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A Nonlinear Constrained Optimization Framework for
Comfortable and Customizable Motion Planning of
Nonholonomic Mobile Robots — Part 1
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Abstract

In this series of papers, we present a motion planning framework for planning comfortable
and customizable motion of nonholonomic mobile robots such as intelligent wheelchairs and
autonomous cars. In this first one we present the mathematical foundation of our framework.

The motion of a mobile robot that transports a human should be comfortable and customiz-
able. We identify several properties that a trajectory must have for comfort. We model
motion discomfort as a weighted cost functional and define comfortable motion planning as
a nonlinear constrained optimization problem of computing trajectories that minimize this
discomfort given the appropriate boundary conditions and constraints. The optimization
problem is infinite-dimensional and we discretize it using conforming finite elements. We
also outline a method by which different users may customize the motion to achieve personal
comfort.

There exists significant past work in kinodynamic motion planning, to the best of our
knowledge, our work is the first comprehensive formulation of kinodynamic motion planning
for a nonholonomic mobile robot as a nonlinear optimization problem that includes all
of the following — a careful analysis of boundary conditions, continuity requirements on
trajectory, dynamic constraints, obstacle avoidance constraints, and a robust numerical
implementation.

In this paper, we present the mathematical foundation of the motion planning framework
and formulate the full nonlinear constrained optimization problem. We describe, in brief,
the discretization method using finite elements and the process of computing initial guesses
for the optimization problem. Details of the above two are presented in Part II (Gulati
et al |2013)) of the series.

1 Introduction

Autonomous mobile robots such as intelligent wheelchairs and autonomous cars have the potential to improve
the quality of life of many demographic groups. Recent surveys have concluded that many users with mobility
impairments find it difficult or impossible to operate existing power wheelchairs because they lack the
necessary motor skills or cognitive abilities (Fehr et al., [2000; [Simpson et al., |2008]). Assistive mobile robots
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such as smart wheelchairs and scooters that can navigate autonomously benefit such users by increasing their
mobility (Fehr et al., 2000). Autonomous cars have the potential to increase the mobility of a significant
proportion of the elderly whose driving ability is reduced due to age-related problems (Silberg et al., 2012)).

The motion of an autonomous mobile robot should be comfortable to be acceptable to human users. More-
over, since the feeling of comfort is subjective, different users should be able to customize the motion
according to their comfort. Motion planning is a challenging problem and has received significant attention.
See (Latombe, [1991; [Hwang and Ahujay, (1992; |Choset et al., [2005; [LaValle, [2006, [2011aljb). However, most
of the existing motion planning methods have been developed for robots that do not transport a human user
and issues such as comfort and customization have not been explicitly addressed.

In this paper we focus on planning comfortable motion for nonholonomic mobile robots such that the motion
can be customized by different users. Our key contributions are as follows:

o We model user discomfort as a weighted cost functional. This is informed by studies of human
comfort in road and railway vehicle literature that indicate that human discomfort increases with
the magnitude of acceleration and jerk and that comfortable levels of these quantities have different
magnitudes in the direction of motion and perpendicular to the direction of motion (Suzuki, |1998).
Thus, our cost functional is a weighted sum of the following three physical quantities: total travel
time, tangential jerk, and normal jerk.

Minimum jerk cost functionals have previously been used in literature (Zefran, 1996; |Arechavaleta
et al.,[2008) for optimal motion planning. What is new here is the separation of tangential and normal
components, and computing the weights using the technique of dimensional analysis (Langhaar,
1951)) that allows us to develop a straightforward procedure for varying the weights for customization.

e We develop a framework for planning comfortable and customizable motion. Here, we present a
precise mathematical formulation of kinodynamic motion planning of a nonholonomic mobile robot
moving on a plane as a nonlinear constrained optimization problem. This includes an in-depth
analysis of conditions under which the cost-functional is mathematically meaningful, analysis of
boundary conditions, and precise formulation of constraints necessary for motion comfort and for
obstacle avoidance. To the best of our knowledge, such a formulation is absent from the literature.

