
ar
X

iv
:1

20
5.

52
63

v4
 [

cs
.D

S
]

31
 J

ul
 2

01
4

1

Pebble Motion on Graphs with Rotations:

Efficient Feasibility Tests and Planning

Algorithms

Jingjin Yu, Daniela Rus

Abstract

We study the problem of planning paths forp distinguishable pebbles (robots) residing on the

vertices of ann-vertex connected graph withp≤ n. A pebble may move from a vertex to an adjacent

one in a time step provided that it does not collide with otherpebbles. Whenp= n, the only collision

free moves are synchronous rotations of pebbles on disjointcycles of the graph. We show that the

feasibility of such problems is intrinsically determined by the diameter of a (unique) permutation group

induced by the underlying graph. Roughly speaking, the diameter of a groupG is the minimum length

of the generator product required to reach an arbitrary element ofG from the identity element. Through

bounding the diameter of this associated permutation group, which assumes a maximum value ofO(n2),

we establish a linear time algorithm for deciding the feasibility of such problems and anO(n3) algorithm

for planning complete paths.

I. INTRODUCTION

In Sam Loyd’s 15-puzzle Loyd (1959), a player arranges square blocks labeled 1-15, scrambled

on a 4×4 board, to achieve a shuffled row major ordering of the blocksusing one empty swap

cell (see,e.g., Fig. 1). Generalizing the grid-based board to an arbitraryconnected graph overn

vertices, the 15-puzzle becomes the problem ofpebble motion on graphs(PMG). Here, up ton−1

uniquely labeled pebbles on the vertices of the graph must bemoved to some desired goal config-

uration, using unoccupied (empty) vertices as swap spaces.1 Since the initial work by Kornhauser

Jingjin Yu and Daniela Rus are the Computer Science and Artificial Intelligence Lab at the Massachusetts Institute of

Technology. E-mail:{jingjin, rus}@csail.mit.edu.

1We usepebblein place ofrobot in this paper to keep the notations consistent with Auletta et al. (1999); Kornhauser et al.

(1984), on which the current paper is partially based.

http://arxiv.org/abs/1205.5263v4

2

et al. Kornhauser et al. (1984), PMG and its optimal variantshas received significant attention

in robotics Solovey and Halperin (2012); van den Berg et al. (2009); Wagner and Choset (2011)

and artificial intelligence Krontiris et al. (2013); Standley and Korf (2011), among others. The

connection between PMG and multi-robot path planning is immediately clear, with poten-

tial applications towards micro-fluidics Griffith and Akella (2005), multi-robot path planning

Solovey and Halperin (2012), and modular robot reconfiguration Reif and Slee (2006), to name

a few.

As early as 1879, Story Story (1879) observed that the parityof a 15-puzzle instance decides

whether it is solvable. Wilson Wilson (1974) formalized this observation by showing that the

reachable configurations of a 15-puzzle form an alternatinggroup on 15 letters. An associated

planning algorithm was also provided. Kornhauser et al. Kornhauser et al. (1984) improved the

potentially exponential time algorithm from Wilson (1974)by giving an algorithm for PMG that

runs inO(n3) time for graphs withn vertices and up ton−1 pebbles. Auletta et al. Auletta et al.

(1999) showed that for trees, deciding whether an instance of the pebble motion problem is

feasible can be done in linear time. Recently, the linear feasibility result was extended to general

graphs for PMG Goraly and Hassin (2010); Yu (2013). Althoughnot a focus of this paper, we

note that computing optimal plans for such problems is generally NP-complete Goldreich (1984);

Ratner and Warmuth (1990); Surynek (2010); Yu and LaValle (2013).

1

215 3

14

12

13

11

10

8

9

7

6

5

4

1 2

15

3

14

12

13

1110

8

9

765

4

(a) (b)
Fig. 1. Two 15-puzzle instances. a) An unsolved instance. Inthe next step, one of the blocks 5, 6, 14 may move to the vacant

cell, leaving behind it another vacant cell for the next move. b) The solved instance.

As evident from the techniques used in Kornhauser et al. (1984); Wilson (1974), PMG and

related problems are closely related to structures ofpermutation groups. Fixing a graph and the

number of pebbles, and viewing the pebble moving operationsasgenerators, all configurations

reachable from an initial configuration form a group that is isomorphic to a subgroup ofSn,

the symmetric group onn letters. Deciding whether a problem instance is feasible isthen

equivalent to deciding whether the final configuration is reachable from the initial configuration

3

via generator products. Another interesting problem in this domain is the study of thediameter

of such groups, which is the length of the longest minimal generator product required to reach

a group element. Driscoll and Furst Driscoll and Furst (1983, 1987) showed that any group

represented by generators that are cycles of bounded degreehas a diameter ofO(n2) and such

a generator sequence is efficiently computable. For generators of unbounded size, Babai et al.

Babai et al. (2004) proved that if one of the generators fixes at least 67% of the domain, then the

resulting group has a polynomial diameter. In contrast, groups with super polynomial diameters

exist Driscoll and Furst (1983).

1
6

2

5

4

3

7

10

9

8

11

1 6

2 4

3

5 7

9

8

11

10

(a) (b)
Fig. 2. Two configurations that can be turned into each other in a single synchronized move.

Somewhat surprisingly, a natural generalization of PMG allowing rotations of the pebbles

without empty swap vertices has not received much attention, possibly due to its difficulty.

As an example, in Fig. 2(a), the pebbles labeled 3,4, and 5 are allowed to rotate clockwise

along the (only) triangle to achieve the configuration in Fig. 2(b). We call this generalization

the problem ofpebble motion with rotations(PMR), a formal definition of which will follow

shortly. Synchronous rotations are important to have in a multi-robot setting for at least two

reasons. First, with communication, robots are able to execute synchronous rotational moves

easily. Disabling such moves thus wastes robots’ capabilities. Second, allowing rotational moves

could allow more problem instances to be solved and could also significantly reduce the length

of plans (note that the length of a plan can never be increasedby adding more modes of motion).

In this paper, we employ a group theoretic approach to derivea linear time algorithm for testing

the feasibility of a given PMR instance. The algorithm also implies a cubic time algorithm for

computing full plans when a PMR instance is feasible. Thus, we establish that PMR induces

similar algorithmic complexity as PMG does in the sense thatplanning and feasibility test

take O(n3) and linear time, respectively. Nevertheless, the algorithms for solving PMG and

PMR have significant differences due to the introduction of synchronous pebble rotations. By

delivering these algorithms for PMR, we also bring forth thecontribution of providing a now

4

fairly complete landscape over graph-based multi-robot path planning problems.

We formally define PMG and PMR problems in Section II. In Section III, we look at the

groups generated by cyclic rotations of labeled pebbles, ongraphs fully occupied by pebbles. We

show that such groups haveO(n2) diameters. With this intermediate result, we continue to show,

in Section IV, that the feasibility test of the PMR problem can be performed inO(|V|+ |E|)

time, which implies anO(n3) algorithm for computing a feasible solution (the set of movements).

