
Rendezvous of two robots with visible bits

Giovanni Viglietta
viglietta@gmail.com

November 7, 2018

Abstract

We study the rendezvous problem for two robots moving in the
plane (or on a line). Robots are autonomous, anonymous, oblivious,
and carry colored lights that are visible to both. We consider deter-
ministic distributed algorithms in which robots do not use distance
information, but try to reduce (or increase) their distance by a con-
stant factor, depending on their lights’ colors.

We give a complete characterization of the number of colors that
are necessary to solve the rendezvous problem in every possible model,
ranging from fully synchronous to semi-synchronous to asynchronous,
rigid and non-rigid, with preset or arbitrary initial configuration.

In particular, we show that three colors are sufficient in the non-
rigid asynchronous model with arbitrary initial configuration. In con-
trast, two colors are insufficient in the rigid asynchronous model with
arbitrary initial configuration and in the non-rigid asynchronous model
with preset initial configuration.

Additionally, if the robots are able to distinguish between zero and
non-zero distances, we show how they can solve rendezvous and detect
termination using only three colors, even in the non-rigid asynchronous
model with arbitrary initial configuration.

1 Introduction

1.1 Models for mobile robots

The basic robot model we employ has been thoroughly described in [1, 2, 3,
4]. Robots are modeled as points freely moving in R2 (or R). Each robot
has its own coordinate system and its own unit distance, which may differ
from the others. Robots operate in cycles that consist of four phases: Wait,
Look, Compute, and Move.

In a Wait phase a robot is idle; in a Look phase it gets a snapshot of its
surroundings (including the positions of the other robots); in a Compute
phase it computes a destination point; in a Move phase it moves toward
the destination point it just computed, along a straight line. Then the cycle
repeats over and over.

1

ar
X

iv
:1

21
1.

60
39

v2
 [

cs
.M

A
]

 2
7

N
ov

 2
01

2

Robots are anonymous and oblivious, meaning that they do not have
distinct identities, they all execute the same algorithm in each Compute
phase, and the only input to such algorithm is the snapshot coming from
the previous Look phase.

In a Move phase, a robot may actually reach its destination, or it may
be stopped before reaching it. If a robot always reaches its destination by
the end of each Move phase, then the model is said to be rigid. If a robot
can unpredictably be stopped before, the model is non-rigid. However, even
in non-rigid models, during a Move phase, a robot must always be found
on the line segment between its starting point and the destination point.
Moreover, there is a constant distance δ > 0 that a robot is guaranteed to
walk at each cycle. That is, if the destination point that a robot computes is
at most δ away (referred to some global coordinate system), then the robot
is guaranteed to reach it by the end of the next Move phase. On the other
hand, if the destination point is more than δ away, the robot is guaranteed
to approach it by at least δ.

In the basic model, robots cannot communicate in conventional ways or
store explicit information, but a later addition to this model allows each
robot to carry a “colored light” that is visible to every robot (refer to [2]).
There is a fixed amount of possible light colors, and a robot can compute
its destination and turn its own light to a different color during a Compute
phase, based on the light colors that it sees on other robots and on itself.
Usually, when robots start their execution, they have all their lights set to
a predetermined color. However, we are also interested in algorithms that
work regardless of the initial color configurations of the robots.

In the fully synchronous model (FSynch) all robots share a common
notion of time, and all their phases are executed synchronously. The semi-
synchronous model (SSynch) is similar, but not every robot may be active
at every cycle. That is, some robots are allowed to “skip” a cycle at unpre-
dictable times, by extending their Wait phase to the whole cycle. However,
the robots that are active at a certain cycle still execute it synchronously.
Also, no robot can remain inactive for infinitely many consecutive cycles.
Finally, in the asynchronous model (ASynch) there is no common notion of
time, and each robot’s execution phase may last any amount of time, from
a minimum ε > 0 to an unboundedly long, but finite, time.

Figure 1 shows all the possible models arising from combining syn-
chronousness, rigidity, and arbitrarity of the initial light colors. The trivial
inclusions between models are also shown.

Without loss of generality, in this paper we will assume Look phases
in ASynch to be instantaneous, and we will assume that a robot’s light’s
color may change only at the very end of a Compute phase.

2

FSynch
rigid

SSynch
rigid

FSynch
non-rigid

SSynch
non-rigid

ASynch
rigid

ASynch
non-rigid

FSynch
rigid

SSynch
rigid

FSynch
non-rigid

SSynch
non-rigid

ASynch
rigid

ASynch
non-rigid

(1) (2) (2)

(1) (2) (3)

(1) (2) (3)

(1) (2) (3)

∗ ∗ ∗

∗ ∗ ∗

Figure 1: Robot models with their trivial inclusions. An asterisk means that
the initial color configuration may be arbitrary; no asterisk means that it is
fixed. The numbers indicate the minimum amounts of distinct colors that
are necessary to solve Rendezvous in each model (cf. Theorem 5.1).

