
Modeling Basic Aspects of Cyber-Physical Systems
Walid Taha and Roland Philippsen

Halmstad University, Sweden
Rice University, Houston, TX

Abstract— Designing novel cyber-physical systems entails
significant, costly physical experimentation. Simulation tools
can enable the virtualization of experiments. Unfortunately,
current tools have shortcomings that limit their utility for
virtual experimentation. Language research can be especially
helpful in addressing many of these problems. As a first step
in this direction, we consider the question of determining what
language features are needed to model cyber-physical systems.
Using a series of elementary examples of cyber-physical systems,
we reflect on the extent to which a small, experimental domain-
specific formalism called Acumen suffices for this purpose.

I. INTRODUCTION

Increasing the computational power of everyday products
is revolutionizing the way we live. Segways can move us
from one location to another without any need for large,
cumbersome, or noisy vehicles. Cars can park themselves,
and warn us when we are changing lanes unsafely. The future
appears more fantastic than science fictions depicted it just
a few years ago. At the same time, the increasingly tight
coupling between computational and physical mechanisms,
often described as cyber-physical systems (CPS), is creating
a challenge for the traditional product development cycles.
For example, car manufacturers are concerned about the
amount of physical testing necessary to assure the safety of
a car with a high degree of autonomy.

Since the beginning of time, physical testing has been
the basis for justified true belief in the qualities of a new
product. A key ingredient of physical testing is having a
collection of specific usage scenarios. But the presence of
even simple computational components can make it make
it difficult to identify enough usage scenarios to exercise
more than a minute fraction of the possible behaviors of
the system. These observations are spurring the developers
of cyber-physical systems to rethink the traditional methods
and processes for developing and testing new products.

A. Virtual Experiments and Language Research

One way to alleviate the testing problem is to use computer
simulations [1] to perform virtual experiments [2]. Virtual
testing can be used to quickly eliminate obviously bad de-
signs. It can also help build confidence that a new design can
pass test scenarios developed by an independent party [3].
Creating a framework for conducting virtual experiments
requires a concerted, interdisciplinary community effort to
address a wide range of challenges, including:

This work was supported by the US NSF, Swedish KK-Foundation
CERES and CAISR Centres, and the Swedish SSF NG-Test Project.

1) Educating designers in the cyber-physical aspects of
the products they will develop, both in terms of:

• How they these aspects are modeled, and
• What types of system-level behaviors they gener-

ate.
2) Developing expressive, efficient, and robust modeling

and simulation tools to support the innovation process.
It is particularly important that the underlying models
are:

• Easy to understand and analyze at each stage of
the design process, and

• Easy to reason about across stages.
3) Accumulating extensive libraries of component models

that are both
• Grounded in physical principles and analytic meth-

ods, and
• Validated experimentally.

All three challenges would benefit from better language-
based technologies for describing and simulating cyber-
physical systems. Engineering methods centered around a
notion of executable or effectively-computable models can
have profound positive impact on the pace of advancement
of knowledge and engineering practice in cyber-physical
systems.

1) The Educational Challenge: For decades, engineering
and science education has focused on providing specialized
training within well-defined disciplines. As a result, to design
an advanced cyber-physical system such as a robot, we must
engage several experts with advanced degrees from a number
of different disciplines, such as mechanical engineering,
electrical engineering, computer science, and biology. Not
only does this recurring task make it difficult to assemble a
team with necessary expertise for a project, the team may
still lack a common language for discussing key issues that
are fundamental to the design of robotic systems, but that
are treated differently across disciplines.

Addressing the educational challenge will require a con-
certed effort to break down artificial boundaries between
disciplines. A key step towards achieving this goal will be to
find a lingua franca (or “common language”) to communi-
cate about fundamental issues that recur in the development
of a variety of different cyber-physical systems. Part of such
a language will be a jargon for communicating efficiently
among experts; part will be an appropriate mathematical
formalism. Language research can be particularly helpful
in developing tools that are closely aligned with executable
subsets (c.f. [4], [5]) of mathematical notations that are

ar
X

iv
:1

30
3.

27
92

v1
 [

cs
.R

O
]

 1
2

M
ar

 2
01

3

2

already used by many engineers and scientists but are not
available in mainstream programming languages and tools.