We conclude the paper in Section V.2

II. PEBBLE MOTION PROBLEMS

Let G= (V,E) be a connected undirected graph with|V|= n. Let there be a setp≤ n pebbles,

numbered 1, . . . , p, residing on distinct vertices ofG. A configurationof these pebbles is a

sequenceS= 〈s1, . . . ,sp〉, in which si denotes the vertex occupied by pebblei. A configuration

can also be viewed as a bijective mapS : {1, . . . , p} → V(S) in which V(S) denotes the set of

occupied vertices byS. We allow two types ofmovesof pebbles. In asimple move, a pebble

may move to an adjacent empty vertex. In arotation, pebbles occupying all vertices of a cycle

can rotate simultaneously (clockwise or counterclockwise) such that each pebble moves to the

vertex previously occupied by its (clockwise or counterclockwise) neighbor. Two configurations

SandS′ areconnectedif there exists a sequence of moves that takesS to S′. Let SandD be two

pebble configurations on a given graphG, the problem ofpebble motion on graphsis defined

as follows.

Problem 1 (Pebble Motion on Graphs (PMG)) Given (G,S,D), find a sequence of simple

moves that take S to D.

WhenG is a tree, PMG is also referred to aspebble motion on trees(PMT). In this case, an

instance is usually written asI = (T,S,D) with T being a tree. When both simple moves and

rotations are allowed, the resulting variant is the problemof pebble motion with rotations.

Problem 2 (Pebble Motion with Rotation (PMR)) Given(G,S,D), find a sequence of simple

moves and rotations that takes S to D.

2Given the limited space, we focus on establishing the theoretical foundations behind the algorithms instead of the algorithms

themselves. We believe such coverage offers more insights into the intrinsic structures of PMR problems.

5

If G is a tree, then a PMR is simply a PMT. We note that it may be possible to achieve

additional efficiency by allowing multiple simple moves androtations (along disjoint cycles)

to take place concurrently. For example, the configuration in Fig. 2(a) can be taken to the

configuration in Fig. 2(b) in a single concurrent move. A fulldiscussion of such moves (i.e., the

optimality perspective) is beyond the scope of this paper.

III. GRAPH INDUCED GROUP AND THE UPPERBOUND ON ITS DIAMETER

A. Groups Generated by Cyclic Pebble Motions and their Diameters

A particularly important case of PMR is whenp= n; we restrict our discussion to this case

in this section. Whenp= n, only synchronous rotations are possible. Given two configurations

S andS′ that are connected, they induce a permutation of the pebbles, which is computable via

σS,S′(i) = S−1(S′(i)) for each pebblei; σS,S is the identity element. Given an initial configuration

S0, let S denote the set of all configurations reachable fromS0. It can be verified, using basic

definitions of groups, that the permutationsσS0,Si over all Si ∈ S form a subgroup ofSn, the

symmetric group onn letters. Since this group is determined by the graphG, we denote itG.

v
 1

v
 2

v
 3

v
 4

v
 5v

 6v
 7

v
 8

v
 9

v
 10

Fig. 3. For the graph above, the collection of sets of cycles are C = {{v1v2v3v4v5}, {v6v7v8v9v10}, {v1v2v3v4v5,v6v7v8v9v10}}.

Two cycles ofG are disjoint if their vertex sets have empty intersection. Whenp= n, each

synchronous move corresponds to the rotations of pebbles along a set of of disjoint cycles. Let

C be the collection of all sets of disjoint cycles inG; eachC ∈ C is a unique set of disjoint

cycles ofG. Since the pebbles may rotate clockwise or counterclockwise along a cycleci ∈C,

each set of disjoint cyclesC can take a configuration to 2|C| new configurations with one move.

That is, eachC yields 2|C| generators ofG. Let the set of all generators obtained this way beG .

As an example, the graph in Fig. 3 has two cycles, with|C |= 3 and|G |= 8 (note that|G |= 2|C |

does not hold in general). We make the simple observation that these definitions yield a natural

bijection between synchronous moves and elements ofG . As such, when a configurationS′

is reachable from a configurationS, we say that the permutationσS,S′ ∈ G is reachable(from

the identity) using products of generators fromG corresponding to the synchronous moves. We

6

frequently invoke this bijection between synchronous moves and generators without explicitly

stating so. Lastly, any elementx∈ G can be expressed as generator productg1g2 . . .gk in which

g1, . . . ,gk ∈ G . Let kx be the minimumk such thatx= g1g2 . . .gk. The diameter ofG, diam(G),

is defined as the maximumkx over all x∈ G.

B. Upper Bound over Group Diameters

The main result to be established in this section isdiam(G) = O(n2). To show this,G is

divided into classes based on its connectivity. WhenG is connected (1-connected) but none of

its subgraphs are 2-connected (i.e., G has no cycles), it is a tree. In this case, no pebble can

move. Another simple case is whenG is a cycle, the simplest 2-connected graph. Then, it is

clear that all elements ofG are generated by a single rotation.

Lemma 1 (Trees and Cycles) If G is a tree, thenG ∼= {1}, the trivial group. If G is a cycle,

thenG ∼= Z/n, the cyclic group of order n.

a
 1

a
 2

a
 `

b

c r

c
 1

c
 2

Fig. 4. Two cycles sharing one common vertex. The graph isseparableat b.

WhenG is connected but the removal of some vertex fromG leaves two or more components,

it is separable. An important case here is whenG is a set of cycles sharing vertices so that no

edge ofG is on more than one cycle. Such graphs form a subset of 2-edge-connected graphs.

Fig. 4 gives an example with two cycles. Following convention, An denotes thealternating group

on n letters. For groups,G1 ≥ G2 or G2 ≤ G1 denotes thatG2 is a subgroup ofG1. For two

configurationsS and S′ over the same set of pebbles on the same graph, we say that theyare

cycle similar if the following property holds. For any pebblea, let the sets of cycles (of the

underlying graphG) occupied bya in configurationsS andS′ beCS andCS′, respectively. Then

CS∩CS′ 6=∅.

A key result of this section is the following.

Theorem 2 (Cycles, Separable) If every edge of a separable graph G is on exactly one cycle,

thenG ≥ An and diam(G) = O(n2).

7

PROOF. Given configurationsS andD, we claim:

1. In O(n2) moves,D can be taken to some configurationD′ such thatS and D′ are cycle

similar. As an example, in Fig. 4, assuming the given configuration is S, this step ensures that

in configurationD′, pebblesai ’s are all on the left cycle and pebblesci ’s are all on the right

cycle. The pebbleb may appear on either one of the two cycles.

2. In O(n2) moves fromD′, a configurationD′′ can be reached such that eitherD′′ = S or D′′

and S differ by a transposition (group action). We require that the transposition is fixed for a

fixed S and involves two adjacent pebbles ofS. Let S′ be the result of letting this transposition

act onS.