1.2 Gathering mobile robots

Gathering is the problem of making a finite set of robots in the plane
reach the same location in a finite amount of time, and stay there forever,
regardless of their initial positions. Such location should not be given as
input to the robots, but they must implicitly determine it, agree on it, and
reach it, in a distribute manner. Note that this problem is different from
Convergence, in which robots only have to approach a common location,
but may never actually reach it.

For any set of more than two robots, Gathering has been solved in
non-rigid ASynch, without using colored lights (see [1]). The special case
with only two robots is also called Rendezvous, and it is easily seen to
be solvable in non-rigid FSynch but unsolvable in rigid SSynch, if colored
lights are not used (see [5]).

Proposition 1.1. If only one color is available, Rendezvous is solvable
in non-rigid FSynch and unsolvable in rigid SSynch.

Proof. In non-rigid FSynch, consider the algorithm that makes each robot
move to the midpoint of the current robots’ positions. At each move, the
distance between the two robots is reduced by at least 2δ, until it becomes
less than 2δ, and the robots gather.

Suppose that an algorithm exists that solves Rendezvous in rigid SSynch
by using just one color. Let us assume that the two robots’ axes are oriented

3

symmetrically, in opposite directions. This implies that, if we activate both
robots at each cycle, they obtain isometric snapshots, and thus they make
moves that are symmetric with respect to their current midpoint. Therefore,
by doing so, the robots can never meet unless they compute the midpoint.
If they do it, we just activate one robot for that cycle (and each time this
happens, we pick a different robot, alternating). As a result, the robots
never meet, regardless of the algorithm. ♥

However, in [2] it was shown how Rendezvous can be solved even in
non-rigid ASynch using lights of four different colors, and starting from a
preset configuration of colors. Optimizing the amount of colors was left as
an open problem.

1.3 Our contribution

In this paper, we will determine the minimum number of colors required to
solve Rendezvous in all models shown in Figure 1, with some restrictions
on the class of available algorithms.

Recall that robots do not necessarily share a global coordinate system,
but each robot has its own. If the coordinate system of a robot is not even
self-consistent (i.e., it can unpredictably change from one cycle to another),
then the only reliable reference for each robot is the position of the other
robot(s) around it. In this case, the only type of move that is consistent
will all possible coordinate systems is moving to a linear combination of the
robots’ positions, whose coefficients may depend on the colored lights. In
particular, when the robots are only two, we assume that each robot may
only compute a destination point of the form

(1− λ) ·me.position+ λ · other.position,

for some λ ∈ R. In turns, λ is a function of me.light and other.light only.
This class of algorithms will be denoted by L.

In Section 2, we will prove that two colors are sufficient to solve Ren-
dezvous in non-rigid SSynch with arbitrary initial configuration and in
rigid ASynch with preset initial configuration, whereas three colors are
sufficient in non-rigid ASynch with arbitrary initial configuration. All the
algorithms presented are of class L.

On the other hand, in Section 3 we show that even termination detection
can be achieved in non-rigid ASynch with arbitrary initial configuration
using only three colors, although our algorithm is not of class L (indeed, no
algorithm of class L can detect termination in Rendezvous).

In contrast, in Section 4 we prove that no algorithm of class L using only
two colors can solve Rendezvous in rigid ASynch with arbitrary initial
configuration or in non-rigid ASynch with preset initial configuration.

4

Finally, in Section 5 we put all these results together and we conclude
with a complete characterization of the minimum amount of colors that are
needed to solve Rendezvous in every model (see Theorem 5.1).

2 Algorithms for rendezvous

2.1 Two colors for the non-rigid semi-synchronous model

For non-rigid SSynch, we propose Algorithm 1, also represented in Figure 2.
Labels on arrows indicate the color that is seen on the other robot, and the
destination of the next Move with respect to the position of the other robot.
“0” stands for “do not move”, “1/2” means “move to the midpoint”, and “1”
means “move to the other robot”. The colors used are only two, namely A
and B.

Algorithm 1: Rendezvous for non-rigid SSynch and rigid ASynch

me.destination←− me.position
if me.light = A then

if other.light = A then
me.light←− B
me.destination←− (me.position+ other.position)/2

else
me.destination←− other.position

else if other.light = B then
me.light←− A

A B

A, /

B, 1

B, 0

A, 0

1
2

Figure 2: Illustration of Algorithm 1

Lemma 2.1. If the two robots start a cycle with their lights set to opposite
colors, they eventually gather.

