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Abstract— The present work provides a new approach to solve 
the well-known multi-robot co-operative box pushing problem as a 
multi objective optimization problem using modified Multi-objective 
Particle Swarm Optimization. The method proposed here allows 
both turning and translation of the box, during shift to a desired 
goal position. We have employed local planning scheme to 
determine the magnitude of the forces applied by the two mobile 
robots perpendicularly at specific locations on the box to align and 
translate it in each distinct step of motion of the box, for 
minimization of both time and energy. Finally the results are 
compared with the results obtained by solving the same problem 
using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). 
The proposed scheme is found to give better results compared to 
NSGA-II.   
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I. INTRODUCTION 
Co-operation is an important issue in designing multi-agent 

systems. It is primarily targeted to design and execute a 
complex task or plan by more than one simple robot instead of 
a powerful and much more sophisticated robot. Some works 
regarding co-operation is reported in [1], [2], [3], [4], [5]. The 
box pushing problem is stated as: given an arbitrary rigid 
polyhedral environment, we have to determine a continuous 
collision-free path for transportation of the box from a given 
starting point to a fixed final (goal) point [5].  

A specific version of the Box-pushing problem, where two 
similar robots have to plan the trajectory of motion of the box 
from a pre-defined starting position to a fixed goal position in 
a given environment, containing a static number of obstacles 
is considered in this work [6]. The robots are capable of 
shifting a large box from initial position to the final goal 
position. The box shifting includes two basic operations: 
turning and translation. Turning involves both push and pull 
operations where translation involves only push operation. In 
either case, both the robots stand in one side of the box and 
apply forces perpendicularly to it. Sufficient spacing between 
the box and obstacle needs to be maintained during turning 

and translation of the box which is assured by adding a 
penalty function to the energy objective function. 

The problem of box-pushing is a Multi-objective 
optimization problem as the primary objectives refer to the 
minimization of energy and time. To ensure minimum time 
constraint, the forces applied on the box should be maximized 
and on the contrary, minimum energy consumption requires 
minimum forces to be applied by the robots. Clearly the 
requirements are conflicting and there is a trade-off between 
these two objectives. The optimization problem has been 
solved here using the well-known and popular multi-objective 
optimization algorithm namely modified MOPSO proposed by 
Coello Coello et al [7]. 

Particle Swarm Optimization is a population based heuristic 
optimization algorithm, inspired by the social behavior of 
flocking of birds and schooling of fishes. It has been 
successfully used for optimizing high dimensional complex 
functions in continuous domain (mainly). Pareto dominance is 
incorporated into particle swarm optimization (PSO) in order 
to allow this heuristic to handle problems with several 
objective functions. A special mutation operator is also 
incorporated to enrich the exploratory capability of the 
algorithm. 

II. MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION 
Kennedy and Eberhart [8] proposed an approach called 

PSO, which was inspired by the choreography of a bird flock. 
The approach can be seen as a distributed behavioral 
algorithm that performs (in its more general version) 
multidimensional search [9].  There have been several recent 
proposals to extend PSO to handle multi-objective problems. 
The primary motivation of multi-objective evolutionary 
algorithm is to obtain Pareto-optimal solution in a single run. 
One of the most popular PSO approach to handle MO problem 
is proposed by A. Coello Coello.[7] 
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Definition 1; General Multiobjective Optimization Problem 
(MOP): Find the vector T
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Definition 2; Pareto Optimality: A point Ω∈*x  is Pareto 
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Definition 3; Pareto Dominance: A vector 
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where *P is the Pareto Optimal Set. 
The analogy of PSO with evolutionary algorithms makes 

evident the notion that using a Pareto ranking scheme [10] 
could be the straightforward way to extend the approach to 
handle multi-objective optimization problems. The historical 
record of best solutions found by a particle (i.e., an individual) 
could be used to store non-dominated solutions generated in 
the past. The use of global attraction mechanisms combined 
with a historical archive of previously found non-dominated 
vectors would motivate convergence toward globally non-
dominated solutions. 
 