2) The Modeling and Simulation Challenge: The model-
ing and simulation challenge can also be approached from
a linguistic point of view. Precise reasoning about models
during each stage of the process can be improved by applying
classical (programming) language design principles, includ-
ing defining a formal semantics. Reasoning across stages can
be facilitated by using two ideas from language design: 1)
increasing the expressivity of a language to support multiple
stages in the design process, and 2) automatically compiling
models from one stage to the next to reduce manual work
and opportunities for mistakes as models are translated from
one stage of the design process to the next.

3) The Modeling Library Challenge: It seems reasonable
to expect that the dynamics surrounding the development
and use of modeling libraries can be similar to those
for software libraries. We can envision CPS design as a
community process where there are library providers and
library consumers, and where different libraries and test
suites are used to benchmark and evaluate various offerings.
In such a setting, the interfaces between components become
important, motivating questions related to advanced linguis-
tic techniques such as types, static checking, unit testing,
contracts, assertions, assume-guarantee reasoning, and blame
assignment, all of which can be expected to play a key role
in addressing this challenge.

B. A Small, Experimental Language for Hybrid Modeling

To better understand the core linguistic issues that arise in
addressing these challenges, we are developing a modeling
language called Acumen [6], [7]. A key characteristic of
modeling and simulation languages for cyber-physical sys-
tems is supporting hybrid (continuous/discrete) mathematical
models [1]. Modelica [8] and SimScape are widely used ex-
amples of such languages. Hybrid modeling can be supported
using a small number of constructs, namely:

• Ground values (e.g., True, 5, 1.3, "Hello")
• Vectors and matrices (e.g., [1,2], [[1,2],[3,4]])
• Object definition (class C (x,y,z) ... end)
• Object instantiation and termination (create,
terminate)

• Variable declarations (including a special
variable called _3D for generating visualizations)
(private ... end)

• Variable derivatives (x’, x’’, ...)
• Continuous assignment ([=])
• Discrete assignment (=)
• Conditional statements (if, and switch)
• Expressions and operators on reals (+, -, ...)

It appears that a language with just these features can be
helpful in addressing the educational challenge. For example,
we used such a language for a term-long project in an eight
week course on cyber-physical systems [9], and seems to
have been received positively. It appears that being able
to concretely explain a wide range of concerns in a small

language has two key benefits. The first relates to CPS edu-
cation. Using a small language can help highlight the connec-
tions between different concepts, and avoid the introduction
of artificial distinctions between manifestations of the same
concept in different contexts. The second relates to language
and tools research. Showing how such a wide range of cyber-
physical phenomena can be captured in a small language
helps emphasize the expressivity of such a small language,
and provide a basis for arguing against the introduction of
additional language features until a compelling case for the
addition of such language features has been made.

These observations inspired us to step back from the
details of that particular teaching experience to reflect on two
questions relating to the challenges described above. First,
what can we view as the basic cyber-physical aspects of a
robot system? Second, how well can they be explained in
terms of a small hybrid-systems modeling formalism?

C. Contributions

This paper considers several aspects of cyber-physical
systems that can be seen as common features of cyber-
physical systems, and uses them to reflect on how they can
be expressed and illustrated using the small hybrid systems
modeling language introduced above.

Visual and geometric presentation is a critical aspect of
analytical modeling that can hide in plain sight (Section II).
Technically, it is not part of analytical modeling, but it is
indispensable for efficiently understanding both the specifi-
cation and the results of a virtual experiment. From a peda-
gogic point of view, the trigonometric reasoning involved in
creating visualizations provides a natural path into geometry
of motion (kinematics). Basic mechanics and dynamics come
next (Section III), and a range of analytical principles used
to model physical systems. They also motivate the use of
differential equations, which in turn provide much of the
background needed to motivate the discussion of control
(Section V). To help experimentally evaluate the effect of
control, it is useful to consider mechanisms for modeling
disturbances (Section VI). By introducing these aspects, we
are able to present the simplest possible example of how
to model and test a cyber-physical system. This allows us
to return back to the physical component and refined it. A
natural way to do this in the robotics domain is to use ideas
from rigid body dynamics (Section VII). Similarly, we can
refine the model of the control system by capturing the way
in which implementation on a digital computer introduces
both discretization and quantization effects (Section VIII).

After the discussion of the individual aspects has been con-
sidered, we summarize our observations about the language
(Section IX) and conclude.

