vertices & to non-composite vertices of
T). Given an instanc¢G, S D) of RPP withp < n—1 pebbles, all pebbles on the same TECC
are equivalent by Lemmall3. This induces a problem instéfigeS,D’) in which all pebbles
(in S and D) on the same TECC of are combined into @ompositepebble (inS and D’).
Given two verticesu andv in a graph,u~- v denotes a (shortest) path betwaeandv. Such a
path is unique when the graph is a tree. By all vertices omp(ii@} u~ v, we mean vertices of
u~- Vv including (resp. excludingd andv. Lemma 6 from_ Auletta et al. (1999) can be extended

to RPP as follows.

Lemma 16 Let (G,S D) be an instance of RPP in which G is not a cycle an@TECC3
<p<n-1. Let uv, and w be vertices of G such that the path between u and v angatin
between v and w are not edge disjoint. Assume u and v are artbyipebbles and moves exist
that take S to a new configuration in which pebblet@) is moved to v and S(v) is moved
to w. Then S can be taken to an configuratiérinSvhich S and Sare the same except pebbles

on u and v are exchanged.

PROOF. For convenience, lgb; := S~1(u) and pp := S 1(v). Let the overlapping part afi ~ v
andv~»w bey~v. Let the sequence of moves that tgkgto v and p, to w be represented
asX =(S=%,S,...,D). If it is possible to movep;, po to the same TECC, then clearly
the locations ofpi, p2 can be exchanged on the TECC without changing any other @sbbl
configuration. Reversing earlier moves then excharmep, on u andv. For the rest of this
proof, we assume thagti, p» can never occupy vertices from the same TECC. Note that this
implies hatpi, p2 can never occupy vertices of the same TECC in different caordigons
originated fromS; in particular, no vertex oty ~~ v can be on a TECC. To see this, pf, p2
both reach a TEC®E in some (possibly different) configurations ¥y assume without loss of
generality thatp; reachedH first. Since all pebbles oR are equivalent anéi contains at least
three verticesp; can always stay ohl: SupposeX at some point wants to move, outside of

H. If p1 is the only pebble omd, p; does not hinder any other pebbles from moving through

H and movingp; out will only crowd the rest of5, making further pebble movements outside
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H harder. If p; is not the only pebble oll, we may pick any pebble oH to leaveH instead
of p1. Then p, will eventually reachH with p; still on H, allowing them to exchange.

For the case in whiclpy, p2 never visits the same TECC &, let W denote the graph formed
by the vertices and edges traveled foy p2 as they move along the sequence of configurations
in X. Let Tw = fr(W). If Tw contains composite vertices that are not leave3ypf let z be
such a composite vertex art} be the TECC corresponding win G. Let G(H,Vv) denote the
connected component @& containingv after deletingH, and letG(H,v) denote rest of the
components. By assumption, only one mf or p, may visit H,. Assume it isp; (the case of
p2 is similar), thenp, can only visit vertices 065(H,v); in fact the entire path ~~ w is within
G(Hz V). Using the same argument from the previous paragriptan be modified so thagi;
does not visit vertices 06(H, V), unlessu € G(H,v). In this case, howevep; is equivalent
to any pebble that is initially oi;; the lemma holds if an only if a pebble initially df, in S
can move tov and p2 can move tow. Via induction, it must be possible for some pebbfgs
equivalent top;, and p, to move from some/ to v andv to somew’, respectively, wherg ~ v
is contained withinu’ ~~ v andv ~» w'. Further morep}, p, do not “pass through” any TECC
of G.

