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ABSTRACT
Cooperative pathfinding is a problem of finding a set of non-con-
flicting trajectories for a number of mobile agents. Its applications
include planning for teams of mobile robots, such as autonomous
aircrafts, cars, or underwater vehicles. The state-of-the-art algo-
rithms for cooperative pathfinding typically rely on some heuris-
tic forward-search pathfinding technique, where A* is often the
algorithm of choice. Here, we propose MA-RRT*, a novel algo-
rithm for multi-agent path planning that builds upon a recently pro-
posed asymptotically-optimal sampling-based algorithm for find-
ing single-agent shortest path called RRT*. We experimentally
evaluate the performance of the algorithm and show that the sam-
pling-based approach offers better scalability than the classical for-
ward-search approach in relatively large, but sparse environments,
which are typical in real-world applications such as multi-aircraft
collision avoidance.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Coherence and coordination, Multiagent systems; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search—
Plan execution, formation, and generation, Graph and tree search
strategies

General Terms
Algorithms, Experiments, Performance

Keywords
Cooperative pathfinding, multi-agent motion planning.

1. INTRODUCTION
The problem of collision avoidance for mobile robots, such as

aircrafts can be modeled as an instance of cooperative pathfinding,
a relatively well studied problem of finding a set of non-conflicting
trajectories for a number of mobile agents.
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The straightforward, but complete approach to the problem is to
search the solution in what we call a joint-state space. The state
space is constructed as the Cartesian product of the state spaces of
the individual agents. It is typically searched using some heuris-
tic forward search algorithm, such as A*. The performance of
forward search algorithms hinges on low branching factor of the
search space, which is in joint-state spaces often exponential in the
number of agents. Suppose for example that an agent can move
in four directions and that the problem involves six agents. Then,
there is 46 = 4096 possible joint actions at each timestep! Clearly,
the completeness of such an approach is traded for a prohibitive
computational cost.

Recently, Karaman and Frazzoli [1] introduced a novel any-time
sampling-based motion planning algorithm that offers good scala-
bility to high-dimensional environments, while at the same time it
guarantees convergence to an optimal solution. In this paper, we
introduce MA-RRT*, a novel sampling-based algorithm for coop-
erative pathfinding, the main contribution of this paper. The algo-
rithm searches for the plan of agents’ movements in their joint-state
space, but replaces the A*-based heuristic search in the joint-state
space by RRT*. We extensively evaluate the performance and so-
lution quality produced by the algorithm and show that for sparsely
populated large environments the sampling algorithm outperforms
Standley and Korf’s optimal anytime algorithm (OA) [2] in terms of
runtime and success rate, while still maintaining reasonable quality
of the solution.

2. PROBLEM FORMULATION
To allow fair comparison with the OA algorithm, which is de-

fined only for agents moving on graphs, we use the following def-
inition of a cooperative pathfinding problem. Consider n agents
operating in an Euclidean space. The motion model of the agent i
is described by a corresponding motion graph denoted as GM

i =
(Wi,Mi). The starting positions of all agents are given as an n-
tuple (s1, . . . , sn), where si ∈Wi is the starting waypoint of agent
i. Similarly, (d1, . . . , dn) is an n-tuple of destination waypoints
di ∈ Wi of each agent. The task is to find a sequence of motion
primitives, i.e., a path pi in the motion graph GM

i for each agent
i, such that start(pi) = si and end(pi) = di and the paths are
separated, that is, ∀j, k, t : j 6= k ⇒ dist(pi[t], pj [t]) > dsep ,
with dsep being the required separation distance. As the solution
quality metric we use the sum of times each of the agents spends
outside his destination waypoint.

3. THE ALGORITHM
The RRT* algorithm is designed for continuous state spaces in

which it can efficiently find a path from a given start state to a given
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target region by incrementally building a tree that is rooted at the
start state and spans towards randomly sampled states from some
given state space. Once the tree first reaches the goal region, the
algorithm can follow its edges backwards to obtain the first feasi-
ble path from the start state to the target region. However, even
after the first solution is returned, the algorithm does not stop, but
instead continues extending the tree by drawing new random sam-
ples, which leads to incremental discovery of new lower-cost paths.