II. VISUAL AND GEOMETRIC PRESENTATION

Visual presentation plays an essential role in the design
of cyber-physical systems. For many people, it is hard to
imagine a robot (and possibly any other design, for that
matter) without conjuring an image of a general physical
form. If we want to replace physical prototyping with virtual

3

Fig. 1. The 3D output generated for an instance of the class sphere.

prototyping, visualization becomes a necessity. From the
educational point of view, this can be serendipitous, because
it can provide an opportunity to introduce trigonometry,
which itself is needed to model geometric features of objects
as well as to work with both the kinematics and dynamics
of physical objects.

A. Drawing 3D Objects

A small language for hybrid modeling and simulation
can be easily extended with a lightweight mechanism for
three dimensionals (3D) visualization [10]. In Acumen, the
user can specify 3D visualizations through a special variable
called 3D. This variable is only special in that it is read
by the implementation and used to generate a dyanmic 3D
scene. In principle, any graphical rendering technology can
be used by an implementation to realize these visualizations.
In practice, the current implementation used the Java3D
library, which is built on topc of OpenGL.

B. Class Definitions and Parameterization

The following class definition specifies a particular way
for drawing a sphere:

class sphere (m,D)
private
p =[0,0,1];
_3D = [["Sphere", D+[0,0,1],

0.03*sqrt(m),
[m/3,2+sin(m),2-m/2],
[1,1,1]]];

end
_3D [=] [["Sphere", D+p,

0.03*sqrt(m),
[m/3,2+sin(m),2-m/2],
[1,1,1]]];

end

The class parameter m represents a mass. This parameter
is only used to pick a size and a color for the sphere. The
parameter D is a display reference point. Passing different D
values to individual objects facilitates creating visualizations
where the individual objects appear in different places. The
private section declares local variables as well as their initial
value at the (simulated) time when the object is created. The
variable p is used to represent the position of the sphere.

The private section and the main body of the class definition
contain similar expressions for 3D. Both expresions consist
of a vector that has a format understood by the 3D visualiza-
tion part of the Acumen implementation. The first definition
is a discrete assignment that happens only at object creation
time. The second expression is a continuous assignment that
is computed all the time as long as the object exists in the
simulation.1 The format of the vector is as follows: The first
field is a string indicating that the shape we want is a sphere.
The second field is the coordinate for the center of the sphere.
The next field is the radius. Here we compute chose to
make the radius a simple function of the mass. This function
is not intended to have any physical meaning. Rather, to
produce reasonable effects for the examples presented in
this paper. The next field contains a vector that represents
the red/green/blue (RGB) colors for this sphere. To help us
distinguish different objects, we have again used an ad hoc
formula to generate a color based on the mass passed in.
The last field can be used to express an orientation, and
only matters when the sphere has a texture. Figure 1 depicts
a visualization generated using this class.

C. Object Creation, Continuous Assignment, and Animation

We can create sphere by writing “s = create sphere
(5,[0,0,0])” in the initialization section and then “s.p [=] [0.1,
0.2, 0.3]”. To generate 3D animations, all we have to do is
to let the value of “p” vary over time, as in the following
code:

class moving_sphere (m,D)
private s = create sphere (m,D);

t = 0; t’ = 0
end
t’ [=] 5;
s.p [=] [sin(t)*sqrt(1-(sin(t/10)ˆ2)),

cos(t)*sqrt(1-(sin(t/10)ˆ2)),
sin(t/10)];

end

Here the variable t and its derivative t’ are introduced here
to model a local variable that progresses at exactly five times
the rate of time. All that is needed to do that is to include
the equation “t’ [=] 5”. The time-varying variable t is then
used to generate some interesting values for the x, y, and
z components of the the position field p that represents the
center of the sphere object s.

As noted earlier, we can have instances of the same
object (such as the entire moving sphere example) appear at
different parts on the screen by varying the D parameter. By
changing the value of the position parameter p, we can create
an animation with two spheres moving in a synchronized
fashion.

It is useful to note that a 3D visualization facility can
also be used to visualize not only 3D values but also scalar
values. For example, it is useful to define objects that assist
in visualizing specific scalar values during a simulation. The

1Initialization is cumbersome in the current syntax for Acumen, as it
requires using two very similar expressions.

4

following class defines a class to visualize a scalar value as
a cylindar of length proportional to that value:

class display_bar (v,c,D)
private
_3D = ["Cylinder", D+[0,0.2,0],

[0.02,v], c,
[-3.14159265359/2,0,0]]

end
_3D = ["Cylinder", D+[0,0.2,v/2],

[0.02,v],c,
[-3.14159265359/2,0,0]];

end

Following the string “Cylinder”, the first value represents the
center of the cylinder. We take this to be v/2 because this
will allow us to keep one end of the cylinder fixed as the
value of v changes. The next paramter is a tuple containing
the radius and length of the cylinder. The next parameter is
color. The last parameter specifies orientation angles for the
cylinder. A screenshot of an instance of this class will be
presented shortly.