We may then assume that from the beginnifig,has only composite vertices that are leaves.
Denote the branch o6 containingy as Ty. Since pg, p2 may still visit some TECCs, IeT);
denote the tree containinfy as well as the vertices of these TECCs (visiteddgyor py) that
are (distance 1) neighbors @j. Since the labels of pebbles other thanp, have no effect on
moving p1, P2, We may assume pebbles other thmnp, are unlabeled (indistinguishable). It can
be shown that unlabeled pebbles outsidé}bﬁever need to move t@j: If an unlabeled pebble
moves from outsidé')f and stays orT)f it only makes movingps, p2 less feasible; if an unlabeled
pebble moves from one vertex outsrqbto another vertex outsid@j via Ty, it does not help the
feasibility of moving p1, p2 on T;. Thus, unlabeled pebbles may only move away fr'Qj‘rand
they should never come back. Therefore, we may first take ikebaled pebbles that will leave
Ty’ and move them outsid'é}f in the beginning. After these steps, the initial problemeduced
to moving p; from u to v and p, from v to w on the tre€el/; by Lemma 6 from_Auletta et al.
(1999), p1, p2 are equivalent. Note that this implies thatpf (resp.p2) can visit a TECC, then
p2 (resp.p1) can visit that TECC as well; it is not possible that a givenClEcan only be

visited by one of the pebbles frommy, po. O
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Lemmal 16 leads to a generalized version of Theorem 4 fromtisuéd al. (1999) to RPP, given
below. We omit the proof since it is nearly identical (we needended versions of Corollary
1 and 2 from_Auletta et al. (1999), which can be easily provethe same way Lemniall6 is

proved).

Theorem 17 An RPP instancgG,S D), in which G is not a cycle and (WECC9 < p<n—1,
is feasible if and only if the individual exchanges betweehbte i and S(D(i)), 1<i < p,

can be performed using moves without affecting the configurs of any other pebble.

By Theoren{ 17, if an instance of RPP= (G,S D), is feasible, then pebblésand osp(i) =
S 1(D(i)) can be exchanged with no net effect on other pebbles. Thislena feasibility test
of RPP problems (and therefore, PMR problems): verticesiged by pebbles are partitioned
into equivalence classes such that two pebbles can be eg@thaéh and only if the vertices
occupied by them belong to the same equivalence class. ihvacapply theMark algorithm
from |Auletta et al. (1999) on the skeleton trég without any change at the pseudocode level
(seel Auletta et al.l (1999) for the simple algorithm deswmipt the main difference is how to
check whether two adjacent pebbles are equivalent (Lemmand|Auletta et al. (1999)).

Before stating our version of the lemma, some notations arerder. We work with an
arbitrary RPP instanck= (G,S D) in which G is not a cycle andN(TECC9 < p<n—1. Let
|" = (Tg,S,D’) be the induced instance described earlier in whighis G's skeleton tree. A
fork vertex of Tg is a vertex of degree at least 3 that is not a composite veltax. is the set
of connected components ©f after deleting the verten. T (u,Vv) is the tree ofF (u) containing
the vertexv; T(u,v) is the rest ofF (u). For two verticesu,v € V(Tg), d(u,v) is the length of
u~ V. In the lemmas that follow, only start configurati&his operated on; same procedure can
be applied tdD. First we need a version of Corollary 3 from Auletta et al.99Pto account for
composite vertices; we omit the essentially same proof buttmut that although both fork and
composite vertices can help two pebbles switch locationspraposite vertex can do so with

one fewer empty vertex.

Lemma 18 Let p; :=S~%(u), pp := S~1(v) for u,v € V(Tg) such that u~ v contains no other
pebbles; all vertices on & v are of degree 2. Let w be a composite or fork vertex such that u

is in w~- v. The tree Tu,w) has no more than @v,u) (resp. dw,u) + 1) empty vertices when
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w is a composite (resp. fork) vertex. Let be the closest composite or fork vertex to v such

that v is in W~ u satisfying similar properties as w. Then u and v are not egjent.

Lemma 19 Let p; :=S~%(u), po := S~(v) for some yv e V(Tg) such that u~ v contains no
other pebbles. Thenipp, are equivalent with respect td § and only if at least one of the

following conditions holds:

1. There exists a fork vertex w in~d v such that both Tw,u), T(w,v) are not full or at least
one other tree of Fw) is not full.

2. Let w be a composite vertex such that u is ir~w and no other fork vertex or composite
vertex is in w~ u. There exists such a w that{0;w) has dw,u) + 1 empty vertices.