The idea of computing optimal trajectories that minimize a cost functional is not new and has been
used for planning optimal trajectories for wheeled robots (Dubins| [1957; Reeds and Shepp), [1990;
Balkcom and Mason, 2002} [Bianco and Romano, 2005) and manipulators (Fernandes et al., |1991;
Shiller, 1994; Zefran, [1996; |Arechavaleta et al., 2008). All of these formulations make several limiting
assumptions, such as known travel time, or known path, or boundary conditions on configuration
but not its derivatives. None of these approaches consider obstacles. The closest existing work to
ours in terms of problem formulation and numerical solution method is (Zefran, 1996), but obstacle
avoidance constraints are not part of this formulation.

The trajectories planned by our framework have several useful properties — they exactly satisfy
boundary conditions on position, orientation, curvature, speed and tangential acceleration, satisfy
kinematic and dynamic constraints, and avoid obstacles while minimizing discomfort. Further,
our framework is capable of planning a family of trajectories between a given pair of boundary
conditions and can be customized by different users to obtain a trajectory that satisfies their comfort
requirements.

e We represent obstacles as star-shaped domains with piecewise C? boundary. This choice allows
treatment of non-convex obstacles without subdividing them into a union of convex shapes. This
reduces the number of constraints imposed due to obstacles and leads to a faster optimization
process. Such a representation of obstacles is not very common in robotics where most collision-
detection algorithms assume polygonal obstacles, and detect collisions between non-convex polygons
by subdividing them into convex polygons (Quinlan, (1994 Mirtichl [1998; [Lin and Manochal, 2004).
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e We use the Finite Element Method to discretize the above infinite-dimensional problem into a finite
dimensional problem. The finite element method is not unknown in trajectory planning but it is not
very common. However, it is a natural choice for problems like ours and we strongly believe that
using it provides us insight, flexibility, and reliability that is not easily obtained by choosing other
discretization methods.

e Our method can be used independently for motion planning of nonholomic mobile robots. It can
also be a used as local planner in sampling-based methods since the trajectories
computed by our method exactly satisfy boundary conditions, kinodynamic constraints, continuity
requirements, and avoid obstacles.

2 Background and related work

In this section, we characterize motion comfort by analyzing studies in ground vehicles, elevator design, and
robotics. We then review existing motion planning methods and identify their strengths and limitations in
planning comfortable motion.

2.1 Comfort

Comfort - What is it? Comfort has both psychological and physiological components, but it involves a sense

of subjective well-being and the absence of discomfort, stress or pain (Richards| |[1980).

Studies to characterize comfort in ground vehicles such as automobiles and trains have shown that the feeling
of comfort in a vehicle is affected by various characteristics of the vehicle environment including dynamic
factors (such as acceleration and jerk), ambient factors (such as temperature and air quality), and spatial
factors (such as seat quality and leg room) . In this work we focus on comfort due to
dynamic factors alone.

Passenger discomfort increases as the magnitude of acceleration increases (Suzukil [1998}|Jacobson et al.l|1980%
[Pepler et al., [1980; [Forstbergl 2000; |(Chakroborty and Das|, [2004]). This is because an increase in magnitude
of acceleration implies increase in magnitude of force experienced by a passenger. Two separate components
of acceleration effect discomfort — tangential component along the direction of motion and normal component
perpendicular to the direction of motion (Jacobson et al., 1980} [Pepler et al., (1980} [Forstberg) 2000). The
normal component is zero in a straight line motion but becomes important when traversing curves. The
actual values of comfortable bounds of the two components may be different , may vary across
people, may depend on the mode of transportation, and may depend on the passenger’s position (Pepler|
let al., [1980; [Forstberg) 2000). Hence, guidelines for ground transportation design prescribe maximum values
of accelerations (Suzuki, [1998; |Chakroborty and Das, 2004; [Iwnicki, [2006), or maximum values of comfort
indices that are functions of accelerations (ISO| 1997; [CEN] [1999).