D. Vector and Trigonometric Calculation

In many cases, it is necessary to perform a bit of geomet-
rical calculation to create the desired shape. The need for
such calculations can arise in situations that may be simpler
than expected. An example of such a situation is drawing
a cylinder between two points. Often, this cannot be done
directly because many underlying visualization tools do not
describe cylinders directly in this exact manner. Rather, it is
common to use two angles that specify the orientation of the
cylinder. Once we have figured out all necessary calculations,
they can be encapsulated in one class as follows:

class cylinder (D)
private
p =[0,0,0]; q=[0,0,0];
_3D = [["Cylinder", D, [0,0],

[0,0,0],[0,0,0]]];
radius = 0.01; length = 0.01; alpha=0;
theta= 3.14159265359/2;
x=0;y=0;z=0
end
x [=] dot(p-q,[1,0,0]);
y [=] dot(p-q,[0,1,0]);
z [=] dot(p-q,[0,0,1]);
length [=] norm(p-q);
alpha [=] asin(z/length);
if (y>0)
theta [=] asin(x/(length*cos(alpha)))
else
theta [=] -asin(x/(length*cos(alpha)))

+3.14159265359
end
_3D [=] [["Cylinder",(p+q)/2+D,

[radius,length],
[1,1,1],[alpha,0,-theta]]];

end

The operators dot and norm operators compute the dot
product and the vector norm (or length). Creating such an
object is a good first exercise in coordinate transformation.
Versatility with such transformations is an important skill for
working with physical systems both in terms of Newtonian
modeling as well as other, more advanced modeling tech-
niques (c.f. [5]). Because they are executable models that
produce visual results, developing small, purely graphical
objects such as the ones above can be a gratifying way for
students to learn about and practice the necessary geometric
and necessary steps to understand how other aspects of robot
mechanics and motion are modeled.

III. MECHANICS AND DYNAMICS

In contrast to the effort needed to describe geometric and
visual objects, describing basic mechanical systems and their
dynamics can be done more concisely. A point mass that can
only move long dimension can be represented as follows:

class mass_1d (m,p0,D)
private
p=p0; p’=0; p’’=0; f=0; e_k=0;
s=create sphere (m,D)

end
p’’ [=] f/m;
e_k [=] 0.5 * m * (p’)ˆ2;
s.p [=] [0,0,p]
end

The object takes as parameters a mass m, an initial position
p0, and a reference point for visualization.2 Internally, the
mass keeps track of a position p, its first and second deriva-
tives p’ and p”, a force f, and the kinetic energy e k. For
visualization, a sphere object is created during initialization.
The body of the class definition specifies that the acceleration
of the object, p”, is determined by Newton’s law F = ma,
where we are solving for acceleration (which is just p”
here). The expression for energy uses the built-in dot-product
operation on vectors. Finally, we set the position p of the
visual object sphere to be the same as the position p of the
current object.

Supporting vector operations make it possible to define a
similar object that has a three dimensional position almost
just as simply:

class mass (m,p0,D)
private
p=p0; p’=[0,0,0]; p’’=[0,0,0];
f=[0,0,0]; e_k=0;
s = create sphere (m,D);

end
p’’ [=] f/m;
e_k [=] 0.5 * m * (dot(p’,p’)) ˆ2;
s.p [=] p;
end

2For reasons of space, this paper uses short (often single-character)
variable names. While this is closer to mainstream mathematical notation,
in larger models it may be better style to use longer names for variables.

5

Note that it is convenient in this domain to have derivatives
over vectors. We can induce continuous behaviors in such
an object by mean of an external continuous assignment. For
example, the effect of a gravitational force on a mass object
m by a continuous assignment “m.f [=] m.m*[0,0,-9.81]”.

An idealized, 3D spring can be modeled as follows:

class spring (k,l0,D)
private p1=[0,0,0]; p2=[0,0,0];

f1=[0,0,0]; f2=[0,0,0];
dl = [0,0,0]; e_p=0;

end
dl [=] p2-p1 * (1-l0/norm(p2-p1));
f1 [=] k*dl;
f2 [=] -k*dl;
e_p [=] 0.5 * k * dot(dl,dl);

end

This class associates a different force with each end of the
spring, and that computes only a potential energy e p rather
than a kinetic energy. No visualization is included in this
object, but that can be easily done using techniques presented
above.

