

Multi-robot Cooperative Box-pushing problem using
Multi-objective Particle Swarm Optimization

Technique
Arnab Ghosh, Avishek Ghosh, Arkabandhu Chowdhury,

Amit Konar
Dept. of Electronics & Telecommunication Engineering

Jadavpur University
Kolkata 700032, India

arnabju90@gmail.com, avishek.ghosh38@gmail.com,
arjia_2005@yahoo.com, akonar@etce.jdvu.ac.in

R. Janarthanan
 Dept. of Information Technology

Jaya Engineering College
Chennai, India

srmjana_73@yahoo.com

Abstract— The present work provides a new approach to solve
the well-known multi-robot co-operative box pushing problem as a
multi objective optimization problem using modified Multi-objective
Particle Swarm Optimization. The method proposed here allows
both turning and translation of the box, during shift to a desired
goal position. We have employed local planning scheme to
determine the magnitude of the forces applied by the two mobile
robots perpendicularly at specific locations on the box to align and
translate it in each distinct step of motion of the box, for
minimization of both time and energy. Finally the results are
compared with the results obtained by solving the same problem
using Non-dominated Sorting Genetic Algorithm-II (NSGA-II).
The proposed scheme is found to give better results compared to
NSGA-II.

Keywords— Cooperative Systems; Genetic Algorithms;
Particle Swarm Optimization; Robot motion.

I. INTRODUCTION
Co-operation is an important issue in designing multi-agent

systems. It is primarily targeted to design and execute a
complex task or plan by more than one simple robot instead of
a powerful and much more sophisticated robot. Some works
regarding co-operation is reported in [1], [2], [3], [4], [5]. The
box pushing problem is stated as: given an arbitrary rigid
polyhedral environment, we have to determine a continuous
collision-free path for transportation of the box from a given
starting point to a fixed final (goal) point [5].

A specific version of the Box-pushing problem, where two
similar robots have to plan the trajectory of motion of the box
from a pre-defined starting position to a fixed goal position in
a given environment, containing a static number of obstacles
is considered in this work [6]. The robots are capable of
shifting a large box from initial position to the final goal
position. The box shifting includes two basic operations:
turning and translation. Turning involves both push and pull
operations where translation involves only push operation. In
either case, both the robots stand in one side of the box and
apply forces perpendicularly to it. Sufficient spacing between
the box and obstacle needs to be maintained during turning

and translation of the box which is assured by adding a
penalty function to the energy objective function.

The problem of box-pushing is a Multi-objective
optimization problem as the primary objectives refer to the
minimization of energy and time. To ensure minimum time
constraint, the forces applied on the box should be maximized
and on the contrary, minimum energy consumption requires
minimum forces to be applied by the robots. Clearly the
requirements are conflicting and there is a trade-off between
these two objectives. The optimization problem has been
solved here using the well-known and popular multi-objective
optimization algorithm namely modified MOPSO proposed by
Coello Coello et al [7].

Particle Swarm Optimization is a population based heuristic
optimization algorithm, inspired by the social behavior of
flocking of birds and schooling of fishes. It has been
successfully used for optimizing high dimensional complex
functions in continuous domain (mainly). Pareto dominance is
incorporated into particle swarm optimization (PSO) in order
to allow this heuristic to handle problems with several
objective functions. A special mutation operator is also
incorporated to enrich the exploratory capability of the
algorithm.

II. MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION
Kennedy and Eberhart [8] proposed an approach called

PSO, which was inspired by the choreography of a bird flock.
The approach can be seen as a distributed behavioral
algorithm that performs (in its more general version)
multidimensional search [9]. There have been several recent
proposals to extend PSO to handle multi-objective problems.
The primary motivation of multi-objective evolutionary
algorithm is to obtain Pareto-optimal solution in a single run.
One of the most popular PSO approach to handle MO problem
is proposed by A. Coello Coello.[7]

mailto:arnabju90@gmail.com
mailto:avishek.ghosh38@gmail.com
mailto:arjia_2005@yahoo.com
mailto:akonar@etce.jdvu.ac.in
mailto:srmjana_73@yahoo.com