Proof. Both robots retain their colors at every cycle, and the A-robot keeps
computing the other robot’s location, while the B-robot keeps waiting.
Hence, their distance decreases by at least δ for every cycle in which the

5

A-robot is active, until the distance becomes smaller than δ, and the robots
gather. ♥

Theorem 2.2. Algorithm 1 solves Rendezvous in non-rigid SSynch, re-
gardless of the colors in the initial configuration.

Proof. If the robots start in opposite colors, they gather by Lemma 2.1. If
they start in the same color, they keep alternating colors until one robot is
active and one is not. If this happens, they gather by Lemma 2.1. Otherwise,
the two robots are either both active or both inactive at each cycle, and
they keep computing the midpoint every other active cycle. Their distance
decreases by at least 2δ each time they move, until it becomes smaller than
2δ, and they finally gather. ♥

2.2 Two colors for the rigid asynchronous model

We prove that Algorithm 1 solves Rendezvous in rigid ASynch as well,
provided that the initial color is A for both robots.

Lemma 2.3. If, at some time t, the two robots have opposite colors and
neither of them is in a Compute phase that will change its color, they will
eventually solve Rendezvous.

Proof. Each robot retains its color at every cycle after time t, because it
keeps seeing the other robot in the opposite color at every Look phase. As
soon as the A-robot performs its first Look after time t, it starts chasing
the other robot. On the other hand, as soon as the B-robot performs its first
Look after time t, it stops forever. Eventually, the two robots will gather
and never move again. ♥

Theorem 2.4. Algorithm 1 solves Rendezvous in rigid ASynch, provided
that both robots start with their lights set to A.

Proof. Let r be the first robot to perform a Look. Then r sees the other
robot s set to A, and hence it turns B and computes the midpoint m.
Then, as long as s does not perform its first Look, r stays B because it
keeps seeing s set to A. Hence, if s performs its first Look after r has turned
B, Lemma 2.3 applies, and the robots will solve Rendezvous.

On the other hand, if s performs its first Look when r is still set to A
(hence still in its starting location), s will turn B and compute the midpoint
m, as well. If some robot reaches m and performs a Look while the other
robot is still set to A, the first robot waits until the other turns B. Without
loss of generality, let r be the first robot to perform a Look while the other
robot is set to B. This must happen when r is in m and set to B, hence
it will turn A and stay in m. If r turns A before s has reached m, then
Lemma 2.3 applies. Otherwise, r turns A when s is already in m, and both

6

robots will stay in m forever, as they will see the other robot in m at every
Look. ♥

2.3 Three colors for the non-rigid asynchronous model

For non-rigid ASynch, we propose Algorithm 2, also represented in Fig-
ure 3. The colors used are three, namely A, B, and C.

Algorithm 2: Rendezvous for non-rigid ASynch

me.destination←− me.position
if me.light = A then

if other.light = A then
me.light←− B
me.destination←− (me.position+ other.position)/2

else if other.light = B then
me.destination←− other.position

else if me.light = B then
if other.light = B then

me.light←− C
else if other.light = C then

me.destination←− other.position

else
if other.light = C then

me.light←− A
else if other.light = A then

me.destination←− other.position

Observation 2.5. A robot retains its color if and only if it sees the other
robot set to a different color.

Lemma 2.6. If, at some time t, the two robots are set to different colors,
and neither of them is in a Compute phase that will change its color, they
will eventually solve Rendezvous.

Proof. The two robots keep seeing each other set to different colors, and
hence they never change color, by Observation 2.5. One of the two robots
will eventually stay still, and the other robot will then approach it by at
least δ at every Move phase, until their distance is less than δ, and they
gather. As soon as they have gathered, they will stay in place forever. ♥

Theorem 2.7. Algorithm 2 solves Rendezvous in non-rigid ASynch,
regardless of the colors in the initial configuration.

7

A B

C

A, /

B, 0

B, 1 1
2

C, 0

C, 0

A, 0

C, 1

B, 0A, 1

Figure 3: Illustration of Algorithm 2

Proof. If the robots start the execution at different colors, they solve Ren-
dezvous by Lemma 2.6.

If they both start in A, then let r be the first robot to perform a Look.
r plans to turn B and move to the midpoint. If it turns B before the other
robot s has performed a Look, then Lemma 2.6 applies.

Otherwise, s plans to turn B and move to the midpoint, as well. If a
robot stops and sees the other robot still set to A, it waits. Without loss of
generality, let r be the first robot to perform a Look and see the other robot
set to B. r now plans to turn C, but if it does so before s has performed a
Look, Lemma 2.6 applies.