A. Impacts and Discrete Assignment

An important physical effect in dynamics is impact. Often,
it is convenient to model impacts as a sudden effect. Discrete
assignments can be used for this purpose. The following
model provides an example of the use of discrete assignment
to model the impact of a falling ball with a floor:

class bouncing_ball (D)
private
m = create mass_1d (10, 3, D);
bk = create display_bar

(0,[3,0.2,0.2],D+[0.1,0.2,0]);
bp = create display_bar

(0,[0.2,3,0.2],D+[-0.1,0.2,0]);
bt = create display_bar

(0,[0.2,0.2,3],D+[0,0.2,0]);
end
m.f [=] m.m * -9.81;
if (m.p < 0 && m.p’ < 0)
m.p’ = -0.9 * m.p’
end;
bk.v [=] m.e_k / (m.m * 9.81);
bp.v [=] (m.m * 9.81 * m.p)

/ (m.m * 9.81);
bt.v [=] bk.v + bp.v;

end

The model uses the mass class along with a continuous
gravity model and a ground-impact model where the ball
looses 10% of its velocity. The class display bar is used to
display colored bars to present some additional information
in the 3D output. The mass model used here has only one
degree of freedom along the Z axis. We use three display
bars to visually represent the kinetic and potential energy,
as well as their sum. The discrete assignment occurs inside

Fig. 2. The Acumen IDE with the bouncing ball model and simulation
results. The green bar indicates the potential energy, the red one is the
kinetic energy, and the blue bar is their sum. The total energy decreases
with each ground impact, and during the free flight phase the two energies
behave as expected.

the if statement that detects impact with the ground plane.
Figure 2 shows a sequence of screenshots, one including the
Integrated Development Environment (IDE), which results
from running this example. It can be seen that, as expected,
the total energy decreases at each impact, while the kinetic
and potential energies reach their respective maxima and
minima at the height of the bounce and the impact at ground
level.

Now we turn to creating systems made from components
such as the mass and spring components that we have just
introduced.

IV. CAPTURING CONCEPTUAL STRUCTURE: OBJECT
BOUNDARIES AND COMPOSITION

A benefit of using classes in defining a model is that
it helps us think clearly about the conceptual boundary
between the different components that we are modeling.
Connecting components is a matter of relating fields in
different components though continuous assignments. For
example, the following class models a system consisting of
three masses connected by two springs:

class example_3 (D)
private
m1 = create mass (15,[0,0, 1],D);
m2 = create mass (5, [0,0,-1],D);
m3 = create mass (1, [0,0,-1.5],D);
s1 = create spring (5,1.75,D);
s2 = create spring (5,0.5,D);
b = create display_bar (-1.5,0,D)
end
s1.p1 [=] m1.p; s1.p2 [=] m2.p;
s2.p1 [=] m2.p; s2.p2 [=] m3.p;

6

m1.f [=] s1.f1;
m2.f [=] s1.f2 + s2.f1;
m3.f [=] s2.f2;
b.v [=] (m1.e_k + m2.e_k + m3.e_k

+ s1.e_p + s2.e_p)*12;
end

The class uses an instance of the class display bar to draw
a cylinder to display the kinetric energy in the system. Even
though this is quite a simple dynamical system, it can be
used to consider and illustrate several simple but nevertheless
fundamental aspects of control.

V. CONTROL

The goal of control is to bring a certain quantity close to
a desired goal. In the context of the model presented above,
and given a controller object c, the introduction of such a
controller can be modeled as follows:

// Goal is spring length at rest
c.g [=] s1.l+s2.l;

// Value is actual spring length
c.v [=] m1.p-m3.p;

// Add c.f
m1.f [=] s1.f1 + c.f;
m2.f [=] s1.f2 + s2.f1;

// Subtract c.f
m3.f [=] s2.f2 - c.f;

In this model the goal value for the controller is to have the
length of the system be the same as the natural lengths of
the two springs. The quantity that we wish to control is the
position of the first mass minus the position of the third one.
The way we will achieve that is to take a force value f that is
generated by the controller and apply it to both sides of the
system that we have constructed, but in opposing directions.