Discomfort also increases as the magnitude of jerk increases (Pepler et all [1980} [Forstbergl [2000). This is
because a high rate of change of jerk implies a high rate of change of magnitude or direction or both of the
forces acting on the passenger. Upper bounds on jerk for comfort have been proposed for road
and railway vehicles . In elevator design, motion profiles are designed for user
comfort by choosing profiles with smooth accelerations and low jerk (Hall et al., [1970; Krapek and Bittar]
[1993 [Spielbauer and Peters| [1995)).

From a geometric standpoint, it has been known for more than a century that sharp changes in curvature
of roads and railway tracks can be dangerous and can cause passenger discomfort (Laundhart} [1887; Glover,
[1900; [Lamm et al., [1999). For a point mass moving on a path, the normal acceleration at a point is given
by kv? where & is the curvature of the path and v is the speed at that point. If curvature is not continuous,
then normal acceleration cannot be continuous unless the speed goes to zero at the point of discontinuity.

3



This is clearly undesirable for comfort. In robotics, the desire to drive a robot with non-zero speed from
start to goal has led to the development of methods for planning continuous curvature paths (Lamiraux and
[Laumond], [2001}; [Fraichard and Scheuer}, 2004} [Bianco and Romano|, 2004} 2005} [Piazzi et all, 2007).

To summarize, in a motion planning context, a trajectory should have the following properties for comfort.
First, the acceleration should be continuous and bounded. Second, jerk should be bounded. Third, the
geometric path should have curvature continuity so that is is possible to travel from start to end without
stopping. Fourth, a trajectory should exactly satisfy appropriate end point boundary conditions boundary
conditions on position, orientation, curvature, speed, and acceleration since many tasks require precise these
(for example, positioning at a desk for an intelligent wheelchair, parking in a tight parking space for a car).
Fifth, it should be possible to join multiple trajectories such that the combined trajectory has the above
properties. This means that a trajectory should satisfy the above described boundary conditions on both
ends.

2.2 Motion planning

There exists a large body of work on motion planning. Before reviewing this work, we define some terms.
The space of all possible positions and orientations of a robot is called configuration space. The space of all
possible configurations and their first derivatives is called state space. A trajectory is a time-parameterized
function of configuration. A control trajectory is a time-parameterized function of control inputs.

Motion planning is the problem of finding either a trajectory, or a control trajectory, or both, given the
initial and final configuration, and possibly their first and higher derivatives, such that the geometric path
does not intersect any obstacles, and the trajectory satisfies kinematic and dynamic constraints. Kinematic
constraints refer to constraints on configuration and dynamic constraints refer to constraints on velocity and
its higher derivatives. These constraints arise from physics, engineering limitations, or comfort requirements.

A variety of methods have been used to solve various aspects of the motion planning problem. Path Planning
methods focus on the purely geometric problem of finding a collision-free path. Another set of methods,
stemming from differential geometric control theory, focus on computing control inputs that steer a robot
to a specified position and orientation or that make a robot follow a specified path. Kinodynamic motion
planning methods, consider both dynamics and obstacles and focus on computing collision-free trajectories
that satisfy kinematic and dynamic constraints. See (Hwang and Ahujal [1992; |[Latombe, (1991} |Choset|
let al., 2005; LaVallel |2006) for excellent presentation of all three kinds of methods, (Laumond et al. |1998))
for differential geometric control methods, and (Donald et al (1993} [Fraichard), [1996; [LaValle and Kuffner|
[2001a; Hsu et al., [2002) for kinodynamic planning. In this work, we use motion planning in the sense
of (Donald et al., [1993), that is, we speak of kinodynamic motion planning, consistent with the informal
definition presented above.