3. Symmetric to 2 with u and v switched.

4. Let w be a fork vertex such that u is inmwv and no other fork vertex or composite vertex
is in w~- u. There exists such a w that@,w) has dw,u) + 2 empty vertices.

5. Symmetric to 4 with u and v switched.

6. Vertex u is a fork vertex. Then at least two trees @fi)Fhas empty vertices or there are at
least two empty vertices outsidéulv).

7. Symmetric to 6 with u and v switched.

8. Vertex u is a composite vertex. Then at least one tréE(efv) has an empty vertex.

9. Symmetric to 8 with u and v switched.

PROOF The proof is adopted from that of Lemma 8 from Auletta et 4999) with some
repetitive details omitted. Since the sufficiency of the dibans can be easily checked by
constructing plans that exchange, po, only necessity is shown here via contradiction. Assume
that u and v are exchangeable without configurati@satisfying any of the conditions 1-9.
First consider the case in which there is no fork vertexui» v andu andv are not fork or
composite vertices; these assumptions forbids conditioasid 6-9. If conditions 2-5 do not
hold, the condition from Lemmi@a 18 is true, thusandv cannot be equivalent.

For the case in which no fork vertex existsun~ v but u or v (possibly both) is a fork or
composite vertex, the proof from Lemma 8 from Auletta et 4899) applies with little change
to show thatu andv are not equivalent unless one of conditions 2-9 holds: Ilid@wons 2-5 do
not hold, this means that;, p, must useu or v as a “hub” for switching locations; traveling

beyond distance 1 froma~~ v will not help u andv to switch. On the other hand, if conditions
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6-9 do not holdu or v cannot serve as the hub that enahlesndv to switch. Furthermore, if
conditions 6-9 do not hold, reconfiguration of pebbles wit make conditions 2-5, previously
invalid, become valid.

This leaves the case in which conditions 2-9 do not hold, wimeans thati and v cannot
switch onT (u,v) nor T(v,u). Since there is no pebble in~ v, the vertices iru~ v cannot be
composite vertices. The same proof from Lemma 8 from Aulettal. (1999) then shows that

unless condition 1 is mety andv cannot be equivalent. O

With Lemmal[19, all criteria needed for thdark algorithm from| Auletta et al.| (1999), in
particular Observations 1-4, continue to hold hwithout change. SincMark is not changed,
its running time is linear if deciding whether two adjacergbples are equivalent can be
performed in (amortized) constant time. For this to hold,dn arbitrary treel (u,w), we need
to know whethelT (u,w) has 0, 1, 2 holes and whether the fork or composite vertek(afw)
closest tou allows u and another vertex in T(u,w) to exchangeife., T(u,w) should have
enough empty vertices). These data can be precomput&d|\fi + |E|) time using two depth
firth traversals over the tre&s. At this point, it is not hard to see that this linear decision
algorithm easily turns into an algorithm that computes aiféda solution to a PPR instance.
Our complexity analysis shows that a feasible solution carcmputed inO(|E|) if a high
level plan is required (computes a corresponding RPP iostazhecks feasibility, and outputs
the permutation pairs for exchanges) @gh?®) if step by step output is required (each exchange
can be done irD(n?) moves produced by a fixed formula). We summarize the maintresu

this section with the following theorem.

Theorem 20 The feasibility of PMR problems can be decided in linear tiMereover, a plan
for a feasible instance can be computed itné) time.
V. CONCLUSION
In this paper, we proposed the problempafbble motion on graphs with rotatiofdBMR), a
graph-based multi-robot path planning problem. Our foatiah takes into account natural,
synchronous rotations of pebbles along fully occupied eyabf the underlying graph. The
inclusion of this important case, in conjunction with paws studies of the problem that only

allow pebbles to move to unoccupied vertices, paints ayf@iomplete picture of graph-based
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multi-robot path planning problems. In our systematic gsial of PMR, we show that, even
for the fully constrained case in which the number of peblagsals the number of vertices,
deciding the feasibility of a PMR instance can be completetinear time with respect to the
size of the underlying graph. Moreover, computing a fullplar all moving all pebbles requires

0o(nd) time.
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