These claims are proved in lemmas that follow. By these claims, an arbitraryD can reach

either S or S′. Therefore, all configurations (and consequently elementsof Sn) are partitioned

into two equivalence classes based on mutual reachability.Since the only subgroup ofSn of

index 2 isAn, this implies thatG ≥ An.

WhenG ∼= An, any element ofG is a product of generators fromG with a length ofO(n2),

proving diam(G) = O(n2). If G is not isomorphic toAn, since the only subgroups ofSn

containing An are An and Sn itself, G ∼= Sn. This implies thatAn has at most two cosets

in G; denote the other coset ofAn as An
c, which also have a diameter ofO(n2) (to see this,

note that any configurationD is reachable from one ofS, S′ in O(n2) moves). From the identity,

all elements ofAn are reachable using generator products of lengthO(n2). Since elements of

An
c are now reachable from elements ofAn, an element ofAn

c must be reachable from the

identity using a generator product of lengthO(n2) as well. Therefore, whenG ∼= Sn, all elements

of G are reachable using generator products of lengthO(n2), yielding diam(G) = O(n2). �

Before moving to the lemmas, we note that whenG is separable and every edge ofG is on

exactly one cycle, the edges ofG can be partitioned into equivalence classes based on the cycles

they belong to. BecauseG is separable, every cycle must border one or more cycles and at the

same time, two cycles can share at most one vertex. Such a graph is also called acactusgraph.

Moreover, there exists a cycle that only shares one vertex with other cycles. We call such a cycle

a leaf cycle. An example of a leaf cycle is given in Fig. 5.
Given a cycleC′ on G, it is of cycle distance dc to C if a vertex onC′ needs to travel

through at leastdc cycles to reachC. A neighboring cycle ofC has distance 0 since they share

8

a
 2

a
 1

v

C1

1

1

0

2

2

-1

Fig. 5. The dual tree structure in a separable graphG with every edge on exactly one cycle. The numbers represent the cycle

distances of the cycles to the leaf cycleC, which in fact is the root of the tree.

a common vertex. LetC have a cycle distance of−1 by definition. This induces a (dual) tree

structure on the cycles when viewing them as vertices joinedby edges to neighbors (see,e.g.,

Fig. 5). Computing such a tree takes timeO(|V|+ |E|) because obtaining maximal 2-connected

components takes linear time Tarjan (1972). The first claim in the proof of Theorem 2 can be

stated as follows.

Lemma 3 (Initial Arrangement) Given a separable G with each edge on exactly one cycle and

configurations S and D, in O(n2) moves, a configuration that is cycle similar to S is reachable

from D.

PROOF. Note that a pebble may reside on multiple cycles; this lemmaonly ensures that each

pebble gets moved to one of the cycles it belongs to inS. First we show that a single pebble

can be relocated to a cycle it belongs to inS in O(n) rotations, without affecting pebbles

that are previously arranged. WhenG is two cycles joined on a common vertex (e.g., Fig. 4),

without loss of generality, assume that we need to moveai from the left cycle to the right cycle.

This implies that some pebblec j (and possiblyb) does not belong to the right cycle inS. We

note that the groupG in this case has four generators,gℓ =





a1 a2 . . . aℓ b

b a1 . . . aℓ−1 aℓ



 ,gr =





c1 c2 . . . cr b

c2 c3 . . . b c1



 , which correspond to clockwise rotations along the left and right

cycles, respectively, and their inverses,g−1
ℓ andg−1

r . One can verify that the generator product

g−i
ℓ g− j

r gi
ℓ exchangesai and c j between the two cycles without affecting the cycle membership

of other pebbles (see Fig. 6). For the general case in which a pebble needs to go through some

9

a
 i

c
 j

a
 i

c
 j

a
 i

c
 j

Fig. 6. Illustration of the vertex arrange algorithm for twoadjacent cycles.

k cycles, denoting the generators asg1, . . . ,gk, it is easy to verify that a product of the form

g−i1
1 g−i2

2 . . .gik
k . . .g

i2
2 gi1

1 achieves what we need, withi1+ . . .+ ik < n. There may be more than

these 2k basic generators, but we do not need the other generators forthis proof. Therefore, at

most 2n moves are needed to move one pebble to the desired cycle. To avoid affecting pebbles

that are previously arranged, we may simply fix a leaf cycleC and start with cycles based on

their cycle distance toC in decreasing order. At most 2n2 moves are required to arrange alln

pebbles to the desired cycles. �

Lemma 4 (Rearrangement) The pebbles arranged according to Lemma 3 can be rearranged

such that the resulting configuration is the same as S or differ from S by a fixed transposition

of two neighboring pebbles in S. Rearrangement requires O(n2) moves.

PROOF. For a fixedG, let C be a leaf cycle and letC border other cycle(s) via vertexv. In S,

let a1 be the pebble occupying counterclockwise neighboring vertex of v on the cycleC, and

let a2 be the counterclockwise neighbor ofa1 on C (again, see Fig. 5 for an illustration of this

setup). The fixed transposition will be(a1a2).

We rearrange pebbles to match the configurationS starting from cycles with higher cycle

distances to the leaf cycleC, using the neighboring cycle with smaller cycle distance (such a

cycle is unique). We show that the pebbles on the more distantcycle can always be rearranged

to occupy the vertex specified byS. Moreover, this can be achieved using moves that only affect

the ordering of two pebbles on the neighboring cycle. Without loss of generality, we use the

two cycle example from Fig. 4 and let the right cycle be the more distant one. The generators

gℓ,g
−1
ℓ , gr , and g−1

r from previous lemma remain the same. To exchange two pebbleson the

right cycle, for exampleci ,c j , we may use the following generator product

g−2
ℓ g−i

r gℓg
j−i
r g−1

ℓ g− j+i
r gℓg

−i
r gℓ. (1)

10

It is straightforward to verify that (1) works. To make it clear, Fig. 7 illustrates the application

of (1) for exchangingc2 andc5 usinga1,a2. Every such exchange requires at most 2n moves.

a
 1

a
 1

a
 2

c
 5

a
 1

a
 2

c
 2

c
 5

a
 1

a
 2

c
 2c

 5

a
 2

c
 2

c
 5

a
 1

a
 2

c
 2

c
 5

a
 1

a
 2

c
 2

c
 5

a
 1

a
 2

c
 2

c
 5

a
 1

a
 2

c
 2

c
 5

a
 1

a
 2

c
 2

c
 5

c
 2

Fig. 7. Illustration of the rearrangement algorithm (from left to right, then top to bottom).

Performing such exchanges iteratively, within 2n2 moves, all pebbles except those on the

leaf cycleC can be rearranged to occupy vertices specified byS. Reversing the process, we

can arrange all pebbles onC to occupy vertices specified byS, using a neighboring cycleC′,

affecting the ordering of at most two pebbles onC′. Repeating this process again withC′ using

C as the neighboring cycle anda1,a2 as the swapping pebbles, all pebbles except possiblya1,a2

occupy the vertices specified byS. �

The above two lemmas complete the proof of Theorem 2. At this point, it is easy to see that

when G is separable with each edge on a single cycle,G ∼= Sn if and only if G contains an

even cycle, corresponding to the composition of an odd number of transpositions. Otherwise,

G ∼= An. We are left with the case in whichG is 2-connected but not a (single) cycle.