Sampling-based methods

Sampling-based methods have found widespread acceptance and practical use for motion planning. These
methods are used for both path planning (LaValle, 1998; Kavraki et al., 1996; LaValle and Kuffner, 2001b)
and for motion planning (Canny, 1988; Barraquand and Latombe, |1989; [Donald et al., 1993; Fraichard, 1996;
[LaValle and Kuffner, 2001bla} [Hsu et al., 2002). See (LaValle, 2006)) for an in-depth discussion. The main
idea in all sampling-based methods is to sample the state space (Donald et al., [1993; LaValle and Kuffner
2001a)) or state-time space (Erdman and Lozano-Pérez, [1987; [Barraquand and Latombe, 1990; [Fraichard
1996; Hsu et al., 2002) to construct a directed graph called a roadmap from the start state to the goal
region. The vertices of this graph are points in the obstacle free region of the appropriate space (state
space or state-time space) and the edges are trajectory segments that satisfy kinodynamic constraints. The
sequence of control inputs associated with the edges of the roadmap is the control trajectory. Among the
most computationally efficient methods here are the ones that add vertices to the graph by randomized
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sampling.

Randomized sampling-based algorithms follow two paradigms — multiple-query and single-query. In the
multiple-query paradigm, a roadmap is constructed once and used to answer multiple path planning queries.
These algorithms are particularly computationally efficient in an unchanging environment since a single
roadmap can be used to answer multiple queries. Some of the most well-known algorithms that follow this
paradigm are Probabilistic Roadmaps (PRMs) and its variants (Kavraki et al., [1996).

In the single-query paradigm, a roadmap is constructed for each query. Some of the most well-known
algorithms that follow this paradigm are Randomly Exploring Dense Trees (RDT) (LaValle, [2006) and its
variants (Hsu et al., 2002} [Karaman and Frazzoli, 2011). These methods start with a roadmap rooted at the
start state and iteratively add vertices by randomized sampling of the appropriate space. Different variants
differ in the way they add a new vertex to the roadmap. We describe RDT in some detail here. A new vertex
is added as follows (i) a sample point gpe, is chosen from a randomized sequence (ii) a vertex gey-- in the
graph that is closest to the sample point, according to a distance metric, is selected (iii) all controls from a
set of discretized controls are applied to ey and the system is allowed to evolve for a fixed time At (iv)
out of all the new points that can be reached via collision-free trajectories satisfying differential constraints,
the point nearest g, is chosen and added to the graph. This process is continued till a vertex in the goal
region is added to the graph.

The closeness of the end point of the trajectory to the goal state increases as the resolution increases, but
in general, it is not possible to find a trajectory that exactly reaches the goal state. If it is desired to reach
a goal state exactly, then a boundary value problem has to be solved between the end state of the solution
trajectory and the goal state. This is a non-trivial problem since the solution must avoid obstacles and satisfy
kinodynamic constraints. Some sampling-based methods are bidirectional, that is, they simultaneously grow
roadmaps from the start state as well as the goal state. In this case, a solution trajectory exactly satisfies
the boundary conditions. However, like before, a boundary value problem has to be solved to connect the
two roadmaps.

Since a fixed value of control input is applied for a finite length of time at each step, the planned path
lacks curvature continuity and has to be smoothed in a post-processing step. Curvature continuity can be
attained at the cost of increasing the dimensionality of the state space, and has been demonstrated only for
a path planning problem (Scheuer and Laugier, [1998|). Similarly, for achieving acceleration continuity the
dimensionality of the state space has to be increased resulting in increased computational complexity.

Recently, sampling-based algorithms described above have been shown to almost always converge to solu-
tion that has non-optimal cost (Karaman and Frazzoli, |2011) and a new algorithm, RRT* was proposed
for planning asymptotically optimal paths. Results in a two dimensional configuration space showed that
algorithm is computationally efficient. While promising, these results are very recent, and extending this
work to kinodynamic motion planning is yet to be carried out.