Pseudo Code: 
% MAX=population size, 
% POS=position of particle, 
% VEL=velocity of particle, 
% FIT=evaluate population (POS), 
% PBEST=personal best of a particle, 
% REP=non-dominated vector (particle solution) 
w = 0.4; 
R1 = rand(0,1); 
R2= rand(0,1); 
 
FOR i=1:MAX       initialize POS(i); 

FOR i=1:MAX       VEL(i) = 0; 
FOR i=1:MAX       FIT(i) = evaluate(POS(i)); 
FOR i=1:MAX       PBEST(i) = POS(i); 
REP = non_dominated(POS(i)); 
Initialize GRID in objective functions space; 
Locate REP particles in the hypercubes (generated by GRID); 
 
 
WHILE iter<max_cycle 
 

Assign fitness of a hypercube that is inversely 
proportional to the REP particles it containing; 

FOR i=1:MAX  
       

Roulette-wheel selection of a hypercube; 
GBEST = Randomly select a REP particle 

on that hypercube; 
VEL(i) = w*VEL(i)+R1*(PBEST(i)-

POS(i))+R2*(GBEST-POS(i)); 
POS(i) = POS(i)+VEL(i); 
IF particle go beyond search space randomly 
initialize it within search space or assign 
VEL(i) = -VEL(i); 
 

END FOR 
 
Update REP; 
Update hypercubes; 
IF REP reaches max_limit particles located in less 
populated areas of objective space are given priority 
over those lying in highly populated regions; 
 
FOR i=1:MAX 
 

IF evaluate(POS(i)) dominated over 
evaluate(PBEST(i)) 

PBEST(i) = POS(i); 
ELSEIF evaluate(POS(i)) is dominated by 

evaluate(PBEST(i)) 
Retain previous PBEST(i) 

ELSE  
PBEST(i) = 

select_randomly(POS(i),PBEST(i)); 
END IF 
 

END FOR 
 
iter =iter+1; 
 

END WHILE 
 
Use of a Mutation Operator: 

PSO is known to have a very high convergence speed. 
However, such convergence speed may be harmful in the 
context of multi-objective optimization, because a PSO-based 
algorithm may converge to a false Pareto front (i.e., the 



  

equivalent of a local optimum in global optimization). The 
RPSO [10] resets the position of a specific particle, at a 
certain (fixed) number of iterations. However, this approach is 
not only adding exploratory capabilities to PSO, but it also 
ensures that the full range of every decision variable is 
explored. The mutation rate is gradually decreased over time. 
Here we use a nonlinear exponentially decay function to 
implement the fact. 
 
% particle = particle to be mutated 
% dim = number of dimensions 
% current_gen = current iteration 
% tot_gen = total number of iterations 
% mut_rate = mutation rate 
 
IF flip((1-currentgen/totgen)5/mut_rate) 

which_dim = rand(0,dim-1); 
mutrange = (upperbound[which_dim]-

lowerbound[which_dim])* (1-currentgen/totgen)5/mut_rate ; 
ub = particle[which_dim]+mutrange; 
lb = particle[which_dim]-mutrange; 
IF lb < lowerbound[which_dim]     lb = 

lowerbound[which_dim]; 
IF ub> upperbound[which_dim]     ub = 

upperbound[which_dim]; 
Particle[whichdim] = RealRandom(lb,ub); 

 
END IF 
 

III. PROBLEM FORMULATION 
Consider the situation where two robots R1 and R2 work co-

operatively to push a box from a given initial position to the 
goal position. Let the robots apply forces at point E (xe,ye) and 
F (xf,yf) respectively on a rectangular box ABCD, whose front 
wall is AD, current centre of gravity (xc,yc) and the centre of 
gravity of the final goal position is (xcg,ycg)  as shown in Fig. 
1. The box will first turn and then move by the forces applied 
by the two robots. If the box turns around a point on the edge 
EF in anticlockwise direction, R1 pulls and R2 pushes the box. 
For clockwise rotation, the robots change their role. 