Theorem 5 (2-connected, General) If G is 2-connected and not a cycle,G∼=Sn with diam(G)=

O(n2).

PROOF. Our proof again starts by showing that the locations of two pebbles can be exchanged

without affecting the locations of other pebbles. Given a 2-connected graphG that is not a

11

cycle, it can always be decomposed into a cycle plus one or more ears (an ear is a simple path

P whose two end points lie on some cycle that does not contain other vertices ofP). Therefore,

any two pebbles onG must lie on some common cycle with one attached ear. We may then

assume that the two pebbles to be exchanged lie somewhere on two adjacent cycles (i.e., they

are two arbitrary pebbles in Fig. 8). Restricting to such a graphG′ of G, which has three cycles

(left, right, and outer), rotations along these cycles willnot affect the rest of the pebbles not on

G′. We claim that moving withinG′ is sufficient to exchange any two pebbles onG′ and the

operation can be done withO(n) moves.

a
 1

a
 2

a

b 1

b 2

b
c

c
 1

c
 2

 n 1
 n 2

 n 3

Fig. 8. A simple 2-connected graph. There are six moves for this configuration: Rotating clockwise or counterclockwise along

one of the three cycles.

Let G′ haven1+n2+n3 vertices, withn1 vertices belonging to the left cycle only,n3 vertices

belonging to the right cycle only andn2 vertices shared by the two cycles. Assuming the initial

pebble configuration is as illustrated in Fig. 8, we have the following generators,

gℓ =





a1 a2 . . . an1 bn2 . . . b1

b1 a1 . . . an1−1 an1 . . . b2



 ,

gr =





c1 c2 . . . cn3 bn2 . . . b1

c2 c3 . . . bn2 bn2−1 . . . c1



 ,

go =





b1 c1 . . . cn3 bn2 an1 . . . a1

c1 c2 . . . bn2 an1 an1−1 . . . b1



 ,

which are clockwise rotations along the left, right, and theouter cycles ofG′, and their inverses,

g−1
ℓ ,g−1

r , andg−1
o . Note that

grgℓg
−1
o =





b1 c1

c1 b1



= (b1c1). (2)

That is, we may exchange (transpose)b1 andc1 using a generator product of length 3. Using this

length 3 productgrgℓg−1
o , it is possible to exchange any two pebbles onG′ without affecting other

12

pebbles. We elaborate two such cases, all other cases are similar. In a first case we exchangeai

andc j . To do this, we first movec j to c1’s location, followed by movingai to b1’s location. We

can then switchai andc j using the primitivegrgℓg−1
o . Reversing the earlier steps then switchesai

andc j without affecting any other pebbles. The complete product sequence isg−i
ℓ g j

r gℓg−1
o g− j+1

r gi
ℓ,

which requiresO(n) moves or generator actions. Similarly, if we want to switch someci ,c j that

are not adjacent, we can move them along the outer cycle untilone of them belongs to the left

cycle and the other to the right cycle. The case of exchangingai,c j then applies, after which

we reverse the earlier moves on the outer cycle to obtain the net effect of switchingci ,c j . The

number of moves is againO(n). This impliesG ∼= Sn anddiam(G) = O(n2). �

Combining Theorems 2 and 5 concludes the case for 2-edge-connected graphs that are not

single cycles; the case of general graph then follows. Sincewe will mention “2-edge-connected

component” fairly frequently, we abbreviate it to “TECC” except in theorem statements. Also,

we call each component ofG after deleting all TECCs abranch.

Proposition 6 (2-edge-connected) If G is 2-edge-connected and not a single cycle,G ≥ An

with diam(G) = O(n2).

PROOF. A 2-edge-connected graphG can be separated into 2-connected components via splitting

at articulating vertices. A (dual) tree structure, similarto that illustrated in Fig. 5, can be built

over these components. The two-step algorithm used in the proof of Theorem 2, in combination

with Theorem 5, can be applied to show thatG ≥ An anddiam(G) = O(n2). �

After gathering all cases, we obtain the following main result for this section.

Theorem 7 (General Graph) Given an arbitrary connected, undirected, simple graph G, diam(G)=

O(n2).

PROOF. Pebbles on vertices ofG that are not on any cycle are always immobile. Deleting those

vertices does not changeG. After all such vertices are removed, we are left with the TECCs

of G. Denoting the associated groups of these components{Gi}, G is the direct product of the

Gi ’s. Since allGi ’s haveO(n2) diameter, so doesG. �

13

IV. L INEAR TIME FEASIBILITY TEST OFPMR

We now describe a linear time algorithm for testing the feasibility for PMR, using a proof strat-

egy similar to that from Auletta et al. (1999) on PMT. We first restate a result form Auletta et al.

(1999).

Theorem 8 (Theorem 3 in Auletta et al. (1999)) Given an instance(T,S,D) of PMT, in O(n)

steps, an instance(T,S′,D) of PMT can be computed such that S′, D contain the same set of

vertices and(T,S,S′) is feasible.

The following corollary is also obvious.

Corollary 9 Given an instance(T,S,D) of PMR, let (T,S′,D) be the new instance obtained

according to Theorem 8. Then(T,S,D) is feasible if and only if(T,S′,D) is feasible.

By Theorem 8 and Corollary 9, reconfiguration can be performed on a PMR instanceI =

(G,S,D) to get an equivalent instanceI ′ = (G,S′,D) so thatS′,D have the same underlying

vertex set (i.e., V(S′) =V(D)). To do this, find a spanning treeT of G. TheO(n) time algorithm

guaranteed by Theorem 8 can then compute a desired instance(T,S′,D) with S′,D having the

same set of vertices. Since the moves taking(T,S,S′) is feasible,(G,S,S′) is feasible; therefore,

(G,S,D) is feasible if and only if(G,S′,D) is feasible. Given an instanceI = (G,S,D) in which

S andD have the same underlying set, we call it thepebble permutation with rotationproblem

or PPR. Given a PPR instance, we say that two pebbles areequivalentif they can exchange

locations with no net effect on the locations of other pebbles. A set of pebbles are equivalent if

every pair of pebbles from the set are equivalent.

In testing the feasibility of a PPR instanceI = (G,S,D), a simple but special case is whenG

is a cycle. In this case,S and D induce natural cyclic orderings of the pebbles. The following

is then clear.

Lemma 10 Let I = (G,S,D) be an instance of PPR in which G is a cycle. Then I is feasible if

and only if si = d(i+k) mod p for some fixed natural number k.

When G is not a cycle, the feasibility test is partitioned into fourmain cases, depending on

the number of pebbles,p, with respect to the number of vertices ofG. It is assumed thatG

contains at least one TECC since otherwiseG is a tree and the problem is a PMT problem.