Another set of sampling-based methods can compute optimal trajectories by constructing a grid over the state
space or state-time space and searching this discrete grid using graph-search algorithms such as A* (Canny,
1988; |Barraquand and Latombel [1989; [Fraichard, [1996)). This grid is called the state-lattice. Each pair
of neighboring vertices of the grid are connected to each other by a trajectory that satisfies kinodynamic
constraints. Three key choices effect the solution quality. First, the choice of discretization determines
the closeness of the solution to the true optimum and the speed of computing the solution. Second, the
choice of a neighborhood (e.g. k-nearest) for a vertex determines the connectivity of the space. Third,
the choice of a method for computing trajectory segments between vertices determines the quality of the
solution trajectory. Computing trajectory segments between adjacent states involve solving a non-trivial
boundary value problem. For continuity of curvature, velocity and acceleration between connected trajectory
segments, the state space should include curvature, and the first and second derivative of configuration. This
results in increase in dimensionality of the search space and hence increase in computational time. For this
reason, lattice-based methods have been shown to plan trajectories, with some but not all of the properties
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necessary for comfort (Section in autonomous driving applications. Continuous curvature trajectories
are demonstrated in (Pivtoraiko et al.l 2009)), continuous velocity but not continuous curvature trajectories
are demonstrated in (Likhachev and Ferguson, 2009). Trajectories with continuous curvature, speed, and
acceleration are demonstrated in (McNaughton et al. [2011) Here the problem is tractable because the
sampling can be restricted to the road on which the vehicle drives. Efficiently planning trajectories that
satisfy all properties of comfort as described in Section [2.1]in less structured environments very much remains
an open problem.

Optimal-control based methods

The problem of planning trajectories that are optimal with respect to some performance measure and also
avoid obstacles has been shown to very hard (Canny and Reifl |[1987)), even in relatively simple cases. However,
for many applications, we do require that a solution trajectory be optimal with respect to some performance
measure such as time, path length, energy etc.

Optimal control methods (Bryson and Hol |1975; Troutman) [1995) have traditionally been used for com-
puting optimal trajectories for systems subject to dynamic constraints in the absence of obstacles and have
been widely applied in aerospace engineering and control-systems engineering. The formulation consists of
constructing a cost functional representing the cumulative cost over the duration of motion and minimizing
the cost functional to find a desired state trajectory or control trajectory or both. A functionalis an operator
that maps a function to a real or complex number.

Sufficient conditions for a solution of the minimization problem are given by the Hamilton-Jacobi-Bellman
(HJB) equation. HJB is a second-order partial differential equation with end-point boundary conditions.
Analytic solutions of the HJB equation for linear systems with quadratic cost have long been known (Bryson
and Ho, [1975)). For general nonlinear systems, the HJB equation has to be solved numerically.

Necessary conditions for optimality are derived using Pontryagin’s principle and consist of a set of first-order
ordinary differential equations. These differential equations convert the optimization problem into a two-
point boundary value problem. The system of differential equations can either be solved analytically (where
possible) or numerically using methods such as the shooting method or finite-difference methods.

Analytical solution to the problem of finding minimum length paths for Dubins (Dubins| [1957) car and
Reeds and Shepp (Reeds and Shepp), [1990)) car (see (Soueres and Boissonnat) [1998)) was found using such
an approach. Dubins car is only allowed to move forward while Reeds and Shepp car is also allowed to move
backward. These paths are comprised of straight line and arc segments and minimize the distance traveled
by the mid-point of the rear axle. Each path segment is traversed at a fixed speed, so the trajectories
corresponding to these paths are also time-optimal for a given speed. More recently, shortest paths for a
differential drive wheeled robot were developed by including a rotation cost in the cost functional (Balkcom
and Mason| [2002) (since a differential drive robot can turn in place). Such minimum-time paths lack
curvature continuity and require frequent stopping and reorienting of wheels.