Now the question that remains is how the controller c
should compute its output force f given the goal g and mea-
sured value v. This is a prototypical question in the design of
control systems, and that can be approached in a variety of
different ways. Three of the most basic types of controllers
are 1) proportional feedback, 2) proportional/differential
feedback, and 3) proportion/integral/differential feedback.
The first type can work for systems without inertia, or that
have intrinsic ways of dissipating inertial energy. It can be
modeled as follows:

class force_controller_p (k_p)
private g=[0,0,0]; v=[0,0,0];

f=[0,0,0]
end
f [=] k_p * (g-v)

end

The force f computed is directly proportional (hence the
name) to the difference between the goal g and current value
v of the quantity that we want to control. The higher the

constant k p, the higher the force that will be applied for
the same amount of difference (or “error”) between the goal
value and the current value.

If the system has inertia or does not dissipate the extra
energy introduced by the control force, it might oscillate
indefinitely as a result of the proportional control. To deal
with this problem, a slightly more sophisticated controller
that can also add a force opposing the direction of the motion
(or rate of change) of the value being measured. Such a
proportional/differential (PD) controller can be defined as
follows:

class force_controller_pd (k_p,k_d)
private
g=[0,0,0]; v=[0,0,0]; s=[0,0,0];
f=[0,0,0]

end
f [=] k_p * (g-v) - k_d*s
end

Note that this controller has an extra field s that should be
provided from outside the object to serve as the speed reading
that should affect the final force f.

An interesting feature of these two controllers is that
they do not keep track of history. We may wish to build
a controller that exerts a higher force only after a weaker
force has been tested for some time. This can be helpful,
for example, if there are external constant forces (such
as gravity) acting on our system, and we do not know
their precise quantity ahead of time. This type of behavior
can be achieved by a proportional/integral/differential (PID)
controller such as the following:

class force_controller_pid (k_p,k_i,k_d)
private
g=[0,0,0]; v=[0,0,0]; s=[0,0,0];
f=[0,0,0]; i=[0,0,0]; i’=[0,0,0]

end
f [=] k_p*(g-v) + k_i*i - k_d*s;
i’ [=] (g-v)
end

The variable i is being used to integrate the difference
between the goal g and the value v over time, so, no extra
inputs are needed.

Using the formalism presented so far, it is easy to simulate
and visualize the several instances of the 3-mass/2-spring
example showing both the behavior of the mass and the
energy of the system with different controllers. The ex-
periment shows that a P controller will not dissipate any
energy and therefore will not stabilize the system, and that
in fact at times it will add energy to the system and at
others absorb energy from it. In fact, this example motivates
formally analyzing this system to show that this controller
will function essential as simply another spring between
the two extreme masses. The PD controller will suffice in
stabilizing the system quickly, and this will be clear from
the height of the bar representing the energy in the system.

7

VI. DISTURBANCES

To enhance the value of an experiment, whether it is a
physical or a virtual experiment, it can be useful to introduce
various sources of disturbance into the system. At least for
preliminary experimentation, it can be sufficient to model
such disturbances as autonomous sources of various forces. A
simple example that can be used with the examples presented
in this paper is as follows:

class force_disturbance (k)
private t=0; t’=0; t’’=0; f=[0,0,0] end
t’ [=] 4; f [=] k*[sin(t), cos(t),

sin(2*t+cos(3*t))]
end

This example generates a circular motion in two dimen-
sions, and a mildly eratic oscillation in the third dimension.
The k parameter is used to determine the amplitude of
the behavior. One can imagine further parameterizing the
object with a frequency or with time-varying mixing of the
signals along the different axes. To determine what type of
disturbance is most useful for a particular class of problems
requires experimental analysis and validation of the models.
For the purposes of this example, the above model sufficies
to give us some confidence that our controllers did not just
work for the particular parameters that we used to test the
various systems on.

VII. RIGID BODY DYNAMICS

With basic particle dynamics and control concepts under
our belt, we are ready to start looking at the rigid body dy-
namics. A key feature of this level of analysis of mechanical
systems is that we start to take into account both translational
and rotational effects. It is also a useful level to illustrate
some of the benefits of using vector algebra to model and
reason about the dynamics of systems. For example, vector
algebra can often allow us to think about problems in 2D
and then have the results generalize naturally to 3D. For
example, consider a rod which holds apart two masses (of
m/2 each) at a given distance (visualized in Figure 3). Now
imagine that there are force vectors p and q acting on each
end. What is the resulting acceleration on the system? The
following class models the dynamics of such a rod:

class rod (m,p0,q0,D)
private
length = norm(p0-q0);
p = p0; sp=[0,0,0]; q = q0; sq=[0,0,0];
axis = (p0-q0)/norm(p0-q0);
axis’=[0,0,0]; axis’’=[0,0,0];
core = (p0+q0)/2;
core’ = [0,0,0]; core’’ = [0,0,0];
fp = [0,0,0]; fq = [0,0,0];
fp_axis = [0,0,0]; fp_orth =[0,0,0];
fq_axis = [0,0,0]; fq_orth =[0,0,0];
c = create dumbbell (1,1,D);
end
fp_axis [=] dot(fp,axis)*axis

/ norm(axis);

Fig. 3. The 3D visualization generated by the rod class.

fp_orth [=] fp - fp_axis;
fq_axis [=] dot(fq,axis)*axis

/ norm(axis);
fq_orth [=] fq - fq_axis;
core’’ [=] (fp + fq)/m;
axis’’ [=] 2*(fp_orth-fq_orth)

/ (m*length);
p [=] core

+ (axis * (length/2)/norm(axis));
q [=] core

- (axis * (length/2)/norm(axis));
sp [=] core’ + axis’ * (length/2);
sq [=] core’ - axis’ * (length/2);
c.p [=] p; c.q [=] q;

end

It is easy to combin this system with a controller that
works to move the point p to a predetermined location. An
interesting question is what happens to the point q during the
process, and whether that can also be controlled as well. This
problem provides a natural starting point to study challenging
questions such as the control of an inverted pendulum in 3D.

VIII. DISCRETIZATION AND QUANTIZATION

The one aspect of controllers that we have not captured in
the models presented above is that controllers are generally
implemented by digital computers. The most obvious new
issues that result from this implementation strategy are dis-
cretization (in time) and quantization (in the representation of
physical quantities). Both effects can be concisely expressed
in Acumen. To model discretization, the key mechanism that
is needed is to define a local clock and to only allow actions
to be performed (or to be observed) at clock transitions.
The following class models a PID controller (like the one
presented above) with discretization and quantization effects.

class force_controller_pid_d
(k_p,k_i,k_d,period)

private g=[0,0,0]; v=[0,0,0]; s=[0,0,0];
f=[0,0,0]; t=0; t’=0;
i=[0,0,0]; i’=[0,0,0]

end
t’ [=] 1;
if (t>period)
t=0;
f [=] k_p*(g-v) + k_i*i - k_d*s;
end;

8

i’ [=] (g-v)
end

The variables t and its derivative t’ are used in a manner
similar to what was done at the start of this paper to generate
an interesting signal for moving sphere. Here we do two
new things with the variable t. The first is that we have a
conditional statement based on this variable that waits until
(t>period). The parameter period models the time it takes the
particular microprocessor that implements our controller to
produce the new value of the result of the controller. Once the
condition is true the first thing we do is to reset the counter.
The second is that we reset its value to 0 using the statement
“t=0” as soon as that condition is true. In addition to this
reset, the conditional also allos the equation for variable f in
the original model to take effect only for that instant when t
has surpassed the value of period. Because no other definition
is given for this value until this event occurs again (at the
start of the next period), the value f remains constant until
that change occurs.

With this model, it is easy to illustrate that as the sampling
period goes up, the system that we are trying to control can
become unstable.

Discretization can be modeled by adding another integer
(or fractional) value that is updated (by either a whole integer
or a fraction, depending on the quanta) when an underlying
continuous value goes outside the range represented by the
current quanta.

IX. DISCUSSION

Developing the examples used in this paper points out
several possible improvements on the current formalism may
be necessary. In this section, we briefly point out ones that
appear to be particular compelling.

First, when we compose several examples together, the
simulation can slow down. The formalism is currently imple-
mented as a purely functional interpreter in Scala. This serves
well the goal of having a well-defined semantics. However,
we expect that there will be significant opportunities for
improvement in terms of performance.

Second, we have also noticed that numerical stability
can be a concern, even for the simple examples presented
here. The current implementation uses a forward Euler
integrator to simulate the continuous behavior. While this
is generally considered to be a simplistic numerical method,
it is surprising that it is problematic even for the simple
examples used in this paper. To address this problem without
becoming dependent on a particular numerical method, we
are investigating the use of interval and enclosure-based
methods to define a semantics for the formalism.