14

A. Feasibility test of PPR when p= n

When p= n, all vertices are occupied by pebbles. Clearly, if a pebble is on a vertex that does

not belong to any cycle (i.e., a branch vertex), the pebble cannot move. Therefore,I = (G,S,D)

is feasible only if for every branch vertexv∈V(G), S−1(v) = D−1(v). Furthermore, given any

TECC C of G, S−1(C) = D−1(C) must also hold, since pebbles cannot move out a TECC. If

these conditions hold, the feasibility ofI is reduced to feasibilities of{(Ci ,S|S−1(Ci)
,D|D−1(Ci)

)},

in whichCi ’s are the TECCs ofG andS|S−1(Ci)
denotesS restricted to the domainS−1(Ci); same

applies toD|D−1(Ci)
. More formally,

Proposition 11 Let I = (G,S,D) be an instance of PPR with p= n. Let {Ci} be the set of

2-edge-connected components of G. Then I is feasible if and only if the following holds: 1. for

all v ∈V(G\(∪iCi)), S−1(v) = D−1(v), 2. for each Ci , S−1(Ci) =D−1(Ci), and 3. for each Ci , the

PPR instance(Ci,S|S−1(Ci)
,D|D−1(Ci)

) is feasible. Moreover, the feasibility test can be performed

in linear time.

PROOF. Finding TECCs ofG can be done inO(|V|+ |E|) time Tarjan (1972). Checking whether

condition 1 holds takes linear time. For checking condition2, for eachCi , we first gatherS−1(Ci)

and for each pebble inS−1(Ci), mark the pebble as belonging toCi . We can then check whether

the pebbles inD−1(Ci) also belong toCi in linear time. For condition 3, deciding the feasibility of

(Ci ,S|S−1(Ci)
,D|D−1(Ci)

) can be done using the results from Section III. This check canperformed

as follows. 1. Check whetherCi is a cycle, which is true if and only if no vertex ofCi has

degree more than two. If this is the case, apply Observation 10 to test the feasibility onCi ;

2. Check whetherCi is a cactus with no even cycle. We can verify whetherCi is a cactus as

follows: Using depth first search (DFS), detecting cycles ofCi . If Ci is a cactus, then it should

assume a “tree” structure shown in Fig. 5; the first cycle thatis found must be a leaf cycle.

Deleting this cycle (without deleting the vertex that joinsthis cycle to the rest ofCi) from Ci

yields another cactus. Repeating the process tells us whetherCi is a cactus. As we are finding the

cycles, we can check whether there is an even cycle. IfCi is indeed a cactus with no even cycle,

the possible configurations have two equivalence classes. The subproblem is only infeasible if

S|S−1(Ci)
,D|D−1(Ci)

fall into different equivalence classes, which can be checked by computing

the parity of the permutationσS,D, restricted toCi , in linear time; 3. For all other types ofCi ,

the subproblem is feasible. �

15

B. Feasibility test of PPR when p= n−1

When p = n− 1, nearly all PPR instances, in whichG are 2-edge-connected graphs, are

feasible.

Lemma 12 Let I = (G,S,D) be an instance of PPR in which G is 2-edge-connected and not a

cycle. If p< n, then I is feasible.

PROOF. By Theorems 2 and 5,G ≥ An. That is, there are at most two equivalence classes of

configurations, with configurations from different classesdiffer by a transposition of neighboring

pebbles. Since there is at least one empty vertex, viewing that vertex as a “virtual” pebble that can

be exchanged with a neighboring pebble in one move, it is thenclear that the two configuration

classes collapse into a single class. �

Lemma 13 Let I = (G,S,D) be an instance of PPR in which G, after deleting one (or more)

degree1 vertex (vertices), is a 2-edge-connected graph. If p< n, then I is feasible.

PROOF. Note that by degree 1 vertices, we mean that these vertices have degree 1 inG. Let

H be the 2-edge-connected graph after deleting all degree 1 vertices and letv1, . . . ,vk be the

degree 1 vertices. Let the neighbor ofvi in G be v′i ∈V(H). Sincev∈ v1, . . . ,vk has degree 1,

it is attached toH via a single edge. LetHi be the subgraph ofG after deleting all vertices in

v1, . . . ,vk exceptvi . Assume thatv1 is empty initially, we show next that all pebbles occupying

H1 are equivalent. That is, an arbitrary configuration of thesepebbles can be achieved.

v¶

v
1

1

Fig. 9. With one empty vertex, pebbles on a triangle can be arranged to achieve any desired configuration. This generalizes

to an arbitrary TECC.

If H is cycle, the subroutine illustrated in Fig 9 shows how an arbitrary configuration of

pebbles can be achieved for a triangleH, which directly generalizes to an arbitrary sized cycle.

16

This shows that all pebbles onH1 fall in the same equivalence class. IfH is not a cycle, we

can move an arbitrary pebblej from H to v1. Lemma 12 implies that all pebbles onH are

equivalent. Sincej is arbitrary, all pebbles onH1 are equivalent.

Having shown that all pebbles onH1 are equivalent, we move an arbitrary pebblej to v1

and empty vertexv2 (if there is av2). Following the same procedure, all pebbles onH2 are

equivalent. Sincej is arbitrary, all pebbles onH,v1,v2 are equivalent. Inductively, all pebbles

on G are equivalent. Therefore, an arbitrary instanceI is feasible. �

When there is a single empty vertex onG, it is clear that pebbles can be moved so that the

empty vertex is an arbitrary vertex ofG. In particular, for any TECCH of G, we can move the

pebbles so that a vertex ofH is empty. By Lemma 13, all pebbles onH and its distance one

neighboring vertices fall in the same equivalence class. Wenow show that the feasibility of the

case ofp= n−1 can be decided in linear time.

Proposition 14 Let I = (G,S,D) be an instance of PPR in which p= n−1 and G is not a

cycle. The feasibility of I can be decided in linear time.

PROOF. We start with pebble configurationS and group the pebbles into equivalence classes.

Without loss of generality, assume thatS leaves a vertex of a TECC, sayH, unoccupied. By

Lemma 13, all pebbles onH and its distance 1 neighbors belong to the same equivalence class,

sayhS,1. Now, check whether any pebble inhS,1 is on some other TECCH ′ 6= H. If that is the

case, all pebbles onH ′ and its distance 1 neighbors are also equivalent and belong to hS,1. When

no more pebbles can be added tohS,1 this way,hS,1 is completely defined.