More complex problems generally require a numerical solution. One frequently used numerical method is
the shooting method where the two point boundary value problem is converted into an initial value problem.
Shooting methods have been used for trajectory planning for nonholonomic mobile robots (Howard and
Kelly, [2007; |[Ferguson et al., |2008]). However, in shooting methods, it is challenging to specify a good initial
guess of the unknown parameters that produces a final state reasonably close to the specified state. In
general, the trajectories computed do not exactly satisfy end point boundary conditions.

Instead of solving the differential equations representing necessary conditions, approximation methods that
discretize the infinite-dimensional problem into a finite-dimensional one and optimize the cost functional
directly in this finite-dimensional space can be used. Such methods have been used for planning optimal
trajectories of robots. In (Fernandes et al.l [1991), control inputs that minimize total control energy to
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travel between a given pair of boundary states are computed. Here Fourier basis functions are used for
discretization. In (Zefran, 1996), trajectories that minimize the integral of square of L? norm of end-effector
jerk and the square of L? norm of time derivatives of joint torque vector, subject to torque constraints,
are computed. Here a finite-element discretization is used. Other discretizations are also possible, such as
B-spline (Bobrow et al.l |2001) and spectral (Strizzi et al. 2002) discretization.

Very few of the existing optimal control approaches include obstacle-avoidance. Not only do obstacle avoid-
ance constraints make the optimal control problem highly nonlinear, but also each obstacle divides the set
of feasible solutions into disjoint regions. One of the earliest methods that included dynamic constraints and
obstacle-avoidance for motion planning of autonomous vehicles used a two step approach — first an obstacle
free path was found and then an optimal speed on this path was computed (Shiller and Dubowsky, [1991;
Shiller and Gwol, [1991)). Because of path-velocity decomposition, the resulting trajectory is, in general, not
optimal. Obstacles were included as hard constraints for a two-dimensional translating robot in (Tominaga,
and Bavarianl [1990)).

Learning methods

Optimal control methods require an accurate model of the kinematics and dynamics of the robot as well as
models of the robot’s interactions with the world. Such models are not always available. Further, it is not
straightforward to develop an appropriate cost functional for a given task. Even if such models and cost
functionals are available, searching through the high dimensional configuration space of the robot (e.g. in the
case of humanoid robots) for an optimal trajectory can be computationally expensive. One set of learning-
based methods use the key observation that, in practice, robot trajectories are restricted to a manifold by
the task and by the kinodynamic constraints. The dimension of this manifold is, in general, lower than
the dimension of the configuration space. These methods aim to learn the structure of this manifold from
observed data of the robot’s movement (Ramamoorthy and Kuipers, [2008). Another set of methods aim to
learn motion primitives for a specific task using observed data from human movements (Schaal et al., |2003)).
A detailed discussion of these methods is beyond the scope of this work and the interested reader is referred
to the following works for more details: (Full and Koditschekl [1999; [Schaal et al.l 2003} |Calinon and Billard,
2009; [Ramamoorthy and Kuipers, [2008; [Havoutis, [2012]).

Summary

Trajectories computed by sampling-based methods, in general, lack continuity of curvature and acceleration.
While these problems can be solved by increasing the dimensionality of state space at the cost of increased
computational complexity, the problems of lack of optimality and not satisfying the goal boundary conditions
exactly still remain.

Optimal control methods have primarily been demonstrated for trajectory planning in the absence of ob-
stacles. Further, a comprehensive formulation of kinodynamic motion planning problem for nonholonomic
mobile robots that includes obstacle avoidance is absent. Thus, none of the existing methods can be directly
applied to planning comfortable and trajectories. To this end, we develop a motion planning framework to
compute trajectories that result in comfortable motion.