Third, the examples also illustrate that the language can
benefit from improved syntactic support for several different
features such as: A) variable declaration and initialization
often seems redundant and/or verbose, B) quantization for
vector-valued variable is currently verbose, C) discretization
could benefit from introducing syntactic sugar for clocks, D)
embedded software could be easier to model if it can be
written directly in a form similar to traditional code.

X. CONCLUSIONS AND FUTURE WORK

In this paper we used a small domain-specific modeling
formalism aimed at hybrid systems to express a range of
basic aspects of robot cyber-physics. By doing so we are
able to illustrate how such a formalism can be a useful basis
for learning and communicating about such concepts. At the
same time, we hope that these examples help communicate
the richness and the power of this formalism despite its small
size.

In future work, we would like to conduct similar studies
to determine whether the same small formalism used here
would suffice for expressing other aspects of robotic cyber-
physics, including: more sophisticated control laws, models
for joint and link composition, collision detection, impact
dynamics, a validated model of a multi-link robot, and a val-
idated model of a team of cooperating robots. We anticipate
that the improvements suggested in the discussion section
will be important for expressing these aspects naturally and
concisely.

ACKNOWLEDGEMENTS

We would like to thank the reviewers of DSLRob 2012
and Robert Cartwright for valuable feedback on an earlier
draft of this paper.

REFERENCES

[1] L. Carloni, R. Passerone, A. Pinto, and A. Sangiovanni-Vincentelli,
“Languages and tools for hybrid systems design,” Foundations and
Trends in Design Automation, vol. 1, no. 1, pp. 1–204, 2006.

[2] J. Bruneau, C. Consel, M. O’Malley, W. Taha, and W. M. Hannourah,
“Virtual testing for smart buildings,” in Proceedings of the 8th Interna-
tional Conference on Intelligent Environments (IE’12), Guanajuato’s,
Mexico, 2012.

[3] J. Jensen, D. Change, and E. Lee, “A model-based design methodology
for cyber-physical systems,” Istanbul, Turkey, Jul. 2011.

[4] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu,
G. L. Steele Jr., and S. Tobin-Hochstadt., “The fortress language
specification,” Technical report, Sun Microsystems, Inc., 2007.

[5] Y. Zhu, E. Westbrook, J. Inoue, A. Chapoutot, C. Salama, M. Peralta,
T. Martin, W. Taha, M. O’Malley, R. Cartwright, A. Ames, and
R. Bhattacharya, “Mathematical equations as executable models of
mechanical systems,” in Proceedings of the First ACM/IEEE Inter-
national Conference on Cyber-Physical Systems, Stockholm, Sweden,
2012.

[6] W. Taha, P. Brauner, Y. Zeng, R. Cartrwright, V. Gaspes, A. Ames,
and A. Chapoutot, “A core language for executable models of cyber
physical systems (preliminary report),” in Proceedings of The Sec-
ond International Workshop on Cyber-Physical Networking Systems
(CPNS’12), Macau, China, Jun. 2012.

[7] “Acumen web-site,” www.acumen-language.org.
[8] P. Fritzson and P. Bunus, “Modelica-a general object-oriented language

for continuous and discrete-event system modeling and simulation,”
in SS ’02: Proceedings of the 35th Annual Simulation Symposium.
Washington, D.C., USA: IEEE Computer Society, 2002, p. 365.

[9] W. Taha, “Lecture notes on cyber-physical modeling,” Available online
from www.effective-modeling.org/p/teaching.html, Sep. 2012.

[10] Y. Zeng, “Lightweight three-dimensional visualization for hybrid
systems simulation,” Master’s thesis, Halmstad University, Halmstad,
2012.

	I Introduction
	I-A Virtual Experiments and Language Research
	I-A.1 The Educational Challenge
	I-A.2 The Modeling and Simulation Challenge
	I-A.3 The Modeling Library Challenge

	I-B A Small, Experimental Language for Hybrid Modeling
	I-C Contributions

	II Visual and Geometric Presentation
	II-A Drawing 3D Objects
	II-B Class Definitions and Parameterization
	II-C Object Creation, Continuous Assignment, and Animation
	II-D Vector and Trigonometric Calculation

	III Mechanics and Dynamics
	III-A Impacts and Discrete Assignment

	IV Capturing Conceptual Structure: Object Boundaries and Composition
	V Control
	VI Disturbances
	VII Rigid Body Dynamics
	VIII Discretization and Quantization
	IX Discussion
	X Conclusions and Future Work
	References