Definition 1; General Multiobjective Optimization Problem
(MOP): Find the vector T

nxxxx],,,[**
2

*
1

* 


= which will
satisfy the m inequality constraints

mixgi ,,2,1,0)(


=≥
the p equality constrains

pixhi ,,2,1,0)(


==
and will optimize the vector function

T
k xfxfxfxf)](,),(),([)(21





=

where T
nxxxx],,,[21 


= is the vector of decision

variables.
Definition 2; Pareto Optimality: A point Ω∈*x is Pareto
optimal if for every Ω∈x and },,2,1{ kI = either

))()((*xfxf iiIi


=∀ ∈
or, there is at least one such that

)()(*xfxf ii


>
Definition 3; Pareto Dominance: A vector

),,,(21 kuuuu 


= is said to dominate

),,,(21 kvvvv 


= (denoted by vu 
≤) if and only if u is

partially less than v, i.e.,

iiii vukivuki <∈∃∩≤∈∀ :},,2,1{},,,2,1{ 

Definition 4; Pareto Front: For a given MOP ()xf


 and

Pareto optimal set ()xPF * , the Pareto front is defined as

}|))(,),(({: *
1

* PxxfxffuPF k ∈=== 


where *P is the Pareto Optimal Set.
The analogy of PSO with evolutionary algorithms makes

evident the notion that using a Pareto ranking scheme [10]
could be the straightforward way to extend the approach to
handle multi-objective optimization problems. The historical
record of best solutions found by a particle (i.e., an individual)
could be used to store non-dominated solutions generated in
the past. The use of global attraction mechanisms combined
with a historical archive of previously found non-dominated
vectors would motivate convergence toward globally non-
dominated solutions.

Pseudo Code:
% MAX=population size,
% POS=position of particle,
% VEL=velocity of particle,
% FIT=evaluate population (POS),
% PBEST=personal best of a particle,
% REP=non-dominated vector (particle solution)
w = 0.4;
R1 = rand(0,1);
R2= rand(0,1);

FOR i=1:MAX initialize POS(i);

FOR i=1:MAX VEL(i) = 0;
FOR i=1:MAX FIT(i) = evaluate(POS(i));
FOR i=1:MAX PBEST(i) = POS(i);
REP = non_dominated(POS(i));
Initialize GRID in objective functions space;
Locate REP particles in the hypercubes (generated by GRID);

WHILE iter<max_cycle

Assign fitness of a hypercube that is inversely
proportional to the REP particles it containing;

FOR i=1:MAX

Roulette-wheel selection of a hypercube;
GBEST = Randomly select a REP particle

on that hypercube;
VEL(i) = w*VEL(i)+R1*(PBEST(i)-

POS(i))+R2*(GBEST-POS(i));
POS(i) = POS(i)+VEL(i);
IF particle go beyond search space randomly
initialize it within search space or assign
VEL(i) = -VEL(i);

END FOR

Update REP;
Update hypercubes;
IF REP reaches max_limit particles located in less
populated areas of objective space are given priority
over those lying in highly populated regions;

FOR i=1:MAX

IF evaluate(POS(i)) dominated over
evaluate(PBEST(i))

PBEST(i) = POS(i);
ELSEIF evaluate(POS(i)) is dominated by

evaluate(PBEST(i))
Retain previous PBEST(i)

ELSE
PBEST(i) =

select_randomly(POS(i),PBEST(i));
END IF

END FOR

iter =iter+1;

END WHILE

Use of a Mutation Operator:

PSO is known to have a very high convergence speed.
However, such convergence speed may be harmful in the
context of multi-objective optimization, because a PSO-based
algorithm may converge to a false Pareto front (i.e., the

equivalent of a local optimum in global optimization). The
RPSO [10] resets the position of a specific particle, at a
certain (fixed) number of iterations. However, this approach is
not only adding exploratory capabilities to PSO, but it also
ensures that the full range of every decision variable is
explored. The mutation rate is gradually decreased over time.
Here we use a nonlinear exponentially decay function to
implement the fact.