Let α be the angle of rotation and I (xI,yI) be the point 
around which the box is rotated. After rotation the centre of 
gravity becomes (xcnew,ycnew) and the new positions of the 
robots are (xenew,yenew) and (xfnew,yfnew). 
From principle of kinematics, 
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After turning by an angle α (counterclockwise), the box 
moves with an alignment angle θ with the x-axis. 

 
Fig. 1.  Position of the box after rotation and after translation (next position) 
 
The box moves distance d with alignment angle θ and the next 
centre of gravity is (x’c,y’c) where, 
 

θcos' dxx cnewc +=                                                         (7) 

θsin' dyy cnewc +=                                                         (8) 
 
The first objective function concerns minimization of time, 
which has three components. The first one refers to the time 
required for rotation, given by 
 

T
Jt α2
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Where, J is mass moment of inertia  
    112211 2 dFdFdFTorqueT rrr =+==  (pure rotation) 
And F1r is the force applied by R1                                       (10) 
     F2r is the force applied by R2 
d1 and d2 are the perpendicular distance from the rotational 
axis to the line of action of the forces. 

The second time component refers to the time needed for 
translation of the box to the next position. The third 
component refers to the predicted time cost requirement for 
transportation of the box from next position to the final 
position. Accordingly, 
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Where, F1t is the force applied by R1 to transport the box and  
  F2t force applied by R2 to transport the box 
For translation, tt FF 21 =  

The third component refers to the secondary objective, 



  

which may be added to the primary objective functions (first 
two components) to strengthen the quality of solutions from 
the point of view of other metrics. When a primary objective 
function gives equal measure to multiple trial solutions, the 
secondary objective function yields different measure for the 
individuals from the trial solutions. This is the significance of 
the secondary objective function. In present case the time 
needed transportation of the box from next position to the 
final position is treated as secondary objective. 

Let S be the distance between the next center of gravity and 
the final goal position of the center of gravity, 

2'2' )()( cgccgc yyxxS −+−=                                 (12) 

or, 
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The secondary objective is, 
St ∝3  

or, Skt =3 , k is a constant                                         (13) 
Finally the first objective function is, 

3211 tttf ++=                                                               (14) 
  
The second objective function is concerned with minimization 
of energy. It has four components, energy for rotation, energy 
for translation, the secondary objective energy function and 
the penalty function corresponding to energy objective. Let E1 
and E2 represent energy for rotation and translation 
respectively, 
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The secondary objective, 

SE ∝3  

SkE 13 = , k1 is a constant                                              (17) 
 
In the process of selecting next position of the box from its 

current position, special care should be taken in order to 
ensure that the next position is not in close vicinity of 
obstacles/sidewalls of the robots workspace. This is given by 
the penalty function. The penalty function has a large value 
when the next position of the box is close enough to an 
obstacle. The penalty function has low value when the next 
position is away from the obstacle or sidewall of the world 
map. The penalty function is given by, 
 

24
22 kpenaltyE d−==                                                (18) 

 
Where k2 is a constant, and d is a function of distance of the 
box with the obstacles and sidewalls, and is measured as 
 

),min(),min(),min( 4321212 wwllww ddddddd ++=    (19) 

  Where dw1, dw2, dl1, dl2, dw3 and dw4 are the distances of the 
vertices of the box with the sidewall of the workspace. The 
pictorial representation is given in Fig. 2. 
 

 
Fig. 2.  Diagram for calculating d. 
 
Finally the energy objective, 

43212 EEEEf +++=                                                 (20) 
 
 Here the objectives are function of xI, yI, F1r, F1t, d1, d and α 
which have to be determined to optimize the objective 
functions. 

Now a solution is proposed to the problem, which presumes 
current center of the box, and determines the forces to be 
applied by the two robots to the box to shift it to the next 
position of the CG of the box. 