So, let us assume that both robots have seen each other in B and they
both plan to turn C. Once again, if a robot turns C and sees the other
robot still in B, it waits. Without loss of generality, let r be the first robot
to see the other robot in C. r plans to turn A, but if it does so before s has
performed a Look, Lemma 2.6 applies.

Assume that both robots see each other in C and they both plan to
turn A. If a robot turns A and sees the other robot still in C, it waits. At
some point, both robots are in A again, in a Wait phase, but they have
approached each other. They both moved toward the midpoint in their
first cycle, and then they just made null moves. As a consequence, if their
distance was smaller than 2δ, they have gathered. Otherwise, the distance
has decreased by at least 2δ. As the execution goes on and the same pattern
of transitions repeats, the distance keeps decreasing until the robots gather.
As soon as they have gathered, they never move again, hence Rendezvous
is solved.

The cases in which the robots start both in B or both in C are resolved
with the same reasoning. Note that all the states with both robots set to the
same color and in a Wait phase have been reached in the analysis above. ♥

8

3 Termination detection

Suppose we wanted our robots to acknowledge that they have gathered, in
order to turn off, or “switch gears” and start performing a new task.

Observation 3.1. If the model is SSynch, termination detection is triv-
ially obtained by checking at each cycle if the robots’ locations coincide.

Unfortunately, in ASynch, correct termination detection is harder to
obtain. Observe that both Algorithm 1 (for rigid ASynch) and Algorithm 2
(for non-rigid ASynch) fail to guarantee termination detection. Indeed,
suppose that robot r is set to A and sees the other robot s set to B, and
that the two robots coincide. Then r cannot tell if s is still moving or not.
If s is not moving, it is safe for r to terminate, but if s is moving, then r
has still to “chase” s, and cannot terminate yet.

To guarantee correct termination detection in non-rigid ASynch, we
propose Algorithm 3, also represented in Figure 4. Note that different rules
may apply depending on the distance between the two robots, indicated by
d in the picture. However, robots need only distinguish between zero and
non-zero distances. The colors used are again three, namely A, B, and C.

A B

C

(d>0) A, /

B, 0
(d>0) A, 0

(d>0) C, 1

B, 1

(d>0) C, 1

(d>0) C, 0

(d=0) A, 0

(d=0) C, 0

(d=0) A, 0

(d=0) C, 0

A, 0

B, 0

(d=0) C, term.

1
2

Figure 4: Illustration of Algorithm 3

Observation 3.2. No robot can move while it is set to C.

Lemma 3.3. If some robot ever turns C from a different color, the two
robots will gather and their execution will terminate correctly.

Proof. A robot can turn C only if it performs a Look while the other robot
is in the same location. If robot r performs a Look at time t that makes it
turn C, then r stays C forever after, unless it sees the other robot s set to C

9

Algorithm 3: Rendezvous for non-rigid ASynch with termination

me.destination←− me.position
if me.light = A then

if other.light = A then
if other.position 6= me.position then

me.light←− B
me.destination←− (other.position+me.position)/2

else
me.light←− C

else if other.light = B then
me.destination←− other.position

else if other.position 6= me.position then
me.destination←− other.position

else
me.light←− C

else if me.light = B then
if other.light = A and other.position = me.position then

me.light←− C
else if other.light = B then

me.light←− A
else if other.position 6= me.position then

me.destination←− other.position
else

me.light←− C

else if other.light = C then
if other.position 6= me.position then

me.light←− A
else

terminate

10

as well, in a different location. Let t′ > t be the first time this happens. Due
to Observation 3.2, r does not move between t and t′. On the other hand,
s coincides with r at time t. Then s must turn some other color and move
away from r, and then turn C at some time t′′ such that t < t′′ 6 t′. But, in
order to turn C, s would have to coincide with r, which is a contradiction.

Hence r will stay C and never move after time t. As soon as s sees r
set to C, it starts moving toward it (after turning A, if s is also set to C
and not coincident with r), covering at least δ at each Move phase, until
their distance becomes less than δ and s finally reaches r. Then s will turn
C as well, and both robots will terminate correctly after seeing each other
again. ♥

Lemma 3.4. If, at some time t, the two robots are set to A and B respec-
tively, and neither of them is in a Compute phase that will change its color,
they will eventually gather and terminate correctly.

Proof. If some robot ever turns C after time t, gathering and termination
are ensured by Lemma 3.3. Otherwise, the two robots keep seeing each other
set to opposite colors, and hence they never change color. The B-robot will
eventually stay still, and the A-robot will then approach it by at least δ at
every Move phase, until their distance is less than δ, and they gather. The
B-robot then turns C, and Lemma 3.3 applies again. ♥

Let r(t) denote the position of robot r at time t > 0.