% particle = particle to be mutated
% dim = number of dimensions
% current_gen = current iteration
% tot_gen = total number of iterations
% mut_rate = mutation rate

IF flip((1-currentgen/totgen)5/mut_rate)

which_dim = rand(0,dim-1);
mutrange = (upperbound[which_dim]-

lowerbound[which_dim])* (1-currentgen/totgen)5/mut_rate ;
ub = particle[which_dim]+mutrange;
lb = particle[which_dim]-mutrange;
IF lb < lowerbound[which_dim] lb =

lowerbound[which_dim];
IF ub> upperbound[which_dim] ub =

upperbound[which_dim];
Particle[whichdim] = RealRandom(lb,ub);

END IF

III. PROBLEM FORMULATION
Consider the situation where two robots R1 and R2 work co-

operatively to push a box from a given initial position to the
goal position. Let the robots apply forces at point E (xe,ye) and
F (xf,yf) respectively on a rectangular box ABCD, whose front
wall is AD, current centre of gravity (xc,yc) and the centre of
gravity of the final goal position is (xcg,ycg) as shown in Fig.
1. The box will first turn and then move by the forces applied
by the two robots. If the box turns around a point on the edge
EF in anticlockwise direction, R1 pulls and R2 pushes the box.
For clockwise rotation, the robots change their role.

Let α be the angle of rotation and I (xI,yI) be the point
around which the box is rotated. After rotation the centre of
gravity becomes (xcnew,ycnew) and the new positions of the
robots are (xenew,yenew) and (xfnew,yfnew).
From principle of kinematics,

)(sincos)cos1(IccIcnew yyxxx −−+−= ααα (1)

)(sincos)cos1(IccIcnew xxyyy −−+−= ααα (2)

)(sincos)cos1(IeeIenew yyxxx −−+−= ααα (3)

)(sincos)cos1(IeeIenew xxyyy −−+−= ααα (4)

)(sincos)cos1(IffIfnew yyxxx −−+−= ααα (5)

)(sincos)cos1(IffIfnew xxyyy −−+−= ααα (6)

After turning by an angle α (counterclockwise), the box
moves with an alignment angle θ with the x-axis.

Fig. 1. Position of the box after rotation and after translation (next position)

The box moves distance d with alignment angle θ and the next
centre of gravity is (x’c,y’c) where,

θcos' dxx cnewc += (7)

θsin' dyy cnewc += (8)

The first objective function concerns minimization of time,
which has three components. The first one refers to the time
required for rotation, given by

T
Jt α2

1 = (9)

Where, J is mass moment of inertia
 112211 2 dFdFdFTorqueT rrr =+== (pure rotation)
And F1r is the force applied by R1 (10)
 F2r is the force applied by R2
d1 and d2 are the perpendicular distance from the rotational
axis to the line of action of the forces.

The second time component refers to the time needed for
translation of the box to the next position. The third
component refers to the predicted time cost requirement for
transportation of the box from next position to the final
position. Accordingly,

tt FF
mdt

21
2

2
+

= (11)

Where, F1t is the force applied by R1 to transport the box and
 F2t force applied by R2 to transport the box
For translation, tt FF 21 =

The third component refers to the secondary objective,

which may be added to the primary objective functions (first
two components) to strengthen the quality of solutions from
the point of view of other metrics. When a primary objective
function gives equal measure to multiple trial solutions, the
secondary objective function yields different measure for the
individuals from the trial solutions. This is the significance of
the secondary objective function. In present case the time
needed transportation of the box from next position to the
final position is treated as secondary objective.