 
The Pseudo Code: 
Input: Initial CG of the box (xc,yc), Final CG of the box (xcg, 
ycg), points of application of the two forces on the box by the 
two robots (xe, ye) and (xf, yf) and a threshold value ε 
Output: F1r, F1t, d1, d and α for each step and total energy and 
time spent for the entire job 
Begin: 
Set: ;; ccurrccurr yyxx ←←  
Repeat 

Call MOPSO (xcurr, ycurr, xe, ye, xf, yf; xI, yI, F1r, F1t, 
d1, d, α); 
Move-to (xcurr, ycurr); 

Until ≤∈− |||| Gcurr  

//),(),,(// cgcgcurrcurr yxGyxcurr ==  
End 
MOPSO pseudo code is described earlier in section II. 

 



  

 

IV. RESULTS 
Fig 3,4 show the trajectory of the box when shifted from 

initial to the fixed final or goal position. It is apparent that the 
box will first turn and then translate.  

Pareto-front represents the contour of optimal solutions of 
the objective function. We cannot use all of them in practice 
for application. Therefore a single solution is needed. For this, 
the fitness function of the solutions is normalized and the 
solution for which the sum of the normalized fitness value is 
minimum is selected. 

The simulation process takes 10-12 steps depending upon 
the arena. On each arena the simulation is run 10 times (for 
each algorithm) and the average energy and time 
corresponding to each step is tabulated in the table and the 
results are compared with the result obtained by using NSGA-
II algorithm [11]. 

From the results, it is demonstrated that modified MOPSO 
infers better results than NSGA-II. 

 
 
 

 
   Fig. 3 Trajectory in World Map 1 
 
 

      Fig. 4.   Trajectory in World Map 2 

TABLE  I   STEP BY STEP ENERGY AND TIME FOR MOPSO ( WORLD MAP 1) 

Step Average Energy 
(J) 

Average Time 
(s) 

1 7011.45 56.40 

2 6480.34 55.59 

3 1518.45 64.58 

4 5419.66 56.74 

5 4866.35 62.88 

6 1130.82 65.70 

7 3672.12 74.13 

8 1078.91 58.90 

9 1902.95 73.10 

10 221.26 81.49 

 

TABLE II . STEP BY STEP ENERGY AND TIME FOR MOPSO  (WORLD MAP 2)             

Step Average Energy 
(J) 

Average Time 
(s) 

1 10103.99 30.76 

2 2087.61 70.43 

3 3880.57 50.99 

4 6803.96 63.62 

5 1409.06 76.55 

6 5045.05 67.25 

7 4957.66 51.15 

8 1749.32 52.24 

9 4577.89 64.97 

10 950.44 74.62 

11 4504.77 55.23 

12 3842.23 83.28 

13 2974.29 69.27 



  

 

TABLE III.    COMPARISON BETWEEN  NSGA-II  AND  MOPSO 

World 
map Method Total 

Energy (KJ) 
Total Time  

(s) 
Total No 
of steps 

1 
NSGA-II 38.115 696.57 11 

MOPSO 33.302 649.51 10 

2 
NSGA-II 56.235 857.94 13 

MOPSO 52.886 810.36 13 

 

V. CONCLUSIONS 
The paper studies the scope of handling Box-pushing 

problem as a multi-objective optimization problem and uses 
the Pareto-optimal solutions to the problem using modified 
Multi-objective Particle Swarm Optimization. Further the 
results are compared with the solutions obtained by NSGA-II 
algorithm [6]. It has been found that MOPSO offers better and 
fruitful results in comparison to NSGA-II. The merit of the 
work lies in online optimization of the secondary objective 
function, which ultimately minimizes the traversal time and 
energy consumptions. Very often the calculation of the 
penalty function depends on noisy sensor data and the 
objective functions also become noisy. To tackle the situation, 
dynamic optimizing algorithms may be used. Use of Dynamic 
MOPSO to solve such problem would be our future 
endeavors. 
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