Lemma 3.5. Let t be a time instant at which both robots are set to A, and
neither of them is in a Compute phase. Let us assume that robot r will
stay still until the end of its current phase (even if it is a Move phase),
and that robot s will either stay still until the end of its current phase, or
its destination point is r’s current location. Then r and s will eventually
gather and terminate correctly.

Proof. If s is not directed toward r at time t, let d be the distance between
r(t) and s(t). Otherwise, let t′ be the time at which s performed its last
Look, and let d be the distance between s(t′) and r(t). Furthermore, let
k = dd/δe. We will prove our claim by well-founded induction on k, so let
us assume our claim to hold for every k′ such that 0 6 k′ < k.

The first robot to perform a Look after time t sees the other robot set
to A. If they coincide (i.e., if s has reached r or if k = 0), the first robot
turns C, and Lemma 3.3 applies. If they do not coincide, the first robot
turns B. If it turns B before the other robot has performed a Look, then
Lemma 3.4 applies. Otherwise, when the second robot performs its first
Look after time t, it sees the first robot still set to A. Once again, if they
coincide, the second robot turns C and Lemma 3.3 applies. At this point, if
k = 1 and s was directed toward r at time t, the robots have gathered and
terminated correctly.

11

Hence, if r and s perform their first Look at times tr and ts respectively,
we may assume that both will turn B, r computes the midpoint mr of r(tr)
and s(tr), and s computes the midpoint ms of r(ts) and s(ts). Observe that,
if s’s destination was not r at time t, then mr = ms.

Without loss of generality, let r be the first robot to perform the second
Look. r sees s set to B, hence it turns A. If s performs the second Look
after r has already turned A, then s necessarily sees r in A (because r keeps
seeing s in B), and Lemma 3.4 applies.

Otherwise, both robots see each other in B, and both eventually turn
A. Without loss of generality, let s be the first robot to perform the third
Look. If k = 1 and s was not directed toward r at time t, the robots have
indeed gathered in mr = ms, so s turns C and Lemma 3.3 applies.

At this point we may assume that k > 2, hence δ 6 (k − 1)δ < d 6 kδ.
We claim that the distance d′ between r and s is now at most (k − 1)δ.
Indeed, if s was not directed toward r at time t, then each robot has either
reached mr = ms, or has approached it by at least δ. In any case, d′ 6
d − δ 6 (k − 1)δ. Otherwise, if s was directed toward r at time t, then
observe that both mr and ms lie between r(t) and m = (r(t) + s(t))/2.
Moreover, s has performed its first Look while at distance at most d − δ
from r(t), and subsequently it has further approached r(t). On the other
hand, r is found between r(t) and m, thus at distance not greater than d/2
from r(t). Hence, d′ 6 max{d− δ, d/2} 6 (k − 1)δ.

Now, s is the first robot to perform the third Look, and sees r either
already in A or still in B. In the first case, the inductive hypothesis applies,
because r is not in a Compute phase, and its destination is r itself. In the
second case, s computes r’s location, and it keeps doing so until r turns A.
When this happens, the inductive hypothesis applies again. ♥

Corollary 3.6. If, at some time t, both robots are set to B and are both
in a Wait or in a Look phase, they will eventually gather and terminate
correctly.

Proof. The reasoning in the proof of Lemma 3.5 also implicitly addresses
this case. Indeed, the configuration in which both robots are set to B and
in a Wait or a Look phase is reached during the analysis, and is incidentally
resolved, as well. ♥

Theorem 3.7. Algorithm 3 solves Rendezvous in non-rigid ASynch and
terminates correctly, regardless of the colors in the initial configuration.

Proof. If both robots start in A, Lemma 3.5 applies. If they both start in
B, Corollary 3.6 applies. If one robot starts in A and the other one starts
in B, then Lemma 3.4 applies.

If exactly one robot starts in C, it will stay still forever, and the other
robot will eventually reach it, turn C as well, and both will terminate.

12

If both robots start in C and they are coincident, they will terminate.
If they are not coincident, let r be the first robot to perform a Look. r
will then turn A and move toward the other robot s. If s performs its first
Look when r has already turned A, it will wait, r will eventually reach it,
turn C, and both will terminate. Otherwise, s performs its Look when r is
still set to C, hence s will turn A as well, and move toward r.

Then, one robot will keep staying A and moving toward the other one,
until both have turned A. Without loss of generality, let r be the first
robot to see the other one set to A. If they are coincident, r turns C and
Lemma 3.3 applies. Otherwise, r turns B. If this happens before s has seen
r in A, then Lemma 3.4 applies. Otherwise, both robots will turn B. As
long as only one robot has turned B, it stays B and does not move. At some
point, one robot sees the other in B and Corollary 3.6 applies. ♥

4 Impossibility of rendezvous with two colors

Observe that Algorithms 1, 2 and 3 only produce moves of three types: stay
still, move to the midpoint, and move to the other robot. It turns out that,
regardless of the number of available colors, any algorithm for Rendezvous
must use those three moves under some circumstances.