Let S be the distance between the next center of gravity and
the final goal position of the center of gravity,

2'2')()(cgccgc yyxxS −+−= (12)

or,

.)sin()cos(22
cgcnewcgcnew ydyxdxS −++−+= θθ

The secondary objective is,
St ∝3

or, Skt =3 , k is a constant (13)
Finally the first objective function is,

3211 tttf ++= (14)

The second objective function is concerned with minimization
of energy. It has four components, energy for rotation, energy
for translation, the secondary objective energy function and
the penalty function corresponding to energy objective. Let E1
and E2 represent energy for rotation and translation
respectively,

αα 111 2 dFTE r== (15)

dFdFFE ttt 1212 2)(=+= (16)

The secondary objective,

SE ∝3

SkE 13 = , k1 is a constant (17)

In the process of selecting next position of the box from its

current position, special care should be taken in order to
ensure that the next position is not in close vicinity of
obstacles/sidewalls of the robots workspace. This is given by
the penalty function. The penalty function has a large value
when the next position of the box is close enough to an
obstacle. The penalty function has low value when the next
position is away from the obstacle or sidewall of the world
map. The penalty function is given by,

24
22 kpenaltyE d−== (18)

Where k2 is a constant, and d is a function of distance of the
box with the obstacles and sidewalls, and is measured as

),min(),min(),min(4321212 wwllww ddddddd ++= (19)

 Where dw1, dw2, dl1, dl2, dw3 and dw4 are the distances of the
vertices of the box with the sidewall of the workspace. The
pictorial representation is given in Fig. 2.

Fig. 2. Diagram for calculating d.

Finally the energy objective,

43212 EEEEf +++= (20)

 Here the objectives are function of xI, yI, F1r, F1t, d1, d and α
which have to be determined to optimize the objective
functions.

Now a solution is proposed to the problem, which presumes
current center of the box, and determines the forces to be
applied by the two robots to the box to shift it to the next
position of the CG of the box.

The Pseudo Code:
Input: Initial CG of the box (xc,yc), Final CG of the box (xcg,
ycg), points of application of the two forces on the box by the
two robots (xe, ye) and (xf, yf) and a threshold value ε
Output: F1r, F1t, d1, d and α for each step and total energy and
time spent for the entire job
Begin:
Set: ;; ccurrccurr yyxx ←←
Repeat

Call MOPSO (xcurr, ycurr, xe, ye, xf, yf; xI, yI, F1r, F1t,
d1, d, α);
Move-to (xcurr, ycurr);

Until ≤∈− |||| Gcurr

//),(),,(// cgcgcurrcurr yxGyxcurr ==
End
MOPSO pseudo code is described earlier in section II.

IV. RESULTS
Fig 3,4 show the trajectory of the box when shifted from

initial to the fixed final or goal position. It is apparent that the
box will first turn and then translate.

Pareto-front represents the contour of optimal solutions of
the objective function. We cannot use all of them in practice
for application. Therefore a single solution is needed. For this,
the fitness function of the solutions is normalized and the
solution for which the sum of the normalized fitness value is
minimum is selected.

The simulation process takes 10-12 steps depending upon
the arena. On each arena the simulation is run 10 times (for
each algorithm) and the average energy and time
corresponding to each step is tabulated in the table and the
results are compared with the result obtained by using NSGA-
II algorithm [11].

From the results, it is demonstrated that modified MOPSO
infers better results than NSGA-II.

 Fig. 3 Trajectory in World Map 1

 Fig. 4. Trajectory in World Map 2

TABLE I STEP BY STEP ENERGY AND TIME FOR MOPSO (WORLD MAP 1)

Step Average Energy
(J)

Average Time
(s)

1 7011.45 56.40

2 6480.34 55.59

3 1518.45 64.58

4 5419.66 56.74

5 4866.35 62.88

6 1130.82 65.70

7 3672.12 74.13

8 1078.91 58.90

9 1902.95 73.10

10 221.26 81.49

TABLE II . STEP BY STEP ENERGY AND TIME FOR MOPSO (WORLD MAP 2)

Step Average Energy
(J)

Average Time
(s)