Let v be a vertex neighboring a vertex occupied by a pebble fromhS,1 (v itself is not occupied

by a pebble inhS,1), if v is not a TECC vertex, the pebble currently onv cannot be move

to a TECC and therefore is not equivalent to any other pebble.The pebble then gets its own

equivalence class, sayhS,2. If v belongs to a TECC, sayHv, then all pebbles onHv and allHv’s

distance 1 neighbors that are not yet classified belong tohS,2; hS,2 is then expanded similarly

to hS,1. At this point, the procedures given so far apply to partition all pebbles into equivalence

classes. It is not hard to see the algorithm takes linear timeto complete using breadth first or

depth first search, treating each TECC as a whole. As the startconfigurationS is being classified,

the same is done toD. In particular, if a set of pebbles ofS belongs to an equivalence class

17

hS,i, then the pebbles ofD occupying the same set of vertices get assigned to the classhD,i. The

instanceI is feasible if and only ifhS,i = hD,i for all i (this can be done in linear time as we

have shown in checking the second condition in Proposition 11). �

Fig. 10 provides an example of applying the above procedure to a given pebble configuration,

v
1

v
2

v
3 v

4

v
5

v
6

v
7

v
8

Fig. 10. An example of the casep= n−1. The pebbles are put into 5 different equivalence classes,distinguished by different

colors.

which partitions the pebbles into 5 equivalence classes.

C. Feasibility test of PPR when p< N(TECCs)

We denote byN(TECCs) the number of vertices of all TECCs ofG. An instance is almost

always feasible whenp< N(TECCs).

Theorem 15 Let I = (G,S,D) be an instance of PPR in which G is not a cycle. If p<

N(TECCs), then I is feasible.

PROOF. Since the number of pebbles are not enough to occupy all TECCvertices, we can

update configurationS to a new oneS′ such that all pebbles are on TECC vertices. Repeating

the same moves over the configurationD to getD′ (i.e., if we move a pebble fromvi to v j in the

initial pebble configuration, we move the corresponding pebble from vi to v j in the final pebble

configuration). After this process is complete, the updatedstart and final configurations again

occupy the same set of vertices;(G,S,D) is feasible if and only if the(G,S′,D′) is feasible. In

the rest of the proof we show that(G,S′,D′) is feasible.

v
 jC

 i

C j

v i

Fig. 11. A graph with two TECCs.

18

Since not all TECC vertices are occupied inS′, at least one TECC, sayCi , has an empty

vertex. By Lamma 13, all pebbles onCi are equivalent. Now letCj be another TECC joined to

Ci via a single branch (see Fig. 11 for an example). Since any pebble onCj can be moved to

vertexv j via a proper sequence of rotations, it is then possible to exchange any pair of pebbles

p1 on Ci and p2 on Cj : move p2 to v j , emptyvi , move p2 to vi , rotate p1 to vi , and move it

to v j . Via induction, any pair of pebbles onG can be exchanged, without affecting the current

configuration of other pebbles. Given this procedure, we caniteratively arrange each pebblei,

starting from pebble 1, by exchanging pebblei with some other pebble occupyingi’s vertex in

D′. With up to p−1 exchanges, all pebbles can be arranged to their desired final configurations.

�

D. Feasibility test of PPR when N(TECCs)≤ p< n−1
For this last case, given a PPR instance,(G,S,D), we first move pebbles inS andD so that

vertices of all TECCs are occupied. To perform this in lineartime, a “fake” goal configuration

D f is created withp pebbles such that all TECCs are full occupied, in an arbitrary order. This

is possible becauseN(TECCs)≤ p< n−1. Using a spanning treeT of G and apply Theorem

8 to (T,S,D f),(T,D,D f), we get two new instances(T,S′,D f), (T,D′,D f) with the property

that S′,D′, andD f all occupy the same set of vertices and(T,S,S′), (T,D,D′) are both feasible.

Thus, we obtain a new PPR instance(G,S′,D′), which is feasible if and only if(G,S,D) is,

with the additional property that vertices of all TECCs are occupied. For convenience, we call

an instance(G,S,D) of PPR in which all TECC vertices are occupied arearranged pebble

permutationproblem, or RPP. Note that this impliesp≥ N(TECCs).

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8 v

1

v
2

v
3 v

4

v
5

v
6 v

7

v
8

Fig. 12. The skeleton tree (on the right) after contracting the graph on the left (from Fig. 10); the black dots are the composite

vertices.

Next, we contractG to get askeleton tree, TG, by collapsing each TECC into acomposite

19

vertex; other vertices and edges are left intact. For example, the graph from Fig. 10 have the

skeleton tree shown in Fig. 12. This procedure induces a natural map fT that takes any subgraph

H of G to fT(H) as a subgraph ofTG (via mapping all vertices belonging to the same TECC

of G to a composite vertex ofTG and non-composite vertices ofG to non-composite vertices of

T). Given an instance(G,S,D) of RPP withp< n−1 pebbles, all pebbles on the same TECC

are equivalent by Lemma 13. This induces a problem instance(TG,S′,D′) in which all pebbles

(in S and D) on the same TECC ofG are combined into acompositepebble (inS′ and D′).

Given two verticesu andv in a graph,u v denotes a (shortest) path betweenu andv. Such a

path is unique when the graph is a tree. By all vertices on (resp. in) u v, we mean vertices of

u v including (resp. excluding)u andv. Lemma 6 from Auletta et al. (1999) can be extended

to RPP as follows.

Lemma 16 Let (G,S,D) be an instance of RPP in which G is not a cycle and N(TECCs)

≤ p< n−1. Let u,v, and w be vertices of G such that the path between u and v and the path

between v and w are not edge disjoint. Assume u and v are occupied by pebbles and moves exist

that take S to a new configuration in which pebble S−1(u) is moved to v and S−1(v) is moved

to w. Then S can be taken to an configuration S′ in which S and S′ are the same except pebbles

on u and v are exchanged.

PROOF. For convenience, letp1 := S−1(u) and p2 := S−1(v). Let the overlapping part ofu v

and v w be y v. Let the sequence of moves that takep1 to v and p2 to w be represented

as X = 〈S= S0,S1, . . . ,D〉. If it is possible to movep1, p2 to the same TECC, then clearly

the locations ofp1, p2 can be exchanged on the TECC without changing any other pebble’s

configuration. Reversing earlier moves then exchangesp1, p2 on u and v. For the rest of this

proof, we assume thatp1, p2 can never occupy vertices from the same TECC. Note that this

implies hat p1, p2 can never occupy vertices of the same TECC in different configurations

originated fromS; in particular, no vertex ony v can be on a TECC. To see this, ifp1, p2

both reach a TECCH in some (possibly different) configurations inX, assume without loss of

generality thatp1 reachesH first. Since all pebbles onH are equivalent andH contains at least

three vertices,p1 can always stay onH: SupposeX at some point wants to movep1 outside of

H. If p1 is the only pebble onH, p1 does not hinder any other pebbles from moving through

H and movingp1 out will only crowd the rest ofG, making further pebble movements outside

20

H harder. If p1 is not the only pebble onH, we may pick any pebble onH to leaveH instead

of p1. Then p2 will eventually reachH with p1 still on H, allowing them to exchange.