Proposition 4.1. For any algorithm solving Rendezvous in rigid FSynch,
there exist a color X and a distance d > 0 such that any robot set to X that
sees the other robot at distance d and set to X moves to the midpoint.

Proof. Assume both robots start with the same color and in distinct po-
sitions. We may assume that both robots get isometric snapshots at each
cycle, so they both turn the same colors, and compute destination points
that are symmetric with respect to their midpoint. If they never compute
the midpoint and their execution is rigid and fully synchronous, they never
gather. ♥

Proposition 4.2. For any algorithm solving Rendezvous in rigid SSynch,
there exist two colors X and Y and a distance d > 0 such that any robot set
to X that sees the other robot at distance d and set to Y moves to the other
robot’s position.

Proof. We activate one robot on even cycles, and the other robot on odd
cycles. If no robot ever computes the other robot’s position and they perform
rigid movements, they never gather. ♥

Proposition 4.3. For any algorithm solving Rendezvous in rigid SSynch,
there exist two colors X and Y and a distance d > 0 such that any robot set
to X that sees the other robot at distance d and set to Y does not move.

13

Proof. We keep activating only one robot at each cycle (alternately), except
when one robot computes the other robot’s position. Whenever this hap-
pens, we activate both robots for that cycle. If no robot ever performs a
null move, they never gather. ♥

The above observations partly justify the choice to restrict our attention
to a specific class of algorithms: from now on, every algorithm we consider
computes only destinations of the form

(1− λ) ·me.position+ λ · other.position,

where the parameter λ ∈ R depends only on me.light and other.light. Sim-
ilarly, a robot’s next light color depends only on the current colors of the
two robots’ lights, and not on their distance. Recall from Section 1 that this
class of algorithms is denoted by L. Notice that Algorithms 1 and 2 both
belong to L, but Algorithm 3 does not, because it may output a different
color depending if the two robots coincide or not.

A statement of the form X(Y) = (Z, λ) is shorthand for “if a robot is
set to X and sees the other robot set to Y , it turns Z and makes a move
with parameter λ”, where {X,Y, Z} ⊆ {A,B} and λ ∈ R. The negation of
X(Y) = (Z, λ) will be written as X(Y) 6= (Z, λ), wheres a transition with
an unspecified move parameter will be denoted by X(Y) = (Z, ?).

4.1 Preliminary results

Here we assume that the model is rigid ASynch, that only two colors are
available, namely A and B, and that the initial configuration is with both
robots set to A. All our impossibility results for this very special model are
then applicable to both non-rigid ASynch with preset initial configuration
and rigid ASynch with arbitrary initial configuration.

So, let an algorithm that solves Rendezvous in this model be given. If
the algorithm belongs to class L, then the following statements hold.

Lemma 4.4. A(A) = (B, ?).

Proof. If the execution starts with both robots in A, and A(A) = (A, ?),
then no robot ever transitions to B, and Rendezvous is not solvable, due
to Proposition 1.1. ♥

Lemma 4.5. If A(A) = (B, 1/2), then B(A) = (B, ?).

Proof. Let us assume by contradiction that B(A) = (A, ?). If B(A) = (A, λ)
with λ 6= 1, we let the two robots execute two cycles each, alternately. As
a result, each robot keeps seeing the other robot in A, and their distance is
multiplied by |1− λ|/2 6= 0 at every turn. Hence the robots never gather.

If B(A) = (A, 1), we let robot r perform a whole cycle and the Look
and Compute phases of the next cycle, while the other robot s waits. At

14

this point, their distance has halved, r is set to A, and is about to move to
s’s position. Now s performs two whole cycles, reaching r’s position with
its light set to A. Finally, we let r finish its cycle. As a result, the distance
between the two robots has halved, both robots have performed at least a
cycle, they are in a Wait phase, and they are both set to A. Hence, by
repeating the same pattern of moves, they never gather. ♥

Lemma 4.6. If A(A) = (B, 1/2) and B(B) = (A, ?), then B(B) = (A, 0).