We use identical approach to find the shortest path in a motion
graph. The core difference is that in continuous version, two sam-
ples can be connected if they are mutually visible. In the graph
version of RRT*, two samples can be connected if it is possible to
find a valid path between them by heuristic-guided greedy search
in the motion graph.

The multi-agent version of graph RRT* (MA-RRT*) is identical
to the graph version of RRT*, except that it searches for a shortest
path in a graph that represents the joint-state space of all agents.
The returned solution is then a collision-free joint plan containing
a path for each agent.

The performance of the algorithm on an average problem in-
stance can be improved by biasing the sampling distribution to fa-
vor regions around optimal paths of the individual agents that are
more likely to contain high quality solutions. We call this variant
an informed-sampling MA-RRT*.

4. EVALUATION
We compared the performance of the unbiased version of MA-

RRT* (MA-RRT*) and informed-sampling MA-RRT* (isMA-RRT*)
with A* search in joint-state space (JA) and optimal anytime algo-
rithm (OA) in terms of scalability and solution quality. All three
algorithms were implemented in Java in a common framework.

We evaluated the performance of the algorithms on the following
set of synthetic problem instances. The agents move on a square-
shaped grid-like motion graph, where the waypoints were placed
on the grid having the step of 1 meter and the motion primitives
were straight moves at the constant speed of 1 m/s connecting the
vertices in the 4-neighborhood. Furthermore, a 1 second long wait-
ing motion primitive was available at each waypoint. We randomly
removed 10 percent of the vertices of the motion graph to represent
obstacles. A unique start waypoint and unique destination way-
point was chosen randomly for each agent. Finally, for each such
instance we checked whether all agents can reach their destinations
to ensure that the instance admits a solution.

The set of tested problem instances contained instances that var-
ied in the size of the grid and in the number of agents. We used
the following values of the two parameters. Grid sizes: 10x10,
30x30, 50x50, 70x70, 90x90. Numbers of agents: 1, 2, 3, 4, 5, 6,
7, 8, 9, 10. The separation distance was set to a constant 0.8. The
problem instance set contained 120 random instances (with random
obstacles and random start and destination positions) for each com-
bination of the grid size and the number of agents. Thus, in total,
the experiment included 6000 different problem instances. Each
of the algorithms was executed on every instance with the runtime
limit of 5 seconds. The experiments were performed on HotSpot
1.6 64-bit Java VM running on AMD FX-8150 3.6 GHz CPU.

4.1 Results
To convey how well the algorithms performed on the evaluation

set of problem instances, we plot the performance curves (proposed
in [2]) for each algorithm. We recorded the runtime to find the first
valid solution to the problem instance for each algorithm. Then,
we sorted the instances according to the runtime for each algorithm
independently. The results are plotted in Figure 1. On the x-axis

is the index of instance in the algorithm’s sorted sequence, on the
y-axis is the runtime the algorithm needed to find the first solution
to that problem instance. It should be noted that the ordering of the
instances is different for each algorithm. The x-position of the last
point in the performance curve can be interpreted as the number
of instances of the total 6000 instances the algorithm solved in the
runtime limit of 5 seconds. We can see that JA resolved 21% of
the instances, OA 38%, MA-RRT* 56% and isMA-RRT* 77 % of
instances from our problem instance set.

Figure 2 shows the comparison of relative solution quality for
the anytime algorithms, JA is not plotted since it always returns
optimal solutions. For all algorithms we show the quality of the first
returned solution and the quality of the best solution found within
the 5 seconds runtime limit. The suboptimality is measured only on
a subset of instances for which either JA or OA returned provably
optimal solution (in our case 2438 instances). The suboptimality
measure is expressed in percentage points as follows:

suboptimality =

(
cost of returned solution
cost of optimal solution

− 1

)
· 100.

5. CONCLUSION
In this paper we proposed MA-RRT*, an anytime algorithm for

solving cooperative pathfinding problems. Our experiments demon-
strate the limits of the forward-search based approaches to coop-
erative pathfinding in large, but sparse environments. Our results
show that these instances can be efficiently solved using one of our
sampling-based algorithms for the price of a slight decrease in the
solution quality.
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Figure 1: First-solution performance curve
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Figure 2: Solution quality
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