For the case in whichp1, p2 never visits the same TECC ofG, let W denote the graph formed

by the vertices and edges traveled byp1, p2 as they move along the sequence of configurations

in X. Let TW = fT(W). If TW contains composite vertices that are not leaves ofTW, let z be

such a composite vertex andHz be the TECC corresponding toz in G. Let G(Hz,v) denote the

connected component ofG containingv after deletingHz and let G(Hz,v) denote rest of the

components. By assumption, only one ofp1 or p2 may visit Hz. Assume it isp1 (the case of

p2 is similar), thenp2 can only visit vertices ofG(Hz,v); in fact the entire pathv w is within

G(Hz,v). Using the same argument from the previous paragraph,X can be modified so thatp1

does not visit vertices ofG(Hz,v), unlessu∈ G(Hz,v). In this case, however,p1 is equivalent

to any pebble that is initially onHz; the lemma holds if an only if a pebble initially onHz in S

can move tov and p2 can move tow. Via induction, it must be possible for some pebblesp′1,

equivalent top1, andp2 to move from someu′ to v andv to somew′, respectively, wherey v

is contained withinu′ v and v w′. Further more,p′1, p2 do not “pass through” any TECC

of G.

We may then assume that from the beginning,TW has only composite vertices that are leaves.

Denote the branch ofG containingy as Ty. Since p1, p2 may still visit some TECCs, letT ′
y

denote the tree containingTy as well as the vertices of these TECCs (visited byp1 or p2) that

are (distance 1) neighbors ofTy. Since the labels of pebbles other thanp1, p2 have no effect on

moving p1, p2, we may assume pebbles other thanp1, p2 are unlabeled (indistinguishable). It can

be shown that unlabeled pebbles outside ofT ′
y never need to move toT ′

y: If an unlabeled pebble

moves from outsideT ′
y and stays onT ′

y it only makes movingp1, p2 less feasible; if an unlabeled

pebble moves from one vertex outsideT ′
y to another vertex outsideT ′

y via Ty, it does not help the

feasibility of movingp1, p2 on T ′
y. Thus, unlabeled pebbles may only move away fromT ′

y and

they should never come back. Therefore, we may first take the unlabeled pebbles that will leave

T ′
y and move them outsideT ′

y in the beginning. After these steps, the initial problem is reduced

to moving p1 from u to v and p2 from v to w on the treeT ′
y; by Lemma 6 from Auletta et al.

(1999), p1, p2 are equivalent. Note that this implies that ifp1 (resp.p2) can visit a TECC, then

p2 (resp. p1) can visit that TECC as well; it is not possible that a given TECC can only be

visited by one of the pebbles fromp1, p2. �

21

Lemma 16 leads to a generalized version of Theorem 4 from Auletta et al. (1999) to RPP, given

below. We omit the proof since it is nearly identical (we needextended versions of Corollary

1 and 2 from Auletta et al. (1999), which can be easily proved in the same way Lemma 16 is

proved).

Theorem 17 An RPP instance,(G,S,D), in which G is not a cycle and N(TECCs)≤ p< n−1,

is feasible if and only if the individual exchanges between pebble i and S−1(D(i)), 1≤ i ≤ p,

can be performed using moves without affecting the configurations of any other pebble.

By Theorem 17, if an instance of RPP,I = (G,S,D), is feasible, then pebblesi andσS,D(i) =

S−1(D(i)) can be exchanged with no net effect on other pebbles. This enables a feasibility test

of RPP problems (and therefore, PMR problems): vertices occupied by pebbles are partitioned

into equivalence classes such that two pebbles can be exchanged if and only if the vertices

occupied by them belong to the same equivalence class. In fact, we apply theMark algorithm

from Auletta et al. (1999) on the skeleton treeTG without any change at the pseudocode level

(see Auletta et al. (1999) for the simple algorithm description); the main difference is how to

check whether two adjacent pebbles are equivalent (Lemma 8 from Auletta et al. (1999)).

Before stating our version of the lemma, some notations are in order. We work with an

arbitrary RPP instanceI = (G,S,D) in which G is not a cycle andN(TECCs)≤ p< n−1. Let

I ′ = (TG,S′,D′) be the induced instance described earlier in whichTG is G’s skeleton tree. A

fork vertex ofTG is a vertex of degree at least 3 that is not a composite vertex.F(u) is the set

of connected components ofTG after deleting the vertexu. T(u,v) is the tree ofF(u) containing

the vertexv; T(u,v) is the rest ofF(u). For two verticesu,v∈V(TG), d(u,v) is the length of

u v. In the lemmas that follow, only start configurationS′ is operated on; same procedure can

be applied toD. First we need a version of Corollary 3 from Auletta et al. (1999) to account for

composite vertices; we omit the essentially same proof but point out that although both fork and

composite vertices can help two pebbles switch locations, acomposite vertex can do so with

one fewer empty vertex.

Lemma 18 Let p1 := S′−1(u), p2 := S′−1(v) for u,v∈V(TG) such that u v contains no other

pebbles; all vertices on u v are of degree 2. Let w be a composite or fork vertex such that u

is in w v. The tree T(u,w) has no more than d(w,u) (resp. d(w,u)+1) empty vertices when

22

w is a composite (resp. fork) vertex. Let w′ be the closest composite or fork vertex to v such

that v is in w′ u satisfying similar properties as w. Then u and v are not equivalent.

Lemma 19 Let p1 := S′−1(u), p2 := S′−1(v) for some u,v∈V(TG) such that u v contains no

other pebbles. Then p1, p2 are equivalent with respect to S′ if and only if at least one of the

following conditions holds:

1. There exists a fork vertex w in u v such that both T(w,u),T(w,v) are not full or at least

one other tree of F(w) is not full.

2. Let w be a composite vertex such that u is in w v and no other fork vertex or composite

vertex is in w u. There exists such a w that T(u,w) has d(w,u)+1 empty vertices.

3. Symmetric to 2 with u and v switched.

4. Let w be a fork vertex such that u is in w v and no other fork vertex or composite vertex

is in w u. There exists such a w that T(u,w) has d(w,u)+2 empty vertices.

5. Symmetric to 4 with u and v switched.

6. Vertex u is a fork vertex. Then at least two trees of F(u) has empty vertices or there are at

least two empty vertices outside T(u,v).

7. Symmetric to 6 with u and v switched.

8. Vertex u is a composite vertex. Then at least one tree ofT(u,v) has an empty vertex.

9. Symmetric to 8 with u and v switched.

PROOF. The proof is adopted from that of Lemma 8 from Auletta et al. (1999) with some

repetitive details omitted. Since the sufficiency of the conditions can be easily checked by

constructing plans that exchangep1, p2, only necessity is shown here via contradiction. Assume

that u and v are exchangeable without configurationS satisfying any of the conditions 1-9.

First consider the case in which there is no fork vertex inu v and u and v are not fork or

composite vertices; these assumptions forbids conditions1 and 6-9. If conditions 2-5 do not

hold, the condition from Lemma 18 is true, thusu andv cannot be equivalent.

For the case in which no fork vertex exists inu v but u or v (possibly both) is a fork or

composite vertex, the proof from Lemma 8 from Auletta et al. (1999) applies with little change

to show thatu andv are not equivalent unless one of conditions 2-9 holds: If conditions 2-5 do

not hold, this means thatp1, p2 must useu or v as a “hub” for switching locations; traveling

beyond distance 1 fromu v will not help u andv to switch. On the other hand, if conditions

23

6-9 do not hold,u or v cannot serve as the hub that enablesu andv to switch. Furthermore, if

conditions 6-9 do not hold, reconfiguration of pebbles will not make conditions 2-5, previously

invalid, become valid.