1 10103.99 30.76

2 2087.61 70.43

3 3880.57 50.99

4 6803.96 63.62

5 1409.06 76.55

6 5045.05 67.25

7 4957.66 51.15

8 1749.32 52.24

9 4577.89 64.97

10 950.44 74.62

11 4504.77 55.23

12 3842.23 83.28

13 2974.29 69.27

TABLE III. COMPARISON BETWEEN NSGA-II AND MOPSO

World
map Method Total

Energy (KJ)
Total Time

(s)
Total No
of steps

1
NSGA-II 38.115 696.57 11

MOPSO 33.302 649.51 10

2
NSGA-II 56.235 857.94 13

MOPSO 52.886 810.36 13

V. CONCLUSIONS
The paper studies the scope of handling Box-pushing

problem as a multi-objective optimization problem and uses
the Pareto-optimal solutions to the problem using modified
Multi-objective Particle Swarm Optimization. Further the
results are compared with the solutions obtained by NSGA-II
algorithm [6]. It has been found that MOPSO offers better and
fruitful results in comparison to NSGA-II. The merit of the
work lies in online optimization of the secondary objective
function, which ultimately minimizes the traversal time and
energy consumptions. Very often the calculation of the
penalty function depends on noisy sensor data and the
objective functions also become noisy. To tackle the situation,
dynamic optimizing algorithms may be used. Use of Dynamic
MOPSO to solve such problem would be our future
endeavors.

REFERENCES
[1] Saurav Bhaumick, Indrani Goswami (Chakroborty), Amit Konar,

Ananda S. Chowdhury, “Multi-robot Cooperative Box-pushing with
Noisy Sensory Data Using Dynamic Multi-objective Optimization
Technique” (communicated)

[2] C. R. Kube and H. Zhang (1996) “The use of perceptual cues in multi-
robot box pushing”, IEEE International Conference on Robotics and
Automation, vol. 3, pp. 2085-2090.

[3] H. Sugie, Y. Inagaki, S. Ono, H. Aisu and T. Unemi (1995) “Placing
objects with multiple mobile robots-mutual help with intension
inference”, IEEE International Conference on Robotics and Automation,
pp. 2181-2186.

[4] Y. Yamauchi, S. Ishikawa, N. Uemura and K. Kato (1993) “ On
cooperative conveyance by two mobile robots”, IEEE International
Conference on Robotics and Systems, pp. 1478-1481.

[5] A. Verma, B. Jung and G. S. Sukatme (2001) “ Robot Box-Pushing with
Environment Embedded Sensors”, Proceedings of 2011 IEEE
international Symposium on Computational Intelligence on Robotics and
Automation.

[6] Chakraborty, J.; Konar, A.; Nagar, A.; Das, S, “Rotation and
translation selective Pareto optimal solution to the box-pushing problem
by mobile robots using NSGA-II” Proceedings of IEEE Congress
on Evolutionary Computation, 2009. CEC '09 pp- 2120 - 2126.

[7] C. A. Coello, G. T. Pulido and M. S. Lechuga, “Handling
Multiobjectives with Particle Swarm Optimization”, IEEE Transactions
on Evolutionary Computation, 2004, vol. 3, pp. 256-279.

[8] J. Kennedy and R. C. Eberhart, Swarm Intelligence. San Mateo, CA:
Morgan Kaufmann, 2001.

[9] F. van den Bergh, “An analysis of particle swarm optimization,” Ph.D.
dissertation, Faculty of Natural and Agricultural Sci., Univ. Petoria,
Pretoria, South Africa, Nov. 2002.

[10] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning. Reading, MA: Addison-Wesley, 1989.

[11] K. Deb, A. P. S. Agarwal and T. Meyarivan,(1988) “A fast and elitist
multi-objective genetic algorithm: NSGA II”, IEEE Transaction on
Evolutionary Computation, vol. 2, pp. 162-197

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4939002
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4939002
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4939002
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4939002

	I. Introduction
	II. Multi-objective Particle Swarm Optimization
	III. Problem Formulation
	IV. Results
	V. Conclusions
	References