Proof. Assume by contradiction that A(A) = (B, 1/2) and B(B) = (A, λ)
with λ 6= 0. We let both robots perform a Look and a Compute phase
simultaneously. Both turn B and compute the midpoint m. Then we let
robot r finish the current cycle and perform a new Look. As a result, r
will turn A and will move away from m. Now let the other robot s finish its
first cycle and perform a whole new cycle. s reaches m, sees r still set to B
and still in m, hence s turns A and stays in m. Finally, we let r finish the
current cycle. At this point, both robots are set to A, they are in a Wait
phase, both have performed at least one cycle, and their distance has been
multiplied by |λ|/2 6= 0. Therefore, by repeating the same pattern of moves,
they never gather. ♥

Lemma 4.7. If A(A) = (B, 1/2) and B(B) = (A, 0), then B(A) = (B, 0).

Proof. By Lemma 4.5, B(A) = (B, ?). Assume by contradiction thatB(A) =
(B, λ) with λ 6= 0. We let both robots perform a Look simultaneously, so
both plan to turn B and move to the midpoint m. We let robot r finish the
cycle, while the other robot s waits. Then we let r perform a whole other
cycle. So r sees s still in A, and moves away from m, while staying B. Now
we let s finish its first cycle and move to m. Finally, we let both robots
perform a new cycle simultaneously. As a result, both robots are set to A
and are in a Wait phase, both have performed at least one cycle, and their
distance has been multiplied by |λ|/2 6= 0. By repeating the same pattern
of moves, they never gather. ♥

Lemma 4.8. If A(A) = (B, 1/2) and B(B) = (A, 0), then A(B) = (A, 1).

Proof. Let us first assume that A(B) = (B, λ) with λ 6= 1. We let one robot
perform a whole cycle, thus turning B and moving to the midpoint. Then
we let the other robot perform a cycle, at the end of which both robots are
set to B. Finally, we let both robots perform a cycle simultaneously, after
which they are back to A and in a Wait phase. Because their distance has
been multiplied by |1 − λ|/2 6= 0, by repeating the same pattern of moves
they never gather.

Assume now that A(B) = (B, 1). We let robot r perform a Look and
a Compute phase, thus turning B and computing the midpoint. Now we
let the other robot s perform a whole cycle, at the end of which it is set to

15

B and has reached r. Then we let r finish its cycle, moving away from s.
Finally, we let both robots perform a new cycle simultaneously, which takes
them back to A. Their distance has now halved, and by repeating the same
pattern of moves they never gather.

Assume that A(B) = (A, ?), and let robot r perform an entire cycle, thus
turning B and moving to the midpoint. Due to Lemma 4.7, B(A) = (B, 0),
which means that, from now on, both robots will retain colors. Hence, r
will always stay still, and s will never reach r unless A(B) = (A, 1). ♥

4.2 Rigid asynchronous model with arbitrary initial config-
uration

Lemma 4.9. Algorithm 1 does not solve Rendezvous in rigid ASynch,
if both robots are set to B in the initial configuration.

Proof. Let both robots perform a Look phase, so that both will turn A.
We let robot r finish the current cycle and perform a new Look, while the
other robot s waits. Hence, r will stay A and move to s’s position. Now we
let s finish the current cycle and perform a new Look. So s will turn B and
move to the midpoint m. We let r finish the current cycle, thus reaching s,
and perform a whole new cycle, thus turning B. Finally, we let s finish the
current cycle, thus turning B and moving to m. As a result, both robots are
again set to B, they are in a Wait phase, both have executed at least one
cycle, and their distance has halved. Thus, by repeating the same pattern
of moves, they never gather. ♥

Theorem 4.10. There is no algorithm of class L that solves Rendezvous
using two colors in rigid ASynch from all possible initial configurations.

Proof. Because robots may start both in A or both in B, the statement of
Lemma 4.4, holds also with A and B exchanged. Hence A(A) = (B, ?), but
also B(B) = (A, ?). Moreover, by Proposition 4.1, either A(A) = (B, 1/2) or
B(B) = (A, 1/2). By symmetry, we may assume without loss of generality
that A(A) = (B, 1/2). Now, by Lemma 4.6, B(B) = (A, 0). Additionally, by
Lemma 4.7 and Lemma 4.8, B(A) = (B, 0) and A(B) = (A, 1). These rules
define exactly Algorithm 1, which is not a solution, due to Lemma 4.9. ♥

4.3 Non-rigid asynchronous model with preset initial config-
uration

Theorem 4.11. There is no algorithm of class L that solves Rendezvous
using two colors in non-rigid ASynch, even assuming that both robots are
set to a predetermined color in the initial configuration.

Proof. Let both robots be set to A in the initial configuration, and let d > 0
be given. By Lemma 4.4, A(A) = (B, λ), for some λ ∈ R. If λ 6= 1/2, we

16

place the two robots at distance d/|1−2λ| from each other, and we let them
perform a whole cycle simultaneously. If λ = 1/2, we place the robots at
distance d + 2δ, and we let them perform a cycle simultaneously, but we
stop them as soon as they have moved by δ. As a result, both robots are
now set to B, and at distance d from each other. This means that any
algorithm solving Rendezvous with both robots set to A must also solve
it with both robots set to B, as well.