3 Overview of the approach

At the root of our framework is the assumption that user discomfort can be quantified as a cost functional,
and that trajectories that minimize this discomfort and avoid obstacles will result in user-acceptable motion.
We outline the main steps of our approach below.

e Formulate user discomfort as a mathematically meaningful cost functional. Based on existing lit-
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erature, and making the assumption that a user would like to travel as fast as is consistent with
comfort, we define a measure of discomfort as a weighted sum of the following three terms: total
travel time, time integrals of squared tangential jerk and squared normal jerk.

Each weight used in the discomfort measure to add different quantities is the product of two factors.
The first factor has physical units so that the physical quantities with different dimensions can be
added together. It is a fixed function of known length and velocity scales. The second factor is a
dimensionless parameter that can be varied according to user preferences. The dimensional part is
derived using the standard technique of dimensional analysis (Langhaar] [1951)).

Define the problem. We formulate our motion planning problem as follows: “Given the appropriate
boundary conditions, kinodynamic constraints, the weights in the cost functional, and a representa-
tion of obstacles, find a trajectory that minimizes the cost functional, satisfies boundary conditions,
respects constraints, and avoids obstacles”. This description is transformed into a precise mathe-
matical problem statement using a general nonlinear constrained optimization approach.

Choose a parameterization of the trajectory. Mathematically, one can use different functions to
fully describe a trajectory. We express the trajectory by an orientation and a velocity as functions
of a scaled arc-length parameter where the scaling factor is an additional scalar unknown to be
solved for. This leads to a relatively simple expression for discomfort. We use a scaled arc-length
parameterization Thus, we do not assume that the path length is known until the problem is solved.

Analyze the boundary conditions. A complete analysis of boundary conditions shows that for the
optimization problem to be well-posed, we need to impose boundary conditions on position, orienta-
tion, curvature, speed, and tangential acceleration on each end. Further, we find that three different
types of boundary conditions on speed and tangential acceleration on each end describe all types of
motion tasks of interest such as starting/ending at rest or not.

Choose a representation of obstacles. To incorporate obstacle avoidance, we make the assumption
that each obstacle can be modeled as a star-shaped domain with a boundary that is a piecewise
smooth curve with continuous second order derivative. If an obstacle is not star-shaped, our frame-
work can still handle it if it can be expressed as a finite union of piecewise smooth star-shaped
domains. It is assumed that a representation of each obstacle is known in polar coordinates where
the origin lies in the interior of the kernel of the star-shaped domain. Since each obstacle is as-
sumed star-shaped, the constraint that the trajectory stay outside obstacles can be easily cast as an
inequality.

To efficiently incorporate obstacle avoidance constraints, we have to introduce position on the path
as an additional unknown. This leads to a sparse Hessian of constraint inequalities, which otherwise
would be dense. The position as an unknown is redundant in that it can be computed from the
two primary unknowns (orientation and speed). Hence that relation is included as an extra equality
constraint.

Discretize the problem. We use finite elements to convert the infinite-dimensional minimization
problem to a finite dimensional one. For discomfort to be mathematically meaningful and bounded,
both speed and orientation must have square-integrable second derivatives. We use a uniform mesh
and cubic Hermite polynomial shape functions on each element for speed and orientation. Starting
or stopping with zero speed is a special case that requires that speed have an infinite derivative
(with respect to scaled arc-length) with a known strength on the corresponding boundary point. In
this case we use singular shape functions for speed only on elements adjacent to the corresponding
boundary.

In the non-discretized version of the optimization problem the obstacle avoidance constraint can be
expressed as the condition that each point on the trajectory should be outside each obstacle. We
discretize this into a finite dimensional set of inequalities by requiring that some fixed number of
points on the trajectory be outside each obstacle.

Compute an appropriate initial guess. A good initial guess is necessary for efficiently solving any
nonlinear optimization problem. In general, there exist infinitely many trajectories between any
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given pair of boundary conditions. Based on our analysis of this non-uniqueness, we compute a set
of four good quality initial guesses by solving another, simpler, optimization problem. These initial
guesses do not incorporate obstacle-av