This leaves the case in which conditions 2-9 do not hold, which means thatu and v cannot

switch onT(u,v) nor T(v,u). Since there is no pebble inu v, the vertices inu v cannot be

composite vertices. The same proof from Lemma 8 from Aulettaet al. (1999) then shows that

unless condition 1 is met,u andv cannot be equivalent. �

With Lemma 19, all criteria needed for theMark algorithm from Auletta et al. (1999), in

particular Observations 1-4, continue to hold onTG without change. SinceMark is not changed,

its running time is linear if deciding whether two adjacent pebbles are equivalent can be

performed in (amortized) constant time. For this to hold, for an arbitrary treeT(u,w), we need

to know whetherT(u,w) has 0, 1, 2 holes and whether the fork or composite vertex ofT(u,w)

closest tou allows u and another vertexv in T(u,w) to exchange (i.e., T(u,w) should have

enough empty vertices). These data can be precomputed inO(|V|+ |E|) time using two depth

firth traversals over the treeTG. At this point, it is not hard to see that this linear decision

algorithm easily turns into an algorithm that computes a feasible solution to a PPR instance.

Our complexity analysis shows that a feasible solution can be computed inO(|E|) if a high

level plan is required (computes a corresponding RPP instance, checks feasibility, and outputs

the permutation pairs for exchanges) andO(n3) if step by step output is required (each exchange

can be done inO(n2) moves produced by a fixed formula). We summarize the main result of

this section with the following theorem.

Theorem 20 The feasibility of PMR problems can be decided in linear time. Moreover, a plan

for a feasible instance can be computed in O(n3) time.

V. CONCLUSION
In this paper, we proposed the problem ofpebble motion on graphs with rotations(PMR), a

graph-based multi-robot path planning problem. Our formulation takes into account natural,

synchronous rotations of pebbles along fully occupied cycles of the underlying graph. The

inclusion of this important case, in conjunction with previous studies of the problem that only

allow pebbles to move to unoccupied vertices, paints a fairly complete picture of graph-based

24

multi-robot path planning problems. In our systematic analysis of PMR, we show that, even

for the fully constrained case in which the number of pebblesequals the number of vertices,

deciding the feasibility of a PMR instance can be completed in linear time with respect to the

size of the underlying graph. Moreover, computing a full plan for all moving all pebbles requires

O(n3) time.

REFERENCES

S. Loyd, Mathematical Puzzles of Sam Loyd. New York: Dover, 1959.

V. Auletta, A. Monti, M. Parente, and P. Persiano, “A linear-time algorithm for the feasbility of pebble motion on trees,”

Algorithmica, vol. 23, pp. 223–245, 1999.

D. Kornhauser, G. Miller, and P. Spirakis, “Coordinating pebble motion on graphs, the diameter of permutation groups, and

applications,” inProceedings of the 25th Annual Symposium on Foundations of Computer Science, 1984, pp. 241–250.

K. Solovey and D. Halperin, “k-color multi-robot motion planning,” inThe Tenth International Workshop on Algorithmic

Foundations of Robotics, 2012.

J. van den Berg, J. Snoeyink, M. Lin, and D. Manocha, “Centralized path planning for multiple robots: Optimal decouplinginto

sequential plans,” inProceedings Robotics: Science and Systems, 2009.

G. Wagner and H. Choset, “M*: A complete multirobot path planning algorithm with performance bounds,” inProceedings

IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, pp. 3260–3267.

A. Krontiris, R. Luna, and K. E. Bekris, “From feasibility tests to path planners for multi-agent pathfinding,” inSymposium on

Combinatorial Search, 2013.

T. Standley and R. Korf, “Complete algorithms for cooperative pathfinding problems,” inTwenty-Second International Joint

Conference on Artificial Intelligence, 2011, pp. 668–673.

E. J. Griffith and S. Akella, “Coordinating multiple droplets in planar array digital microfluidic systems,”International Journal

of Robotics Research, vol. 24, no. 11, pp. 933–949, 2005.

J. H. Reif and S. Slee, “Asymptotically optimal kinodynamicmotion planning for self-reconfigurable robots,” inThe Seventh

International Workshop on Algorithmic Foundations of Robotics, 2006.

E. W. Story, “Note on the ‘15’ puzzle,”American Journal of Mathematics, vol. 2, pp. 399–404, 1879.

R. M. Wilson, “Graph puzzles, homotopy, and the alternatinggroup,” Journal of Combinatorial Theory (B), vol. 16, pp. 86–96,

1974.

G. Goraly and R. Hassin, “Multi-color pebble motion on graph,” Algorithmica, vol. 58, pp. 610–636, 2010.

J. Yu, “A linear time algorithm for the feasibility of pebblemotion on graphs,”arXiv:1301.2342, 2013.

O. Goldreich, “Finding the shortest move-sequence in the graph-generalized 15-puzzle is np-hard,” 1984, laboratory for Computer

Science, Massachusetts Institute of Technology, unpublished manuscript.

D. Ratner and M. Warmuth, “The(n2−1)-puzzle and related relocation problems,”Journal of Symbolic Computation, vol. 10,

pp. 111–137, 1990.

P. Surynek, “An optimization variant of multi-robot path planning is intractable,” inThe Twenty-Fourth AAAI Conference on

Artificial Intelligence, 2010, pp. 1261–1263.

J. Yu and S. M. LaValle, “Structure and intractability of optimal multi-robot path planning on graphs,” inProceedings AAAI

National Conference on Artificial Intelligence, 2013, pp. 1444–1449.

25

J. R. Driscoll and M. L. Furst, “On the diameter of permutation groups,” inProceedings of the Fifteenth Annual ACM Symposium

on Theory of Computing, 1983, pp. 152–160.

——, “Computing short generator sequences,”Information and Computation, vol. 72, no. 2, pp. 117–132, Feb. 1987.

L. Babai, R. Beals, and A. Seress, “On the Diameter of the Symmetric Group: Polynomial Bounds,” inProceedings of the

Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2004, pp. 1108–1112.

R. E. Tarjan, “Depth-first search and linear graph algorithms,” SIAM Journal on Computing, vol. 1, no. 2, pp. 140–160, 1972.

	I Introduction
	II Pebble Motion Problems
	III Graph Induced Group and the Upper Bound on its Diameter
	III-A Groups Generated by Cyclic Pebble Motions and their Diameters
	III-B Upper Bound over Group Diameters

	IV Linear Time Feasibility Test of PMR
	IV-A Feasibility test of PPR when p = n
	IV-B Feasibility test of PPR when p = n - 1
	IV-C Feasibility test of PPR when p < N(TECCs)
	IV-D Feasibility test of PPR when N(TECCs) p < n - 1

	V Conclusion