Similarly, we can place the two robots at distance d/|1 − λ| or d + δ,
depending if λ 6= 1 or λ = 1. Then we let only one robot perform a full
cycle, and we let it finish or we stop it after δ, in such a way that it ends up
at distance exactly d from the other robot. At this point, one robot is set
to A and the other is set to B.

It follows that any algorithm for Rendezvous must effectively solve
it from all possible initial configurations. But this is impossible, due to
Theorem 4.10. ♥

5 Conclusions

We considered deterministic distributed algorithms for Rendezvous for
mobile robots that cannot use distance information, but can only reduce (or
increase) their distance by a constant factor, depending on the color of the
lights that both robots are carrying. We called this class of algorithms L.

We gave several upper and lower bounds on the number of different colors
that are necessary to solve Rendezvous in different robot models. Based
on these results, we can now give a complete characterization of the number
of necessary colors in every possible model, ranging from fully synchronous
to semi-synchronous to asynchronous, rigid and non-rigid, with preset or
arbitrary initial configuration.

Theorem 5.1. To solve Rendezvous with an algorithm of class L from a
preset starting configuration,

• one color is sufficient for rigid and non-rigid FSynch;

• two colors are necessary and sufficient for rigid SSynch, non-rigid
SSynch, and rigid ASynch;

• three colors are necessary and sufficient for non-rigid ASynch.

To solve Rendezvous with an algorithm of class L from an arbitrary start-
ing configuration,

• one color is sufficient for rigid and non-rigid FSynch;

• two colors are necessary and sufficient for rigid and non-rigid SSynch;

• three colors are necessary and sufficient for rigid and non-rigid ASynch.

17

Proof. All the optimal color values derive either from previous theorems or
from the model inclusions summarized in Figure 1.

That just one color is (necessary and) sufficient for all FSynch models
follows from Proposition 1.1.

Proposition 1.1 also implies that, for all the other models, at least two
colors are necessary. Therefore, by Theorem 2.2, two colors are necessary
and sufficient for all SSynch models.

Similarly, Theorem 2.4 states that two colors are necessary and sufficient
for rigid ASynch with preset initial configuration. On the other hand, by
Theorem 4.10 and Theorem 4.11, three colors are necessary in the three
remaining models, and by Theorem 2.7 three colors are also sufficient. ♥

In the three models in which three colors are necessary and sufficient, it
remains an open problem to determine whether using distance information
to its full extent would make it possible to use only two colors.

An interesting variation on this model is when the light on a robot can
be seen only by the other robot(s). In this case, algorithms of class L are
inadequate to solve Rendezvous even in rigid ASynch with preset initial
configuration, regardless of the number of available colors. In contrast, three
colors are necessary and sufficient for all SSynch models.

On the other hand, if the light is visible only to the robot that is carry-
ing it (i.e., internal memory), then no algorithm of class L can solve Ren-
dezvous, even in rigid SSynch with preset initial configuration, regardless
of the number of colors.

References

[1] M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Distributed
computing for mobile robots: gathering. SIAM Journal on Computing,
to appear.

[2] S. Das, P. Flocchini, G. Prencipe, N. Santoro, and M. Yamashita. The
power of lights: synchronizing asynchronous robots using visible bits. In
Proceedings of the 32nd International Conference on Distributed Com-
puting Systems, pp. 506–515, 2012.

[3] P. Flocchini, G. Prencipe, and N. Santoro. Distributed computing by
oblivious mobile robots. Morgan & Claypool, 2012.

[4] G. Prencipe and N. Santoro. Distributed algorithms for mobile robots.
In Proceedings of the 5th IFIP International Conference on Theoretical
Computer Science, pp. 47–62, 2006.

[5] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: for-
mation of geometric patterns. SIAM Journal on Computing, vol. 28,
pp. 1347–1363, 1999.

18

	1 Introduction
	1.1 Models for mobile robots
	1.2 Gathering mobile robots
	1.3 Our contribution

	2 Algorithms for rendezvous
	2.1 Two colors for the non-rigid semi-synchronous model
	2.2 Two colors for the rigid asynchronous model
	2.3 Three colors for the non-rigid asynchronous model

	3 Termination detection
	4 Impossibility of rendezvous with two colors
	4.1 Preliminary results
	4.2 Rigid asynchronous model with arbitrary initial configuration
	4.3 Non-rigid asynchronous model with preset initial configuration

	5 Conclusions

